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Least squares

In the theory described by eq. (1), we take into account the maximum number of
weekly and annual frequencies that a spectral analysis enables with daily data, i.e.
q = 1, 2, 3 and q′ = 1, ..., 182 respectively. For the interactions frequencies, based on
the Fourier transform of the data (Fig. 1), for each q = 1, 2, 3 we take 50 components
q′′ = 1, ..., 25.

All the parameters, T (t), ak(t), bk(t), A(t) for each day t, and αp for each particular
day p (mostly national holidays, see below), are put in a unique ’model’ vector m

whose dimension is ≈ 12.3 million. Eq. (1) can then be written n = g(m)+r where n

and r are the vectors formed by the values n(t) and r(t) for every day t. Since the size
of the data n is 18,263, the inverse problem consisting in inferring m that minimizes
r is regularized by also minimizing the required model m. Accordingly, we minimize
the following classical cost function f (Tarantola & Valette, 1982):

f(m) = ||r||2+||m||2 = rTC−1n r+mTC−1m m = (n−g(m))TC−1n (n−g(m))+mTC−1m m

(1)
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where Cn is the covariance matrix of the data and Cm is the a priori covariance matrix
of the parameters. The minimization algorithm is a Newton scheme applied to the
gradient of f . It yields the iterative algorithm (Tarantola & Valette, 1982):

m̂i+1 = CmG
T
i

(
Cn +GiCmG

T
i

)−1 (
n− g(m̂i) +Gi m̂i

)
(2)

where Gi = ∂g
∂m

(m̂i). Only 4 or 5 iterations are sufficient for convergence. Since data
are assumed to be independent and homoscedastic, Cn is proportional to identity, and
the corresponding standard deviation is chosen as its unbiased least square estimate.
Parameters are assumed to be independent, thus Cm is a block diagonal matrix, but
each parameter on one day t is supposed to be correlated to the same parameter on
another day t′, thus each main-diagonal block is a non-diagonal covariance matrix.
The correlation in time is chosen gaussian: the element of the covariance matrix for
days t and t′ reads Cmtt′

= σ2 exp
(
− (t−t′)2

2τ2

)
, where σ is a constant standard deviation

and τ is a correlation length. In order to have slowly varying functions, these corre-
lation times have been chosen to be long: 5 years, except for the trend for which it
is several months (i.e. longer than a lunar month). The a priori standard deviations
have been chosen after some trials in order to insure convergence and good statisti-
cal properties of the residuals: normality and independence, but also no significant
variations within the week, the year or holidays or with the frequency.

Particular days

By inspecting the data, in particular the number of births in the mean year over the
50 years, we identified 22 particular days in the year: see Table 1.

Testing the hypotheses that a deficit of birth at these days (value in last column
of the table) equals 0, using the normal distribution, gives p-values that need to be
corrected for multiple testing among 366 days. The Bonferroni corrections give upper
bounds of the FWER p-values that are all small (most are less than 10−10, some are
about 10−4), except Valentine’s day and switch to winter time. Thus, all values except
these two can be considered to be significantly different from 0 with a very small
probability of error. The number of each particular day in the data is between 9 (29
February) and 85 (Friday 13).

Since the switch time days have one hour more or less, they should theoretically
have -4 % and +4 % births in relative, that is -85 and +85 births. As it should be, the
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Table 1: Particular days in the year. The last column gives the mean value of the
deficit or excess of birth over the 50 years for each day, that is αp times the temporal
mean of (1 + A(t)). The greatest deficit is for Christmas which is -23 % with respect
to the mean global number of births. ’Extra long weekend’ corresponds to weeks with
a holiday on tuesday or thursday.

# Day Event Average deficit
of births

Fixed date holidays
1 1 January New year -466
2 1 May Labour day -389
3 8 May Surrender of Germany (1945) -457
4 14 July National Day -393
5 15 August Assumption -340
6 1 November All Saints -356
7 11 November Armistice (1918) -372
8 25 December Christmas -491

Mobile holidays
9 Easter Monday -364

10 Ascension Thursday -391
11 Whit Monday -388

Other particular days
12 2 January New Year’s Next day -115
13 22 December D-3 before Christmas -64
14 23 December D-2 before Christmas -107
15 24 December Christmas Eve -214
16 31 December New Year’s Eve -149
17 Extra long weekend Monday or Friday -71
18 Friday 13 Superstition -43
19 29 February Leap day -117
20 14 February Valentine’s Day +23
21 Last Sunday in March Switch to summer time -59 (-3 %)
22 Last Sunday in October Switch to winter time +38 (+2 %)
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differences with these theoretical values can not be considered as significant since the
corresponding FWER p-values are greater than 2 %.

These results suggest that superstition may affect the number of births since a
deficit of birth appears in some days when the medical staff is a priori as numerous
as the other days (Friday 13, Leap day). This can be noticed in the US for Valentine’s
day and Halloween, where the differences in the number of births (respectively +5 %
and -11 %) are statistically significant (Levy & Chung, 2011).

Outliers

By inspecting the residuals after a first application of the least squares algorithm, we
isolated 12 residuals that were greater than 3 standard deviations and for which we
were able to find a sociological event that might have influenced the number of births
on that day. These outliers have thus been corrected with the corresponding residual
values, and the least squares algorithm has been applied again to the “corrected raw”
data.

The largest outlier is 19 March, 2001: there has been a deficit of -339 births (cor-
rection+final residual). It was the beginning of a general midwives strike movement.
The day before is also an outlier: there has been +203 births more than usual. Un-
doubtly, midwives anticipated the strike. Two other important days were noticed: 11
August, 1999 when there has been a total solar eclipse in France (-237 births) and 31
December, 1999, which was the Millennium New Year’s Eve (-213 births). These two
days, the medical staff was probably less numerous than usual. The other days are
mainly those for which people could have a longer week-end or longer holidays.

Testing the hypotheses that these values equal 0, using the normal distribution
with the population standard deviation, gives p-values that mostly do not permit a
conclusion. Indeed, individual p-values are very small but they need to be corrected
for multiple testing among 18,263 days. On the other hand, the Bonferroni correction
gives only upper bounds of the FWER p-values and with such a high number of days,
the corrections are large. Consequently, FWER p-values are smaller than 10−2 only for
the 5 differences greater than 237 births:
- the start of midwives strike movement;
- Tuesday, 30 June, 1987, the day before summer holidays (+288 births);
- Saturday, 14 July, 2007, National holiday after a Friday 13 (+263);
- Friday, 6 January, 1989, Weekend vigil and return from vacation on the 5th (+254);
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- the solar eclipse day.

Likelihood ratio test

The residuals r(t) obtained from equation (1) are divided in 30 classes, of respective
lengths n1, . . . n30, according to their corresponding lunar day i = 1, . . . , 30, and are
modeled by the classical one-way model (Miller, 1986, Ch. 3):

rij = µi + εij ,with i = 1, . . . 30, j = 1, . . . , ni, N =
30∑
i=1

ni = 18 263 ,

where εij are assumed to be independent and identically distributed as a gaussian vari-
able with mean 0 and unknown variance, and µi is the mean of rij. Within this model,
the hypothesis H0 : “µ1 = · · · = µ30 = 0” can be tested against the alternative H1 :

“There exists i ∈ {1, . . . , 30} : µi 6= 0” thanks to the likelihood-ratio test (Lehmann &
Romano, 2005, Ch. 5 and 12). The associated test statistic reduces to −2 log T , where

T =
(∑

i,j(rij − r̄i ·)2/
∑

i,j r
2
ij

)N/2
, in terms of r̄i · = (1/ni)

∑ni

j=1 rij. This statistic is
asymptotically distributed as a χ2 variable with 30 degrees of freedom.

Chi-square test

One can be tempted to perform χ2 tests on the repartition of births within the 30
days of the lunar moon to test the hypothesis that the probability of each birth to
appear in one given day of the lunar month is uniform in the month. The number of
degrees of freedom is 29. For our raw data, the χ2 statistic is 216, which yields a
p-value < 10−30. However, as explained in the text, the statistic is very high because
the trend and seasonality component have important fluctuations, and the raw data
do not respect the conditions necessary for the application of the χ2 test. This error is
often made and responsible for most of (false) detections of correlation between lunar
phases and births (Rotton & Kelly, 1985, Rotton, Kelly & Frey, 1983).

On the contrary, our residuals are closer to the conditions for satisfying for the
application of the χ2 test. In particular, their standard deviation (= 46.8) is close
to that of a multinomial of the total number of births distributed over the days of the
series (= 46.1). The χ2 statistic is 72, which yields a p-value = 2×10−5: the hypothesis
that the days in the lunar month are equiprobable can be rejected. When we don’t
take into account FM and FM+1 days, the χ2 statistic is 33, the number of degrees
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of freedom is 27, which yields a p-value = 2 %. This does not seem small enough to
reject equiprobability between the days of the lunar month. When we do not take into
account the FM, FM+1 and FM+11 days, the χ2 statistic is 23, the number of degrees
of freedom is 26, which yields a p-value = 60 %. Again, it shows that only FM and
FM+1 can be quite safely considered as responsible for the significant variations of
births in the lunar month.
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