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This short note contains additional material associated to our main article [1]. Section 1 presents
three numerical examples which are complementary to those of the main article. Section 2 recalls
classical definitions and results around the notions of differentiation with respect to the domain and
in the field of tangential calculus, which are consistently used in the main article.

1. Additional numerical examples

1.1. Minimization of the mean value of a least-square criterion under material uncertain-
ties

In this first additional example, we illustrate the proposed model for dealing with random uncertainties
over the elastic material’s parameters, as described in Section 3.3 of [1]. The setting is that of the
minimization of the thickness h of a plate with given cross-section Ω. More precisely, let us consider
the situation depicted in Figure 1.1, associated to the optimization of a gripping mechanism. The
considered plate is fixed on a part ΓD ⊂ ∂Ω, and surface loads g ∈ L2(ΓN )2 are applied on another
part ΓN ⊂ ∂Ω; g equals (0,−1) on the upper part of ΓN , and (0, 1) on its lower part.

Uncertainties Ê are expected over the Young’s modulus E of the material, namely E = E0 + Ê
with E0 = 100. As for the uncertainties Ê, they are characterized by the datum of their correlation
function:

∀x, y ∈ Ω, Cor(Ê)(x, y) = β2e−
|x−y|
d ,

where the correlation length d is set to d = 0.1, and β is a parameter quantifying the magnitude of Ê.
A Karhunen-Loève expansion is then performed, then truncated, so that Ê takes a form suitable for
computations:

Ê(x, ω) =
3∑
i=1

√
λiEi(x)ξi(ω),

where (λi, Ei) are the first three eigenpairs associated to the Hilbert-Schmidt operator induced by
Cor(Ê).
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The cost function under consideration C(h,E) is a least-square criterion measuring the discrepancy
between the solution uh,E to the linear elasticity system (see (3.1) in [1]), and a target displacement u0:

∀h ∈ Uad, C(h,E) =
∫

ΓT
|uh,E − u0|2 ds,

where ΓT is a non optimizable subset of ∂Ω, disjoint from ΓD and ΓN . The target displacement is
u0 = (0,−1) on the upper part of ΓT , and u0 = (0, 1) on its lower part. The objective function at
stake is then the approximate mean value M̃(h) of the cost function C (see formula (3.37) in [1]).

We perform several tests of optimization of M̃(h), for different values of β, without imposing any
constraint on the volume of structures (since the functional at stake does not vary monotonically
with it). The results are displayed on Figure 1.2, and the convergence histories are those of Figure 1.3.
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Figure 1.1. Description of the gripping mechanism test case of Section 1.1.

Figure 1.2. (From left to right) Optimal shapes obtained in the gripping mechanism
test case of Section 1.1, associated to the values β = 0, 100, and 10000.
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Figure 1.3. Convergence history for the objective function in the gripping mechanism
test case of Section 1.1.

1.2. Minimization of the mean value and of the variance of the compliance of a crane

Our second example deals with the geometric optimization of a crane - see Figure 1.4 for details - in the
setting of geometric optimization. Body forces f0 = (0,−10) are applied on a region of the considered
shapes Ω which is not subject to optimization (the red region on Figure 1.4), and perturbations
f1, f2 = (0,−m) are expected on two disjoint, non optimizable areas (the blue regions). For simplicity,
surface loads are neglected (g = 0). The cost function of interest is the compliance C(Ω, f) of shapes
(see Formula (5.3) in [1]) , and we aim at minimizing the weighted sum

J (Ω) := M̃(Ω) + δ
√
Ṽ(Ω) (1.1)

of the approximate mean value M̃(Ω) and standard deviation
√
Ṽ(Ω) of C - see Section 5.2.2 in [1].

Several instances are performed, while imposing a target volume VT = 900 on shapes. The corre-
sponding results are represented in Figure 1.5.
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Figure 1.4. Description of the crane test case of Section 1.2.
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Figure 1.5. Minimization of the objective function (1.1) for m = 1 (left column),
m = 2 (middle column), and m = 3 (right column), and, from top to bottom, δ = 0, 5.

1.3. Minimization of the stress of an L-shaped beam under uncertainties over its geometry

In this section, we complete the test case treated in Section 5.2.5 of [1]. The situation is identical to
that discussed in the main article: in the context of geometric optimization, we aim at minimizing the
following cost function, depending on the stress tensor of shapes:

C(Ω) =
∫

Ω
||σ(uΩ)||5 dx. (1.2)

Random perturbations are expected on the geometry of shapes, which are still of the form given by
Formula (4.15) of [1], with scalar field v(x, ω) characterized by the correlation function (5.7), except
that they now apply on the whole L-shaped box D, and not only on its inferior part Dp. Again, a
Karhunen-Loève expansion of v is performed, and truncated after its first five terms, so that it is
approximated as:

v(x, ω) ≈
5∑
i=1

vi(x)ξi(ω),

where the functions vi are represented on Figure 1.6, and the ξi are centered, normalized, and uncor-
related random variables. The weighted sum

J (Ω) = C(Ω) + δ
√
Ṽ(Ω) (1.3)

of the unperturbed cost functional C(Ω) and the approximate standard deviation
√
Ṽ(Ω) is considered

as an objective function. Several examples of optimal shapes, associated to the target volume VT = 0.75
and different values of the parameter δ, are represented on Figure 1.7.
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Understandably enough, when compared to the corresponding shapes obtained in the main article
(that is, in the situation where perturbations apply only on the inferior part of D), the present shapes
show thicker bars on their superior parts, since perturbations are also expected in this region in the
present context.

Figure 1.6. Plots of the first five eigenfunctions vi of the correlation (5.7) (in [1]),
retained in the approximation of the random perturbation field v(x, ω).

Figure 1.7. Optimized L-shaped beams with respect to the stress criterion (1.2)-(1.3),
where the parameter δ equals (from the left to the right) 0, 0.5, 2.
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2. Some useful facts around shape derivatives and tangential calculus

In this section, we collect some material around the notion of differentiation with respect to the
domain, and functions defined on codimension 1 submanifolds of Rd. The case we have in mind is that
of a (subset Σ of the) boundary Γ of a bounded domain Ω ⊂ Rd.

2.1. Extension of the normal vector field to a bounded domain

Let Ω ⊂ Rd be a bounded, Lipschitz domain, and let nΩ : ∂Ω → Sd−1 be the normal vector field to
∂Ω, pointing outward Ω. The following result provides a ‘natural’ way to extend nΩ to a neighborhood
of ∂Ω (see e.g. [3], chapter 7, Thm. 3.1, 3.3 and [5], §5.4.4 for a proof).

Proposition 2.1. Let Ω ⊂ Rd be a bounded Lipschitz domain, and let dΩ be its signed distance
function; that is, dΩ is defined as:

∀x ∈ Rd, dΩ(x) =


d(x, ∂Ω) if x ∈ cΩ

0 if x ∈ ∂Ω
−d(x, ∂Ω) if x ∈ Ω

,

where d(·, ∂Ω) stands for the usual Euclidean distance function to ∂Ω. Then:

• dΩ is differentiable at almost every point x ∈ Rd, and its gradient at such a point x reads:

∇dΩ(x) = x− p∂Ω(x)
dΩ(x) ,

where p∂Ω(x) is the unique point y ∈ ∂Ω such that |dΩ(x)|= |x− y|. In particular,
|∇dΩ(x)|= 1.

• If Ω is additionnally of class Ck, for some k ≥ 2, then dΩ is of class Ck on a neighborhood V
of ∂Ω. Its gradient then reads:

∀x ∈ V, ∇dΩ(x) = nΩ(p∂Ω(x)).
In particular, ∇dΩ is an extension of the normal vector field nΩ to V which is of unit norm.

2.2. Differential operations on functions defined on codimension 1 manifolds

Definition 2.2. Let Γ ⊂ Rd be an oriented C2 submanifold of Rd, of dimension (d− 1).

• Let f ∈ C1(Γ,R) be a function, and, for an arbitrary point x ∈ Γ, let df(x) : TxΓ → R be its
differential. The tangential gradient ∇Γf of f is the (unique) vector field on Γ defined by the
following identity:

∀x ∈ Γ, ∀v ∈ TxΓ, df(x)(v) = 〈∇Γf(x), v〉,

where 〈·, ·〉 stands for the Euclidean scalar product on Rd. Alternatively, ∇Γf may be defined
as:

∇Γf =
(
∇f̃
)

Γ
:= ∇f̃ − (∇f̃ · n)n,

where f̃ is any C1 extension of f to a neighborhood of Γ.

• The tangential divergence divΓ(V ) : Γ→ R of a vector field V ∈ C1(Γ,Rd) is the function:
divΓ(V ) = div(Ṽ )−∇Ṽ n · n,

where Ṽ is any C1 extension of V to a neighborhood of Γ.

6



Shape optimization under random uncertainties (supplement)

• Let σ : Γ→ S(Rd) be a tensor field defined on Γ. The tangential part σττ of σ is the symmetric
bilinear form on the tangent bundle TΓ satisfying:

∀x ∈ Γ, ∀v, w ∈ TxΓ, σττ (x)(v, w) = σ(x)(v, w).

In a local orthonormal basis (τ, n) of Rd obtained by gathering (d− 1) unit tangent vectors to
Γ (collectively denoted by τ) and the normal vector n, σ may be expressed as:

σ =
(
σττ στn
σnτ σnn

)
Under the additional assumption that σ ∈ C1(Γ,S(Rd)), the tangential divergence divΓ(σ) :
Γ→ Rd of σ is the vector field whose coordinates read:

(divΓ(σ))i = (div ((σi,j)j=1,...,d))Γ , i = 1, ..., d.

2.3. Green’s formulae on codimension 1 submanifolds

The following Green’s formulae are variants of the integration by parts formula on boundaries in [5]
(Prop. 5.4.9). Their proofs lie e.g. in [2] (see Prop. 5.3 and 5.4):

Proposition 2.3. Let Γ ⊂ Rd be a, compact, oriented C2 submanifold of dimension (d − 1) with
possibly empty boundary Σ; let n : Γ→ Sd−1 be the unit normal vector field to Γ corresponding to the
prescribed orientation of Γ, and denote as nΣ : Σ → Sd−1 the unit normal vector field to Σ, pointing
outward Γ. Let ds (resp. d`) be the volume form on Γ (resp. on Σ), and κ be the mean curvature of Γ.

(1) Let f ∈W 2,1(Γ,R) and V ∈W 2,1(Γ,Rd); the following identity holds:∫
Γ
V · ∇Γf ds =

∫
Σ
f V · nΣ d`+

∫
Γ

(−fdivΓ(V ) + κfV · n) ds.

(2) Let u ∈W 2,1(Γ,Rd) and σ ∈W 2,1(Γ,S(Rd)); the following identity holds:∫
Γ
σττ : e(u)ττ ds =

∫
Σ
uΓ · (σττ · nΣ) d`−

∫
Γ
uΓ · divΓ(σ) ds.

2.4. Lagrangian and Eulerian derivatives

We presently collect some classical definitions and notations around the notions of Lagrangian and
Eulerian derivatives of an application Ω 7→ u(Ω) which, to a domain Ω, associates a function defined
on Ω; see [3, 8] for further details.

Definition 2.4. Let k ≥ 1,m, p ∈ R be fixed, and let u : Ω 7→ u(Ω) be a mapping which, to a bounded
domain Ω ⊂ Rd of class Ck associates a function u(Ω) ∈Wm,p(Ω).

• The function Ω 7→ u(Ω) has a Lagrangian (or material) derivative u̇(Ω) at a given domain Ω
provided the transported application:

Ck,∞(Rd,Rd) 3 θ 7→ u(Ωθ) ◦ (I + θ) ∈Wm,p(Ω),
is Fréchet differentiable at θ = 0; θ 7→ u̇(Ω)(θ) is then defined as the corresponding Fréchet
derivative.

• The function u has a Eulerian derivative u′(Ω)(θ) at a given domain Ω in the direction θ ∈
Ck,∞(Rd,Rd) if it has a Lagrangian derivative at Ω, and ∇u(Ω) · θ ∈ Wm,p(Ω). One defines
then:

u′(Ω)(θ) = u̇(Ω)(θ)−∇u(Ω) · θ ∈Wm,p(Ω).
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The definition is similar when it comes to mappings Γ 7→ u(Γ) which, to the boundary Γ of a domain
associate a function u(Γ) defined on Γ itself.

Definition 2.5. Let k ≥ 1, m, p ∈ R be fixed, and let u : Γ 7→ u(Γ) be a mapping which, to the
boundary Γ of a bounded domain Ω ⊂ Rd of class Ck associates u(Γ) ∈Wm,p(Γ).

• u has a Lagrangian (or material) derivative u̇(Γ) at Γ provided the transported application:
Ck,∞(Rd,Rd) 3 θ 7→ u(Γθ) ◦ (I + θ) ∈Wm,p(Γ),

is Fréchet differentiable at θ = 0.

• u has a Eulerian derivative u′(Γ)(θ) at Γ in the direction θ ∈ Ck,∞(Rd,Rd) if it has a Lagrangian
derivative at Γ, and ∇Γu(Γ) · θ ∈Wm,p(Γ). One defines then:

u′(Γ)(θ) = u̇(Γ)(θ)−∇Γu(Γ) · θ ∈Wm,p(Γ).

2.5. Shape derivatives of some geometric quantities depending on the domain

The first result of interest in this section is the following formula for the Lagrangian derivative of the
normal vector field nΩθ (see e.g. [7]), whose proof is outlined for the sake of convenience.

Lemma 2.6. Let Ω ⊂ Rd be a bounded domain of class C2. The Lagrangian derivative of the normal
vector field C2,∞(Rd,Rd) 3 θ 7→ nΩθ reads:

∀y ∈ ∂Ω, d

dθ
(nΩθ((I + θ)(y)))

∣∣∣∣
θ=0

= ∇n(y)T · θ(y)−∇Γ(θ · n)(y).

What’s more, the asymptotic expansion around θ = 0 corresponding to the above Fréchet derivative
holds uniformly with respect to y ∈ ∂Ω.

Proof. The proof relies on the following formula, for θ ∈ C2,∞(Rd,Rd) small enough:

nΩθ((I + θ)(y)) = com(I +∇θ(y))n(y)
|com(I +∇θ(y))n(y)| . (2.1)

Taking the derivative at θ = 0 in the well-known matrix identity
(I +∇θ(y))T com(I +∇θ(y)) = det(I +∇θ(y))I,

(which makes sense since all the terms involved are polynomial expressions in θ), we obtain:
d

dθ
com(I +∇θ(y))

∣∣∣∣
θ=0

= div(θ)(y)I −∇θ(y)T .

Now, straightforward calculations lead to:
d
dθ (nΩθ((I + θ)(y)))

∣∣∣
θ=0

= (∇θ(y)Tn(y) · n(y))n(y)−∇θ(y)Tn(y)
= ∇n(y)T · θ(y)−∇Γ(θ · n)(y)

.

Let us eventually state and prove the following result, which is a slight variation of Thm. in [5]:

Lemma 2.7. Let Ω ⊂ Rd be a bounded domain of class C2, and θ ∈ C2,∞(Rd,Rd). Let V ∈
W 2,∞(Rd,Rd) be a vector field, and let J(Ω) be the function of the domain defined by:

J(Ω) =
∫

Γ
V · nΩ ds.

Then, J(Ω) is shape differentiable at Ω with shape derivative:

J ′(Ω)(θ) =
∫

Γ
(∇(V · n) · θ − VΓ · ∇Γ(θ · n)− θΓ · ∇Γ(V · n) + κ(V · n)(θ · n)) ds.
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Proof. Performing a change of variables in the surface integral defining J(Ω) yields (see e.g. [5],
Prop. 5.4.3):

J(Ω) =
∫

Γ
V ((I + θ)(y)) · nΩθ((I + θ)(y))|com(I +∇θ(y))n(y)| ds(y).

Now, we know that the mapping f : θ 7→ V ◦ (I + θ) ∈ L2(Γ)d is Fréchet-differentiable at θ = 0, with
derivative:

f ′(0)(θ) = ∇V θ,
that g : θ 7→ nΩθ(y + θ(y)) ∈ C(Γ) is Fréchet-differentiable at θ = 0 with derivative:

g′(0)(θ) = ∇nT · θ −∇Γ(θ · n),
and that h : θ 7→ |com(I +∇θ)n|∈ C(Γ) is Fréchet-differentiable at θ = 0 with derivative:

h′(0)(θ) = divΓ(θ).
Hence, J is shape differentiable at Ω, and its shape derivative reads:

J ′(Ω)(θ) =
∫

Γ
((∇V θ) · n+ V · (∇nT · θ −∇Γ(θ · n)) + V · n divΓ(θ)) ds.

Eventually, using Proposition 2.3, (1), and rearranging the last expression yield the desired formula.

Let us end this section with the following result around the Lagrangian and Eulerian derivatives of
the mean curvature κ. This formula was observed in [6] (with a different proof than the one presented
here), and in [4] in a more general context.

Lemma 2.8. Let Ω ⊂ Rd be a bounded domain of class C3. For any y ∈ ∂Ω, the Lagrangian derivative
of the mean curvature C3,∞(Rd,Rd) 3 θ 7→ κΩθ reads:

∀y ∈ ∂Ω, d

dθ
(κΩθ((I + θ)(y)))

∣∣∣∣
θ=0

= −∆Γ(θ · n) +∇Γκ · θ,

and the associated first-order expansion in the neighborhood of θ = 0 holds uniformly in y ∈ ∂Ω.
Consequently, the Eulerian derivative is:

∀y ∈ ∂Ω, d

dθ
(κΩθ(y))

∣∣∣∣
θ=0

= −∆Γ(θ · n).

Proof. The second fundamental form of the surface ∂Ωθ at point (I + θ)(y) is by definition
∇nΩθ((I + θ)(y)), and satisfies the identity:

∇nΩθ((I + θ)(y))(I +∇θ(y)) = ∇ (nΩθ((I + θ)(y))) .
Now differentiating the above identity with respect to θ, at θ = 0, and taking the trace of the resulting
identity, we obtain:

d

dθ
(κΩθ((I + θ)(y)))

∣∣∣∣
θ=0

+ tr (∇n(y)∇θ(y)) = tr
(
d

dθ
(∇(nΩθ((I + θ)(y))))

∣∣∣∣
θ=0

)
= tr

(
∇
(
d

dθ
(nΩθ((I + θ)(y)))

∣∣∣∣
θ=0

))
,

where the last line stems from the commutation of the derivatives with respect to θ and y of n (because
of the above formula (2.1)). Now using Lemma 2.6 produces:

d

dθ
(κΩθ((I + θ)(y)))

∣∣∣∣
θ=0

= −∇n(y) : ∇θ(y) + div
(
∇n(y)T · θ(y)−∇Γ(θ · n)(y)

)
.

Now remarking that, since the vector field ∇Γ(θ · n) is tangential,
div (∇Γ(θ · n)(y)) = divΓ (∇Γ(θ · n)(y)) ,
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and the identity:
div

(
∇n(y)T · θ(y)

)
= div

(
∇n(y)T

)
· θ(y) +∇n(y) : ∇θ(y)

= ∇Γ(y) · θ(y) +∇n(y) : ∇θ(y),
the desired result follows.
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