THOMAS H. OTWAY

An asymptotic condition for variational points of nonquadratic functionals

<http://www.numdam.org/item?id=AFST_1990_5_11_2_187_0>

© Université Paul Sabatier, 1990, tous droits réservés.

NUMDAM

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques
http://www.numdam.org/
An asymptotic condition for variational points of nonquadratic functionals

THOMAS H. OTWAY(1)

ABSTRACT. — Let $u : M \to N$ be a map between Riemannian manifolds M and N. We prove a Liouville theorem for certain nonquadratic functionals $E(u)$ under a restriction on the variation of $E(u)$ and a hypothesis on M.

1. Introduction

Let $u : M \to N$ be a map from an n-dimensional Riemannian manifold M to a Riemannian manifold N. Let M be complete, noncompact, simply connected, with infinite injectivity radius (topologically \mathbb{R}^n). Define on M a Riemannian n-disc $B = B^R_R(x_0)$ of radius R centered at a point $x_0 \in M$. Assume that for some ℓ there is a smooth embedding of M into \mathbb{R}^ℓ (e.g., the exponential map); via this embedding choose local coordinates on B. Let the C^2 metric g on M satisfy $\forall y \in B$ the differential inequality

$$\lambda(y) = \left| \partial_1 \Gamma_{1k}^k(y) \right| \leq K_0 R^{-2}$$ \hspace{1cm} (1.1)

Here K_0 is a constant independent of R; $\Gamma_{ij}^k(y)$ is the Christoffel symbol for g_{ij} at y; $r = |y - x_0|$ is the geodesic radial coordinate on B; the index 1 denotes the radial direction; we use the Einstein convention for summing repeated indices. Assume that N is smoothly embedded in \mathbb{R}^q for some q.

(1) Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA
Define the local energy functional

\[E(w, u, p, \Omega) = \int_\Omega w(|du|^p) \, dv(g), \]

where \(\Omega \) is a given subdomain of \(M \); \(du(x) \in T_x^* M \) is the differential at \(x \) of the map \(u \); \(p \in \mathbb{R}^+ \);

\[dv(g) = \sqrt{\det g_{ij}} \, dx^1 \wedge \cdots \wedge dx^n; \]

\(w(t) \) is a scalar-valued function of \(t \in \mathbb{R} \sim \mathbb{R}^- \) satisfying

\[\begin{cases}
0 \leq \dot{w}(t) \leq K_1 \\
K_2 t \leq w(t)
\end{cases} \tag{1.2} \]

for independent constants \(K_1 \geq 0 \) and \(K_2 > 0 \).

Suppose that \(E \) is locally finite on \(M \) in the sense that on the restriction \(\Omega = M|_B \), \(E \) is a finite scalar function of the radius \(R \) of \(B \) for finite \(R \). Also suppose that \(E \) satisfies the growth condition

\[E(R) = \int_{B_R} w(|du|^p) \, dv(g) = o[R^{n-p(K_1/K_2)}] \tag{1.3} \]

as \(R \to \infty \), where \(n \geq p(K_1/K_2) \).

Finally, assume that \(E \) satisfies a variational inequality on \(\Omega \) of the form

\[\frac{d}{dt} \left|_{t=0} \int_{\Omega} w(|\psi_t^* du|^p) \, dv(g) \geq - \int_{\Omega} f|\xi| w(|du|^p) \, dv(g), \right. \tag{1.4} \]

where \(f \) is a given function on \(\Omega \) (Theorem 2.1); \(\psi_t \) is any 1-parameter family of compactly supported diffeomorphisms of \(M \) with \(\psi_0 = \) identity and \(t \) a small parameter;

\[\xi = \left. \frac{d\psi(x, t)}{dt} \right|_{t=0} \]

is the initial velocity field of the flow generated by \(\psi_t \).

In this note we give conditions on \(f \) and \(\Omega \) which imply that \(u \) is the constant map almost everywhere on \(M \).

The class of functionals considered includes radial perturbations of finite-energy polyharmonic maps. Hypothesis (1.4) is somewhat weaker, however,
than the corresponding variational hypothesis used in the study of minimal surfaces and harmonic maps; a map is said to be r-stationary on a manifold M [1], [5] if the first r-variation

$$\delta E'(u) = \frac{d}{dt} \bigg|_{t=0} E(u \circ \psi_t)$$

vanishes on M for all families ψ_t defined as in (1.4). In our case

$$\delta E'(u) = \frac{d}{dt} \bigg|_{t=0} \int w(\psi^*_t du^p) dv(g)$$

$$= - \int w \text{div}_M \xi dv(g) +$$

$$+ p \int w'(|du|^p)|du|^{p-2} \langle du(\nabla e_i \xi), du(e_i) \rangle dv(g),$$

where $\{e_i\}$ is an orthonormal basis for TM.

Under the hypotheses of the theorems given in Section 2, this object does not vanish on M. However, if $p = 2$ and w is the identity, then our choice of the function f in Theorem 2.1 gives (1.4) a geometric interpretation as a decay condition on a generalized r-tension vector field bounded by f (cf. [1], [5]).

Our results are extensions of a theorem by Price for r-stationary harmonic maps on \mathbb{R}^n or \mathbb{H}^n [5]. Theorem 2.2 extends work by Costa and Liao [2], also for harmonic maps. A special case of Theorem 2.1 and some extensions to other types of fields are given in [3] and [4].

2. Theorems

Theorem 2.1. — Let u, M, N, B, E, w, and p be defined as in Section 1 and satisfy $\forall R > 0$ conditions (1.1)-(1.4), where in (1.4) $\Omega = B$. Let the function f in (1.4) satisfy for all $y \in B$, for some parameter $\tau \in (0, R)$ and for some constant $\varepsilon > 0$

$$f(r) = f_\tau(r) = \begin{cases} K_3 / r^\tau & \text{if } 0 \leq r \leq \tau \\ 0 & \text{if } r > \tau + \varepsilon. \end{cases} \quad (2.1)$$

Then u takes almost every point on M onto a single point of N.

- 189 -
Although \(f(x, \tau) \) is \(o(1) \) as \(\tau \to \infty \), the growth condition (1.3) insures that the righthand side of (1.4) will in general be nonzero even at the limit. If condition (1.3) is strengthened, then Theorem 2.1 is true even for certain maps which do not satisfy (1.4) on all of \(B \).

Theorem 2.2. — Let condition (1.3) be replaced by the hypothesis that
\[du \in L^{p(k-\varepsilon_0, 1)} \]
for some \(\varepsilon_0 \in (0, k - 1) \) and some \(k \in (1, n) \); but assume only that \(u \) satisfies (1.4) on \(\Omega = B \sim \Sigma \), where \(\Sigma \) is a compact subset of \(B \) of Hausdorff codimension \(k \). Then the conclusion of Theorem 2.1 holds.

Theorem 2.1 follows from a technical lemma:

Lemma 2.3. (Asymptotic monotonicity). — Assume the hypotheses of Theorem 2.1 with the possible exception of (1.3). Then \(u \) satisfies almost everywhere on \(\Omega = B_{\tau}(x_0) \) the differential inequality
\[
\frac{d}{d\tau} \left[e^{-\frac{\alpha}{\tau} p(K_1/K_2)^{-n} E(w, u, p, \tau)} \right] \geq 0 ,
\] (2.2)

where
\[
\alpha = 2 \left[1 + p(K_1/K_2) \right] (n - 1)K_0 + K_3 .
\]

In order to prove Theorem 2.2 we must prove

Lemma 2.4. — The conclusion of Lemma 2.3 holds under the assumptions of Theorem 2.2.

If the energy over \(B_{\tau}(x_0) \) satisfies (1.3), then certainly the product of the function \(\exp(-\alpha/\tau) \) and the energy over \(B_{\tau}(x_0) \) will also satisfy (1.3). Thus inequality (2.2) implies Theorem 2.1. Similarly, since the hypotheses of Theorem 2.2 imply that \(u \) is in fact a finite-energy map on all of \(M \), then (1.3) is satisfied and Lemma 2.4 implies Theorem 2.2.
3. Proofs

We prove Lemma 2.3 by modifying arguments by Price [5] (see also [1]). Initially we take \(p \geq 2 \).

Inequality (1.4) can be written

\[
- \int_{\Omega} w \text{div}_M \xi \, dv(g) + p \int_{\Omega} w'(|du|^p)|du|^{p-2} \times \\
\times \left\{ \left(\partial \left(\nabla \frac{\partial}{\partial r} \xi \right) , \partial \left(\frac{\partial}{\partial r} \right) \right) + \left(\partial \left(\nabla \frac{\partial}{\partial \theta_i} \xi \right) , \partial \left(\frac{\partial}{\partial \theta_i} \right) \right) \right\} \, dv(g) \geq \\
\geq - \int_{\Omega} f|\xi|w(|du|^p)\, dv(g),
\]

(3.1)

where \((\partial/\partial r, \partial/\partial \theta_i), i = 2, 3, \ldots, n\), is an orthonormal basis for \(TM \).

Choose

\[
\xi(y) = (y - x_0)\gamma(r),
\]

where \(\gamma \in C^1 \) is chosen so that \(\gamma(r) \geq 0, \gamma'(r) \leq 0, \gamma(r) = 1 \) for \(r \leq \tau \), and \(\gamma(r) = 0 \) for \(r > \tau + \delta \) with \(\delta > 0 \) a small constant and \(\tau \in (0, R) \). Then

\[
\text{div}_M \xi \geq \gamma' r + \gamma[n - (n - 1)\lambda r].
\]

Also, explicit computation of the inner product \(\left\langle \nabla \frac{\partial}{\partial \theta_i} \frac{\partial}{\partial r}, \frac{\partial}{\partial \theta_j} \right\rangle \) gives, by Young's inequality,

\[
\left\langle \partial \left(\nabla \frac{\partial}{\partial \theta_i} \xi \right) , \partial \left(\frac{\partial}{\partial \theta_i} \right) \right\rangle \leq \gamma \left(|du|^2 - |\frac{\partial u}{\partial r}|^2 \right) + (n - 1)\lambda \gamma r|du|^2.
\]

Putting these estimates together and cancelling where possible yields in place of (3.1) the inequality (for \(\Omega = B \))

\[
\int_{B} w(|du|^p) \left\{ \gamma' r + \gamma[n - (n - 1)\lambda r] - f\gamma r \right\} \, dv(g) \leq \\
\leq p \int_{B} w'(|du|^p)|du|^{p-2} \left\{ \left| \frac{\partial u}{\partial r} \right|^2 r\gamma' + \gamma|du|^2 [1 + (n - 1)\lambda r] \right\} \, dv(g).
\]

(3.2)

Let \(\gamma(r) = \gamma_r(r) = \varphi(r/\tau) \) for \(\varphi \) satisfying

\[
\varphi(s) = \begin{cases}
1 & \text{for } s \in [0, 1] \\
0 & \text{for } s \in [1 + \delta, \infty)
\end{cases}
\]

(3.3)
and \(\varphi'(r) \leq 0 \). Then

\[
\tau \left(\frac{\partial}{\partial \tau} \right) \gamma(r) = -r \gamma'(r) \geq 0
\]

and (3.2) becomes

\[
p \int_B w'(|du|^p) |du|^p \left[\frac{\partial u}{\partial \tau} \right]^2 \tau \left(\frac{\partial \gamma}{\partial \tau} \right) \, dv(g) \leq \\
\leq \tau \left(\frac{\partial}{\partial \tau} \right) \int_B w(|du|^p) \gamma \, dv(g) + p \int_B w'(|du|^p) |du|^p \gamma \, dv(g) \\
- n \int_B w(|du|^p) \gamma \, dv(g) + \int_B w(|du|^p) \left[\gamma(n-1) \lambda + f \gamma r \right] \, dv(g) \\
+ p \int_B w'(|du|^p) |du|^p \gamma(n-1) \lambda \, dv(g).
\] (3.4)

Using hypotheses (1.2),

\[
p \int_B w'(|du|^p) |du|^p \gamma \, dv(g) - n \int_B w(|du|^p) \gamma \, dv(g) \leq \\
\leq p \int_B K_1 |du|^p \gamma \, dv(g) - n \int_B w(|du|^p) \gamma \, dv(g) \\
\leq \left[p(K_1/K_2) - n \right] \int_B w(|du|^p) \gamma \, dv(g).
\]

A similar inequality can be obtained for the last integral on the right in (3.4), yielding

\[
p \int_B w'(|du|^p) |du|^p \left[\frac{\partial u}{\partial \tau} \right]^2 \tau \left(\frac{\partial \gamma}{\partial \tau} \right) \, dv(g) \leq \\
\leq \tau \left(\frac{\partial}{\partial \tau} \right) \int_B w(|du|^p) \gamma \, dv(g) + \left[p(K_1/K_2) - n \right] \int_B w(|du|^p) \gamma \, dv(g) \\
+ \int_B w(|du|^p) \gamma \left\{ 2r[1 + p(K_1/K_2)](n-1) \lambda + f r \right\} \, dv(g).
\] (3.5)

In (3.5) we have used (3.3) to effectively bound \(r \) by 2\(\tau \). Choose \(f \) as in (2.1) and multiply (3.5) by the integrating factor

\[
\exp \left\{ - \frac{2[1 + p(K_1/K_2)](n-1)K_0 + K_3}{\tau} \right\} \tau^{p(K_1/K_2) - n-1}.
\]

- 192 -
Since \(\tau < R \) we can use (1.1) to bound \(\lambda \) by \(K_0/\tau^2 \) in (3.5) and, using the definition of \(\gamma \), obtain (2.2).

If \(0 < p < 2 \) we replace (1.4) by a hypothesis lacking explicit variational meaning, namely, that for all \(\varepsilon' > 0 \) we have

\[
- \int_{\Omega} w(|du|^p) \div_{\mathcal{M}} \xi \, dv(g) + p \int_{\Omega} w'(|du|^p) (|du| + \varepsilon')^{p-2} \langle du(\nabla \varepsilon_i, \xi), du(\xi) \rangle \, dv(g) \geq - \int_{\Omega} f |\xi| w(|du|^p) \, dv(g). \tag{3.6}
\]

Reasoning exactly as in the case \(p \geq 2 \) but with (3.6) replacing (1.4) we find that the term

\[
p \int_{B} w'(|du|^p) (|du| + \varepsilon')^{p-2} \gamma |du|^2 [1 + (n-1)\lambda r] \, dv(g)
\]

only gets bigger if we replace it by the term

\[
\int_{B} w'(|du|^p) |du|^p \gamma [1 + (n-1)\lambda r] \, dv(g).
\]

Thus we eventually arrive at the inequality

\[
p \int_{B} w'(|du|^p) (|du| + \varepsilon')^{p-2} \left| \frac{\partial u}{\partial r} \right|^2 \tau \left(\frac{\partial \gamma}{\partial r} \right) \, dv(g) \leq \tau \int_{B} w(|du|^p) \left(\frac{\partial \gamma}{\partial r} \right) \, dv(g) + \left[p(K_1/K_2) - n \right] \int_{B} w(|du|^p) \gamma \, dv(g) + \int_{B} w(|du|^p) \gamma \left\{ 2\tau \left[1 + p(K_1/K_2) \right] (n-1)\lambda + fr \right\} \, dv(g). \tag{3.7}
\]

Notice that since \(\gamma \) is defined to have compact support in \(B \) the right-hand side of (3.7) is bounded independently of \(\varepsilon' \) if \(f \) satisfies (2.1). Thus we can let \(\varepsilon' \) tend to zero inside the integral on the left. Obviously

\[
(|du| + \varepsilon')^{p-2} \leq \left(\left| \frac{\partial u}{\partial r} \right| + \varepsilon' \right)^{p-2}
\]

for \(p \in (0, 2) \), so

\[
(|du| + \varepsilon')^{p-2} \left| \frac{\partial u}{\partial r} \right|^2 \leq \left(\left| \frac{\partial u}{\partial r} \right| + \varepsilon' \right)^{p-2} \left| \frac{\partial u}{\partial r} \right|^2,
\]

which for \(0 < p < 2 \) is bounded by \(|\partial u/\partial r|^p \) as \(\varepsilon' \to 0 \).
This completes the proof of Lemma 2.3, which in turn proves Theorem 2.1.

We conclude by proving Lemma 2.4 (and thus Theorem 2.2).

We require two classical lemmas:

Lemma 3.1. (Serrin [6]). Denote by $U(\Sigma)$ the class of smooth functions $\bar{\eta}(x)$ which satisfy $0 \leq \bar{\eta} \leq 1$ and vanish in some neighborhood of the compact set Σ. Let Σ have zero s-capacity for $1 \leq s \leq n$. Then there exists a sequence of functions $\bar{\eta}^{(\nu)}$ contained in $U(\Sigma)$ such that $\bar{\eta}^{(\nu)} \to 1$ a.e. and $\|\nabla \bar{\eta}^{(\nu)}\|_{L^s} \to 0$.

Lemma 3.2. (Carlson [7]). Let the compact set Σ have Hausdorff dimension m, $0 < m < n - 1$. Then the s-capacity of Σ is zero, where $s = n - m - \varepsilon_0$ for ε_0 in the interval $(0, n - m - 1)$.

In proving Lemma 2.4 we argue just as in the proof of Lemma 2.3, but we choose

$$\xi(y) = (y - x_0)\bar{\eta}(r)\gamma(r),$$

where $\bar{\eta}$ is the sequence of Lemma 3.1. In computing (3.2) we obtain on the right an extra term involving the derivative of $\bar{\eta}^{(\nu)}$; this term can be estimated

$$\int_B \bar{\eta}^{(\nu)}(r)\gamma \omega(|du|^P) \, dv(g) \geq -K_1 \int_B \left| r|du|^P \right| dv(g) \geq -K_1 \left\| \nabla \bar{\eta}^{(\nu)} \right\|_{L^{k-\varepsilon_0}(B)} \left\| du \right\|_{L^{p\left(\frac{k-\varepsilon_0}{k-\varepsilon_0-1}\right)}(M)},$$

which tends to zero as ν tends to infinity. The remainder of the proof of Lemma 2.4 is identical to that of Lemma 2.3.

This work was partially supported by a grant from the Naval Academy Research Council for the summer of 1988. I am grateful to F-H. Lin for suggesting that the result should be true in a larger interval than $p \geq 2$.

- 194 -
An asymptotic condition for variational points of nonquadratic functionals

References

[1] Allard (W.K.) .— On the first variation of a varifold,
Ann. of Math. 95 (1972) pp. 417-491

[2] Costa (D.) and Liao (G.) .— On removability of a singular submanifold for
weakly harmonic maps,

[3] Otway (T.H.) .— A Liouville theorem for certain nonstationary maps,

[4] Otway (T.H.) .— Removable singularities of stationary fields,
in “The Problem of Plateau, a Tribute to Jesse Douglas and Tibor Rado”,
Th. M. Rassias ed. (to appear)

[5] Price (P.) .— A monotonicity formula for Yang-Mills fields,
Manuscripta Math. 43 (1983) pp. 131-166

[6] Serrin (J.) .— Local behavior of solutions of quasilinear equations,

[7] Wallin (H.) .— A connection between α-capacity and L^p-classes of differentiable
functions,
Ark. Math. 5, n° 24 (1964) pp. 331-341