BANG-YEN CHEN
YOSHIHIKO TAZAWA

Slant surfaces of codimension two

Annales de la faculté des sciences de Toulouse 5e série, tome 11, n° 3 (1990), p. 29-43

<http://www.numdam.org/item?id=AFST_1990_5_11_3_29_0>
Slant surfaces of codimension two

BANG-YEN CHEN(1) and YOSHIHIKO TAZAWA(2)

1. Introduction

Let \(x : M \to \widetilde{M} \) be an isometric immersion of a Riemannian manifold \(M \) with Riemannian metric \(g \) into an almost Hermitian manifold \(\widetilde{M} \) with an almost complex structure \(\widetilde{J} \) and an almost hermitian metric \(\widetilde{g} \). For each nonzero vector \(X \) tangent to \(M \) at \(p \in M \), the angle \(\theta(X) \) between \(\widetilde{J}X \) and the tangent space \(T_pM \) of \(M \) at \(p \) is called the Wirtinger angle of \(X \). The immersion \(x \) is said to be general slant if the Wirtinger angle \(\theta(X) \) is constant (which is independent of the choice of \(p \in M \) and \(X \in T_pM \)). In this case the angle \(\theta \) is called the slant angle of the slant immersion.

(1) Department of Mathematics, Michigan State University, East Lansing, Michigan 48824 (U.S.A.)

(2) Department of Mathematics, Tokyo Denki University, Kanda, Tokyo 101 (Japan)
If x is a totally real (or Lagrangian) immersion, then $T_p^\perp M \supseteq \widetilde{J}(T_pM)$ for any $p \in M$ where $T_p^\perp M$ is the normal space of M in \widetilde{M} at p. Thus a totally real immersion is a general slant immersion with Wirtinger angle $\theta \equiv \pi/2$. If M is also an almost Hermitian manifold with almost complex structure J, then the immersion $x : M \rightarrow \widetilde{M}$ is called holomorphic (respectively, anti-holomorphic) if we have

$$x_*(JX) = \widetilde{J}(x_*X) \quad \text{(respectively, } x_*(JX) = -\widetilde{J}(x_*X)\text{)} \quad (1.1)$$

for any $X \in T_pM$. It is clear that holomorphic and anti-holomorphic immersions are general slant immersions with $\theta \equiv 0$. A general slant immersion which is neither holomorphic nor anti-holomorphic is simply called a slant immersion [1]. In paragraph 2 we review the geometry of the Grassmannian $G(2,4)$ for later use. In paragraph 3 we investigate the relationship between 2-planes in the Euclidean 4-space E^4 and the complex structures on E^4. By applying the relationship we obtain a pointwise observation concerning slant surfaces. In paragraph 4 we study slant surfaces via their Gauss map. In particular we obtain in this section a new characterization of slant surfaces and we also prove that a non-minimal surface in E^4 can be slant with respect to at most four compatible complex structures on E^4. In paragraph 5 we prove that every Hermitian manifold is a proper slant surface with any prescribed slant angle with respect to a suitable almost complex structure. In the last section we define doubly slant surfaces and show that their Gaussian and the normal curvatures vanish identically.

2. Geometry of $G(2,4)$

In the section we recall some results concerning the geometry of the Grassmannian $G(2,4)$ of oriented 2-planes in E^4 (for details, see [2, 3, 7, 8]).

Let $E^m = (\mathbb{R}^m, \langle \cdot, \cdot \rangle)$ be the Euclidean m-space with the canonical inner product $\langle \cdot, \cdot \rangle$. Let $\{\epsilon_1, \ldots, \epsilon_m\}$ be the canonical basis of E^m. Then $\Psi := \epsilon_1 \wedge \cdots \wedge \epsilon_m$ gives the canonical orientation of E^m. For each $n \in \{1, \ldots, m\}$, the space $\wedge^n E^m$ is an $\binom{m}{n}$-dimensional real vector space with the inner product, also denote by $\langle \cdot, \cdot \rangle$, defined by

$$\langle X_1 \wedge \cdots \wedge X_n, Y_1 \wedge \cdots \wedge Y_n \rangle = \det(\langle X_i, X_j \rangle) \quad (2.1)$$
and be extended linearly. The two vector spaces $\Lambda^n(E^m)^*$ and $(\Lambda^n E^m)^*$ are identified in a natural way by

$$\Phi(X_1 \wedge \cdots \wedge X_n) = \Phi(X_1, \ldots, X_n)$$

(2.2)

for any $\Phi \in \Lambda^n(E^m)^*$ and any $X_1, \ldots, X_n \in E^m$. The Grassmannian $G(n, m)$ of oriented n-planes in E^m was identified with the set $D_1(n, m)$ of unit decomposable n-vectors in $\Lambda^n E^m$. The identification $\varphi : G(n, m) \to D_1(n, m)$ is given by $\varphi(V) = X_1 \wedge \cdots \wedge X_n$ for any positive orthonormal basis $\{X_i\}$ of $V \in G(n, m)$.

The star operator $*: \Lambda^2 E^4 \to \Lambda^2 E^4$ is defined by

$$\langle *\xi, \eta \rangle \Psi = \xi \wedge \eta \quad \text{for } \xi, \eta \in \Lambda^2 E^4.$$

(2.3)

If we regard a $V \in G(2, 4)$ as an element in $D_1(2, 4)$ via φ, we have $*V = V^\perp$, where V^\perp is the oriented orthogonal complement of V in E^4. Since $*$ is a symmetric involution, $\Lambda^2 E^4$ is decomposed into the following orthogonal direct sum:

$$\Lambda^2 E^4 = \Lambda^2_+ E^4 \oplus \Lambda^2_- E^4$$

(2.4)

of eigenspaces of $*$ with eigenvalues 1 and -1, respectively. Denote by π_+ and π_- the natural projections from $\Lambda^2 E^4$ into $\Lambda^2_+ E^4$ and $\Lambda^2_- E^4$, respectively.

Given a positive orthonormal basis $\{e_1, \ldots, e_4\}$ of E^4, we put

$$\eta_1 = \frac{1}{\sqrt{2}} (e_1 \wedge e_2 + e_3 \wedge e_4), \quad \eta_2 = \frac{1}{\sqrt{2}} (e_1 \wedge e_3 - e_2 \wedge e_4),$$

$$\eta_3 = \frac{1}{\sqrt{2}} (e_1 \wedge e_4 + e_2 \wedge e_3), \quad \eta_4 = \frac{1}{\sqrt{2}} (e_1 \wedge e_2 - e_3 \wedge e_4),$$

$$\eta_5 = \frac{1}{\sqrt{2}} (e_1 \wedge e_3 + e_2 \wedge e_4), \quad \eta_6 = \frac{1}{\sqrt{2}} (e_1 \wedge e_4 - e_2 \wedge e_3).$$

(2.5)

Then $\{\eta_1, \eta_2, \eta_3\}$ and $\{\eta_4, \eta_5, \eta_6\}$ are orthonormal bases of $\Lambda^2_+ E^4$ and $\Lambda^2_- E^4$ respectively. We shall orient $\Lambda^2_+ E^4$ and $\Lambda^2_- E^4$ so that these two bases are positive.

For any $\xi \in D_1(2, 4)$ we have

$$\pi_+(\xi) = \frac{1}{2} (\xi + *\xi) \quad \text{and} \quad \pi_-(\xi) = \frac{1}{2} (\xi - *\xi).$$

(2.6)
If we denote by S^2_+ and S^2_- the 2-spheres centered at the origin with radius $1/\sqrt{2}$ in $\Lambda^2_+ E^4$ and $\Lambda^2_- E^4$, respectively, then we have

$$\pi_+: D_1(2,4) \to S^2_+ \quad \text{and} \quad \pi_-: D_1(2,4) \to S^2_- \quad (2.7)$$

and

$$D_1(2,4) = S^2_+ \times S^2_- \quad (2.8)$$

3. Complex structures on E^4

Let $\mathbb{C}^2 = (\mathbb{R}^2, \langle \cdot, \cdot \rangle, J_0)$ be the complex plane with the canonical (almost) complex structure J_0 defined by $J_0(a,b,c,d) = (-b,a,-d,c)$. J_0 is an orientation preserving isomorphism. We denote by \mathcal{G} the set of all (almost) complex structures on E^4 which are compatible with the inner product $\langle \cdot, \cdot \rangle$, i.e.,

$$\mathcal{G} = \{ J: E^4 \to E^4 \mid J \text{ is linear, } J^2 = -\text{Id}, \quad \langle JX, JY \rangle = \langle X, Y \rangle, \text{ for any } X, X \in E^4 \}. \quad (2.9)$$

For each $J \in \mathcal{G}$, we choose an (orthonormal) J-basis $\{e_1, \ldots, e_4\}$ so that $Je_1 = e_2, Je_3 = e_4$. Two J-bases of the same complex structure J have the same orientation. By using the canonical orientation $\Psi = e_1 \wedge \cdots \wedge e_4$, we divide \mathcal{G} into two disjoint subsets:

$$\mathcal{G}^+ = \{ J \in \mathcal{G} \mid J\text{-bases are positive} \}$$

and

$$\mathcal{G}^- = \{ J \in \mathcal{G} \mid J\text{-bases are negative} \}$$

For each $J \in \mathcal{G}$, there is a unique 2-vector $\zeta_J \in \Lambda^2_+ E^4$ defined as follows.

Let Ω_J be the Kaehler form of J, i.e.,

$$\Omega_J(X,Y) = \langle X, JY \rangle, \quad (3.1)$$

for any $X, Y \in E^4$. The 2-vector ζ_J associated with J is defined to be the unique 2-vector satisfying

$$\langle \zeta_J, X \wedge Y \rangle = -\Omega_J(X,Y), \quad \text{for any } X, Y \in E^4 \quad (3.2)$$
LEMMA 3.1. — The mapping

\[\zeta : \mathcal{G} \to \Lambda^2 E^4 \]

defined by \(\zeta(J) = \zeta_J \) gives rise to two bijections:

\[\zeta : \mathcal{G}^+ \to S^2_+(\sqrt{2}) \quad \text{and} \quad \zeta : \mathcal{G}^- \to S^2_-(\sqrt{2}), \]

where \(S^2_+(\sqrt{2}) \) and \(S^2_-(\sqrt{2}) \) are the 2-spheres centered at the origin with radius \(\sqrt{2} \) in \(\Lambda^2_+ E^4 \) and \(\Lambda^2_- E^4 \), respectively.

Proof. — Let \(J \in \mathcal{G} \) and \(\{e_1, \ldots, e_4\} \) be a \(J \)-basis. If \(J \in \mathcal{G}^+ \) (respectively, \(J \in \mathcal{G}^- \)), then \(\{e_1, \ldots, e_4\} \) is positive (respectively, negative). Since \(03\beta J = e_1 \wedge e_2 + e_3 \wedge e_4 \) by (3.1), \(\zeta \) maps \(\mathcal{G}^+ \) into \(S^2_+(\sqrt{2}) \) and maps \(\mathcal{G}^- \) into \(S^2_-(\sqrt{2}) \). Their injectivity are clear.

Conservely, for each \(\xi \in S^2_+(\sqrt{2}) \), we have \(\frac{1}{2} \xi \in S^2_+ \). Hence, we can pick an oriented 2-plane \(V \) such that \(V \in \pi_+^{-1}(\frac{1}{2} \xi) \). Now we choose a positive orthonormal basis \(\{e_1, \ldots, e_4\} \) such that \(\{e_1, e_2\} \) is a positive basis of \(V \). Let \(J \) be the complex structure on \(E^4 \) such that \(Je_1 = e_2, Je_2 = -e_1, Je_3 = e_4, Je_4 = -e_3 \). Then \(J \in \mathcal{G}^+ \) and \(\zeta J = \xi \).

If \(\xi \in S^2_-(\sqrt{2}) \), we pick \(V \in \pi_-^{-1}(\frac{1}{2} \xi) \) and define \(J \) by \(Je_1 = e_2, Je_2 = -e_1, Je_3 = -e_4, Je_4 = e_3 \). Then we have a similar result. \(\Box \)

In the following we identify \(\mathcal{G}, \mathcal{G}^+ \) and \(\mathcal{G}^- \) with \(S^2_+(\sqrt{2}) \cup S^2_-(\sqrt{2}), S^2_+(\sqrt{2}), \) and \(S^2_-(\sqrt{2}) \), respectively, via \(\zeta \).

For each \(V \in G(2, 4) \) and each \(J \in \mathcal{G} \), we define

\[\alpha_J(V) = \cos^{-1}(-\Omega_J(V)). \]

Then \(\alpha_J(V) \in [0, \pi] \). A 2-plane \(V \) is said to be \(a \)-slant if \(\alpha_J(V) = a \).

The relation between \(\theta(X) \) defined in paragraph 1 and \(\alpha_J(V) \) is as follows. Let \(x \) be an isometric immersion of \(M \) into \((\overline{M}, \overline{g}, \overline{J})\). If we regard \((T_p \overline{M}, \overline{g}, \overline{J})\) as a complex plane with the induced inner product \(\langle \cdot, \cdot \rangle \), then we have

\[\theta(X) = \min\{\alpha_J(T_p M), \pi - \alpha_J(T_p M)\} \]

for any non-zero vector \(X \in T_p M \).
If \(M \) is oriented, then \(M \) has a unique complex structure \(J \) determined by its orientation and its metric induced from \(g \). With respect to \(\alpha_J \), we have:

\[
\begin{align*}
x \text{ is holomorphic } & \iff \alpha_J(T_p M) = 0, \\
x \text{ is anti-holomorphic } & \iff \alpha_J(T_p M) = \pi, \\
x \text{ is totally real } & \iff \alpha_J(T_p M) = \frac{\pi}{2}.
\end{align*}
\]

The argument above also hold for the case \(\dim \widetilde{M} > 4 \). We note that \(\alpha_J \) coincides with the angle defined in [6].

Lemma 3.2

(i) If \(J \in \mathcal{G}^+ \), then \(\alpha_J(V) \) is the angle between \(\pi^+(V) \) and \(\zeta_J \).

(ii) If \(J \in \mathcal{G}^- \), then \(\alpha_J(V) \) is the angle between \(\pi^-(V) \) and \(\zeta_J \).

Proof. — If \(J \in \mathcal{G}^+ \), then, by (3.2), (3.5) and lemma 3.1, we have

\[
\cos(\alpha_J(V)) = -\Omega_J(V) = \langle \zeta_J, V \rangle = \langle \zeta_J, \pi^+(V) + \pi^-(V) \rangle = \langle \zeta_J, \pi^+(V) \rangle
\]

which is the cosine of the angle between \(\pi^+(V) \) and \(\zeta_J \), since \(\| \zeta_J \| = \sqrt{2} \) and \(\| \pi^+(V) \| = 1/\sqrt{2} \). Similar argument applies to the case \(J \in \mathcal{G}^- \). □

For each \(a \in [0, \pi] \) and \(J \in \mathcal{G} \), we define

\[
G_{J,a} = \{ V \in G(2,4) \mid \alpha_J(V) = a \}, \tag{3.10}
\]

i.e., \(G_{J,a} \) is the set of all oriented 2-planes in \(E^4 \) which are \(a \)-slant with respect to \(J \). Also for each \(a \in [0, \pi] \) and \(V \in G(2,4) \) we define

\[
\mathcal{G}_{V,a} = \{ J \in \mathcal{G} \mid \alpha_J(V) = a \}, \tag{3.11}
\]

i.e., \(\mathcal{G}_{V,a} \) is the set of all compatible complex structure on \(E^4 \) with respect to which \(V \) is \(a \)-slant. We put

\[
\mathcal{G}_{V,a}^+ = \mathcal{G}_{V,a} \cap \mathcal{G}^+ \quad \text{and} \quad \mathcal{G}_{V,a}^- = \mathcal{G}_{V,a} \cap \mathcal{G}^- \tag{3.12}
\]

By applying lemma 3.2 we obtain the following generalization of proposition 2 of [3].
Proposition 3.3

(i) If \(J \in \mathcal{G}^+ \), then \(G_{J,\alpha} = S_{J,\alpha}^+ \times S_{J,\alpha}^- \) where \(S_{J,\alpha}^+ \) is the circle on \(S^2_+ \) consisting of 2-vectors which make constant angle \(\alpha \) with \(\zeta_J \).

(ii) If \(J \in \mathcal{G}^- \), then \(G_{J,\alpha} = S_{J,\alpha}^+ \times S_{J,\alpha}^- \) where \(S_{J,\alpha}^- \) is the circle on \(S^2_- \) consisting of 2-vectors which make constant angle \(\alpha \) with \(\zeta_J \).

(iii) Via the identification \(\zeta \) given in (3.4), \(G_{V,\alpha}^+ \) is a circle on \(S^2_+ (\sqrt{2}) \) consisting of 2-vectors in \(S^2_+ (\sqrt{2}) \) which make constant angle \(\alpha \) with \(\pi_+(V) \). Similarly, \(G_{V,\alpha}^- \) is a circle on \(S^2_- (\sqrt{2}) \) obtained in a similar way.

For simplicity, for each \(V \in G(2, 4) \), we define \(J_V^+ \) and \(J_V^- \) as the complex structures given by

\[
J_V^+ = \zeta^{-1}(\pi_+(V)) \quad \text{and} \quad J_V^- = \zeta^{-1}(\pi_-(V)),
\]

where \(\zeta \) is the bijection given in lemma 3.1. It is clear that \(J_V^+ \in \mathcal{G}^+ \) and \(J_V^- \in \mathcal{G}^- \).

4. Slant surfaces and Gauss map

Let \(x : M \to E^4 \) be an isometric immersion from an oriented surface \(M \) into \(E^4 \). We denote by \(\nabla \) and \(\bar{\nabla} \) the Riemannian connections of \(M \) and \(E^4 \), respectively. We choose a positive orthonormal local frame field \(\{e_1, \ldots, e_4\} \) in \(E^4 \) such that, restricted to \(M \), the vectors \(e_1, e_2 \) give a positive frame field tangent to \(M \) (and hence \(e_3, e_4 \) are normal to \(M \)). Let \(\omega^1, \ldots, \omega^4 \) be the field of dual frame field. The structure equations of \(E^4 \) are then given by

\[
\bar{\nabla} e_A = \sum \omega^B_A \otimes e_B, \quad \omega^B_A + \omega^A_B = 0, \quad (4.1)
\]

\[
d\omega^B = \sum \omega^B_A \otimes \omega^A, \quad (4.2)
\]

\[
d\omega^A_B = - \sum \omega^A_C \wedge \omega^C_B, \quad A, B, C = 1, 2, 3, 4. \quad (4.3)
\]

If we restrict these forms to \(M \), then \(\omega^3 = \omega^4 = 0 \). From \(d\omega^3 = d\omega^4 = 0 \), (4.2), and Cartan's lemma, we have

\[
\omega^r_i = \sum h^r_{ij} \omega^j, \quad h^r_{ij} = h^r_{ji}, \quad r = 3, 4; \quad i, j = 1, 2. \quad (4.4)
\]
The Gauss curvature G and the normal curvature G^D of M in E^4 are given respectively by
\[G = \sum (h_{11}^r h_{22}^n - h_{12}^r h_{12}^n), \] \[G^D = (h_{11}^3 - h_{22}^3)h_{12}^4 - (h_{11}^4 - h_{22}^4)h_{12}^3. \]

In the following we denote by $\nu : M \rightarrow G(2,4)$ the Gauss map of the immersion x defined by
\[\nu(p) = (e_1 \wedge e_2)(p), \]
where we identify $G(2,4)$ with $D_1(2,4)$ consisting of unit decomposable 2-vectors in $\Lambda^2 E^4$. We define two maps ν_+ and ν_- by
\[\nu_+ = \pi_+ \circ \nu \quad \text{and} \quad \nu_- = \pi_- \circ \nu, \]
where π_+ and π_- are the projections given in paragraph 2. Then ν_+ and ν_- map M into S^2_+ and S^2_-, respectively.

In terms of ν_+ and ν_-, we have the following characterization of slant surfaces in \mathbb{C}^2.

Proposition 4.1. Let $x : M \rightarrow E^4$ be an isometric immersion from an oriented surface M into E^4. Then x is a slant immersion with respect to a complex structure $J \in G^+$ (respectively, $J \in G^-$) if and only if $\nu_+(M)$ is contained in a circle on S^2_+ (respectively, $\nu_-(M)$ is contained in a circle on S^2_-).

Moreover, x is a slant with respect to $J \in G^+$ (respectively, $J \in G^-$) if and only if $\nu_+(M)$ is contained in a circle $S^2_{J,a}$ on S^2_+ (respectively, $\nu_-(M)$ is contained in a circle $S^2_{J,a}$ on S^2_-), where $S^2_{J,a}$ and $S^2_{J,a}$ are the circles defined in proposition 3.3.

Proof. If $x : M \rightarrow E^4$ is a slant with respect to $J \in G^+$, then by (3.11) and proposition 3.3, we have $\nu(T_p M) \in S^2_{J,a} \times S^-_2$ for any $p \in M$. Thus $\nu_+(M)$ is contained in a circle $S^2_{J,a}$ on S^2_+ consisting of 2-vectors in S^2_+ which make angle a with ζ_J.

Conversely, if $x : M \rightarrow E^4$ is an immersion such that $\nu_+(M)$ is contained in a circle S^1 on S^2_+. Let η be a vector in $\Lambda^2 E^4$ with length $\sqrt{2}$ which is normal to the 2-plane in $\Lambda^2 E^4$ containing S^1. Then $\eta \in S^2_+(\sqrt{2})$. By
lemma 3.1, there is a unique $J \in \mathcal{G}^+$ such that $\zeta_J = \eta$. It is clear that S_1 is a $S_{J,a}^+$ for some constant angle a. Therefore, by proposition 3.3, the immersion x is a-slant with respect to $J \in \mathcal{G}^+$. Similar argument applies to the other case. □

The following lemma was obtained in [1] (given in the proof of theorem 1 of [1]). Here we reprove it by using Gauss map.

Lemma 4.2. — Let $x : M \to E^4$ be an isometric immersion from an surface M into E^4. Then M is minimal and slant with respect to some $J \in \mathcal{G}^+$ (respectively, $J \in \mathcal{G}^-$) if and only if $\nu_+(M)$ (respectively, $\nu_-(M)$) is a singleton.

Proof. — If x is minimal, then both ν_+ and ν_- are anti-holomorphic [5]. In particular, ν_+ and ν_- are open maps if they are not constant maps. However, if x is slant with respect to $J \in \mathcal{G}^+$ (respectively, $J \in \mathcal{G}^-$), then, by proposition 4.1, ν_+ (respectively, ν_-) cannot be an open map. Hence, $\nu_+(M)$ (respectively, $\nu_-(M)$) is a singleton.

Conversely, if $\nu_+(M)$ (respectively, $\nu_-(M)$) is a singleton, say $\{\xi\}$. Then $2\xi \in S_{x,0}^2(\sqrt{2})$. Thus, by lemma 3.1, there is a unique $J = \zeta^{-1}(2\xi) \in \mathcal{G}^+$ such that $\nu_+(M)$ is contained in $S_{J,0}^+$. Thus x is holomorphic with respect to J (see proposition 2 of [3]), in particular, x is a minimal immersion. Because a singleton $\{\xi\}$ lies in every circle S_1 on $S_{x,0}^+$ through ξ, proposition 4.1 implies that for any $a \in [0, \pi]$, there exists a $J_a \in \mathcal{G}^+$ (respectively, $J_a \in \mathcal{G}^-$), such that x is a-slant with respect to J_a. □

By applying proposition 4.1 and lemma 4.2 we have the following result concerning non-minimal surfaces.

Theorem 4.3. — If $x : M \to E^4$ is not minimal, then there exist at most two complex structures $\pm J \in \mathcal{G}^+$ and at most two complex structures $\pm J' \in \mathcal{G}^-$ such that x is slant with respect them.

Proof. — If x is a non-minimal, a-slant immersion with respect to a complex structure $J \in \mathcal{G}^+$ (respectively, $J' \in \mathcal{G}^-$), then, by proposition 4.1 and lemma 4.2, $\nu_+(M)$ (respectively, $\nu_-(M)$) contains an arc of the circle $S_{J,a}^+$ (respectively, $S_{J',a}^-$).

Thus, $\pm J$ and $\pm J'$ are the only possible complex structures which make x to be slant according to proposition 4.1. □

From proposition 4.1, lemma 4.2 and theorem 4.3 we have the following.
PROPOSITION 4.4. — Let \(x : M \to E^4 \) be an isometric immersion from a surface \(M \) into \(E^4 \). Then the following statements are equivalent:

(i) \(x \) in minimal and slant with respect to some complex structure \(J \in \mathcal{G}^+ \) (respectively, \(J \in \mathcal{G}^- \));
(ii) \(\nu_+(M) \) (respectively, \(\nu_-(M) \)) is a singleton;
(iii) \(x \) is holomorphic with respect some complex structure \(J \in \mathcal{G}^+ \) (respectively, \(J \in \mathcal{G}^- \));
(iv) for each \(a \in [0, \pi] \), there exist \(J_a \in \mathcal{G}^+ \) (respectively, \(J_a \in \mathcal{G}^- \)) such that \(x \) is \(a \)-slant with respect to \(J_a \).

Theorem 4.3 and proposition 4.4 provide us a clear geometric understanding of lemmas 5 and 6 and theorems 1, 3 and 4 of [1].

5. Slant surfaces in 4-dimensional almost Hermitian manifolds

Let \(x : M \to (\widetilde{M}, J) \) be an immersion of a manifold \(M \) into an almost complex manifold \((\widetilde{M}, J)\). Then a point \(p \in M \) is called a complex tangent point if the tangent plane of \(M \) at \(p \) is invariant under the action of \(J \). The purpose of this section is to prove the following.

THEOREM 5.1. — Let \(x : M \to (\widetilde{M}, g, J) \) be an imbedding from an oriented surface \(M \) into an almost Hermitian manifold \((\widetilde{M}, g, J)\). If \(x \) has no complex tangent point, for any prescribed angle \(a \in (0, \pi) \), there exists an almost complex structure \(\widehat{J} \) on \(\widetilde{M} \) satisfying the following conditions:

(i) \((\widetilde{M}, g, \widehat{J})\) is an almost Hermitian manifold, and
(ii) \(x \) is \(a \)-slant with respect to \(\widehat{J} \).

Proof. — \(\widetilde{M} \) has a natural orientation determined by \(J \). At each point \(p \in \widetilde{M} \), \((T_p \widetilde{M}, g_p)\) is a Euclidean 4-space and so we can apply the argument given in paragraphs 2 and 3.

According to \((2.4)\) the vector bundle \(\Lambda^2(\widetilde{M}) \) of 2-vectors on \(\widetilde{M} \) is a direct sum of two vector subbundles.

\[
\Lambda^2(\widetilde{M}) = \Lambda^2_+(\widetilde{M}) \oplus \Lambda^2_-(\widetilde{M}).
\] (5.1)

We define two sphere-bundles over \(\widetilde{M} \) by

\[
S^2_+(\widetilde{M}) = \left\{ \xi \in \Lambda^2_+(\widetilde{M}) \mid ||\xi|| = \frac{1}{\sqrt{2}} \right\},
\]
\[
S^2_+(\widetilde{M}) = \left\{ \xi \in \Lambda^2_-(\widetilde{M}) \mid ||\xi|| = \sqrt{2} \right\}.
\] (5.2)

- 38 -
By applying lemma 3.1 we can identify a cross-section

\[\gamma : \tilde{M} \to \overline{S}_+^2(\tilde{M}) \]

(5.3)

with an almost complex structure \(J_\gamma \) on \(\tilde{M} \) such that \((\tilde{M}, g, J_\gamma)\) is an almost Hermitian manifold. In the following we denote by \(\rho \) the cross-section corresponding to \(J \) and we want to construct another cross-section \(\tilde{\sigma} \) to obtain the desired almost complex structure \(\tilde{J} \).

We consider the pull-backs of these bundles via the immersion \(x \), i.e.,

\[
\begin{align*}
\Lambda^2_+(M) &= x^*(\Lambda^2_+(\tilde{M})) , \\
S^2_+(M) &= x^*(S^2_+(\tilde{M})) , \\
\overline{S}^2_+(M) &= x^*(\overline{S}^2_+(\tilde{M})) .
\end{align*}
\]

(5.4)

The tangent bundle \(TM \) determines a cross-section \(\tau : M \to S^2_+(M) \) given by

\[\tau(p) = \pi_+(T_pM) , \text{ for any } p \in M , \]

(5.5)

where \(\pi_+ \) is the projection of \(\Lambda^2_+(T_p\tilde{M}) \) onto \(\Lambda^2_+(T_p\tilde{M}) \). Note that \(2\tau \) is a cross-section of \(\overline{S}^2_+(M) \);

\[2\tau : M \to \overline{S}^2_+(M) . \]

(5.6)

We denote \(x^*\rho \) also by \(\rho \), which gives us another cross-section:

\[\rho = x^*\rho : M \to \overline{S}^2_+(M) . \]

(5.7)

Since \(x \) has no complex tangent point,

\[\rho(p) \neq \pm 2\tau(p) , \text{ for any } p \in M . \]

(5.8)

Therefore, \(\rho(p) \) and \(2\tau(p) \) determine a 2-plane in \(\Lambda^2_+(T_p\tilde{M}) \) which intersects the circle \((\mathcal{G}^+_{r,a})_p \) at two points, where \((\mathcal{G}^+_{r,a})_p \) is the circle on \((\overline{S}^2_+(M))_p \) determined in proposition 3.3 with \(V = T_pM \). Let \(\sigma(p) \) be one of the two points which lies on the half-great-circle on \((\overline{S}^2_+(M))_p \) starting from \(2\tau(p) \) and passing through \(\rho(p) \). Since \(\rho \) and \(\tau \) are differentiable, so is \(\sigma \). Thus we get the third cross-section:

\[\sigma : M \to \overline{S}^2_+(M) \]

(5.9)

and we want to extend \(\sigma \) to a cross-section \(\tilde{\sigma} \) of \(\overline{S}^2_+(\tilde{M}) \).
For each \(p \in M \), we choose an open neighborhood \(U_p \) of \(p \) in \(\widetilde{M} \) such that \(\sigma|_{U_p \cap M} \) can be extended to a cross-section of \(\overline{S}_+^2(\widetilde{M}) \) on \(U_p \):

\[
\sigma_p : U_p \to \overline{S}_+^2(\widetilde{M})|_{U_p}.
\]

(5.10)

We identify here the manifold \(M \) with its image \(x(M) \) via the imbedding. We put

\[
U = \bigcup_{p \in M} U_p
\]

(5.11)

and pick a locally finitely countable refinement \(\{ U_i \}_{i=1}^\infty \) of the open covering \(\{ U_p \}_{p \in M} \) of \(U \). For each \(i \) we pick a point \(p \in M \) such that \(U_i \) is contained in \(U_p \) and put

\[
\sigma_i = \sigma_p|_{U_i}.
\]

(5.12)

Let \(\{ \phi_i \} \) be a differentiable partition of unity on \(U \) subordinated to the covering \(\{ U_i \} \). We define a cross-section \(\overline{\sigma} \) of \(\Lambda_+^2(\widetilde{M})|_U \) by

\[
\overline{\sigma} : U \to \Lambda_+^2(\widetilde{M})|_U ; \quad \overline{\sigma} = \sum \phi_i \sigma_i.
\]

(5.13)

By the construction of \(\sigma_i \) and \(\overline{\sigma} \) we have

\[
\overline{\sigma}|_M = \sigma.
\]

(5.14)

Since the angle \(\angle (\overline{\sigma}(p), \rho(p)) < \pi \) for any \(p \in M \), we have

\[
\overline{\sigma}(p) \neq 0 , \quad \angle (\overline{\sigma}(p), \rho(p)) < \pi \text{ for any } p \in M.
\]

(5.15)

By continuity of \(\overline{\sigma} \) we can pick an open neighborhood \(W \) of \(M \) contained in \(U \) such that

\[
\overline{\sigma}(q) \neq 0 , \quad \angle (\overline{\sigma}(q), \rho(q)) < \pi \text{ for any } q \in W.
\]

(5.16)

We define a cross-section \(\hat{\sigma} \) of \(\overline{S}_+^2(\widetilde{M})|_W \) by

\[
\hat{\sigma} : W \to \overline{S}_+^2(\widetilde{M})|_W ; \quad \hat{\sigma} = \frac{\overline{\sigma}}{\sqrt{2||\overline{\sigma}||}}.
\]

(5.17)
Then we have $\angle(\sigma(q), \rho(q)) < \pi$ for any $q \in M$ too. Finally, we consider the open covering $\{W, \overline{M} - M\}$ of \overline{M} and local cross-section σ and $\rho|_{\overline{M} - M}$ and repeat the same argument using a partition of unity subordinate to $\{W, \overline{M} - M\}$ to get a cross-section $\tilde{\sigma}: \overline{M} \to \overline{S}^2_+(\overline{M})$ satisfying $\tilde{\sigma}|_M = \sigma$. Now, it is clear that the almost complex structure \tilde{J} corresponding to $\tilde{\sigma}$ is the desired almost complex structure. □

6. Appendix: double slant surfaces in \mathbb{C}^2

An immersion $x: M^2 \to E^4$ is called doubly slant if it is slant with respect to a complex structure $J \in G^+$ and at the same time it is slant with respect to another complex structure $\tilde{J} \in G^-$. Equivalently, the immersion x is doubly slant if and only if there exists a $V \in G(2, 4)$ such that x is slant with respect to both J^+_V and J^-_V, where J^+_V and J^-_V are defined by (3.13).

Proposition 6.1. — If $x: M^2 \to E^4$ is a doubly slant immersion, then $G = G^D = 0$.

Proof. — If x is doubly slant, then, by proposition 4.1, we know that $\nu_+(M)$ and $\nu_-(M)$ both lie in some circles on S^2_+ and S^2_-, respectively. Thus, both $(\nu_+)_*$ and $(\nu_-)_*$ are singular at every point $p \in M$. The result then follows from the following lemma of [7].

Lemma 6.2. — For an isometric immersion $x: M^2 \to E^4$, we have

$$\text{Jacobian of } \nu_+ = \frac{G^D + G}{2}; \quad \text{Jacobian of } \nu_- = \frac{G^D - D}{2}.$$

This lemma can be proved in our notation as follows.

From (4.8) we have $\nu_*X = (\tilde{\nabla}_X e_1) \wedge e_2 + e_1 \wedge (\tilde{\nabla}_X e_2)$ for any X tangent to M. Thus, by applying (2.5), (4.1) and (4.4), we find (see [3])

$$\nu_*X = \frac{1}{\sqrt{2}} \left\{ (\omega_1^4 + \omega_2^3)(X)\eta_2 + (-\omega_1^3 + \omega_2^4)(X)\eta_3 + \right.$$

$$\left. + (-\omega_1^4 + \omega_2^3)(X)\eta_5 + (\omega_1^3 + \omega_2^4)(X)\eta_6 \right\}. \quad \text{(6.1)}$$
Since \(\{\eta_2, \eta_3\} \) is a positive orthonormal basis of \(T_{\nu+}(p)S^2_+ \) and \(\{\eta_5, \eta_6\} \) is a positive orthonormal basis of \(T_{\nu-}(p)S^2_- \), we obtain

\[
(\nu_+)\cdot X = \frac{1}{\sqrt{2}} \left\{ (\omega_1^4 + \omega_2^3)(X)\eta_2 + (-\omega_1^3 + \omega_2^4)(X)\eta_3 \right\}, \\
(\nu_-)\cdot X = \frac{1}{\sqrt{2}} \left\{ (-\omega_1^4 + \omega_2^3)(X)\eta_5 + (\omega_1^3 + \omega_2^4)(X)\eta_6 \right\}.
\]

(6.2)

By applying (4.4), (4.6), (4.7) and (6.2) we obtain the lemma.

Remark 6.3. — Examples 1 through 6 of [1] are examples of doubly slant surfaces in \(\mathbb{C}^2 \). Here we give another example of doubly slant surfaces.

Example. — For any two nonzero real numbers \(p \) and \(q \), we consider the following immersion from \(\mathbb{R} \times (0, \infty) \) into \(\mathbb{C}^2 \) defined by

\[
x(u, \nu) = (p\nu \sin u, p\nu \cos u, \nu \sin qu, \nu \cos qu).
\]

(6.3)

The slant angles and the ranks of \(\nu, \nu_+ \) and \(\nu_- \) of those examples can be determined by direct computation. We list them as the following table.

<table>
<thead>
<tr>
<th>Example</th>
<th>Slant angles</th>
<th>rank (\nu)</th>
<th>rank (\nu_+)</th>
<th>rank (\nu_-)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>(a = b = \frac{\pi}{2})</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Example 2</td>
<td>(a = b = \frac{\pi}{2})</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Example 3</td>
<td>(a = b = \frac{\pi}{2})</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Example 4</td>
<td>(a = b \in \left[0, \frac{\pi}{2}\right])</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Example 5</td>
<td>(a \in \left[0, \frac{\pi}{2}\right], b = \frac{\pi}{2})</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Example 6</td>
<td>(a = b \in \left(0, \frac{\pi}{2}\right)) non-constant</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Example A</td>
<td>(a, b \in \left(0, \frac{\pi}{2}\right))</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Except for example 4, \(a \) and \(b \) above are the slant angles with respect to \(J_0 = J_{e_1 \wedge e_2}^+ \) and \(J_1 = J_{e_1 \wedge e_2}^- \) (cf. (3.13)). For example 4, \(a \) is the slant angle with respect to \(J_0 \) and \(b \) is the slant angle with respect to \(J_{e_1 \wedge e_3}^- \).

In [4] further results on slant immersions have been obtained.
Slant surfaces of codimension two

References

[1] CHEN (B.Y.) . — Slant immersions,

[2] CHEN (B.Y.) and MORVAN (J.M.) . — Propriétés riemanniennes des surfaces
 lagrangiennes,

[3] CHEN (B.Y.) and MORVAN (J.M.) . — Géométrie des surfaces lagrangiennes
 de \mathbb{C}^2,

[4] CHEN (B.Y.) and TAZAWA (Y.) . — Slant submanifolds in complex Euclidean
 spaces,
 preprint.

[5] CHERN (S.S.) . — Minimal surfaces in a Euclidean space of N dimensions,

[6] CHERN (S.S.) and WOLFSON (J.G.) . — Minimal surfaces by moving frames,

[7] HOFFMAN (D.A) and OSSERMAN (R.) . — The Gauss map of surfaces in \mathbb{R}^3
 and \mathbb{R}^4,

[8] SINGER (I.M.) and THORPE (J.A.) . — The curvature of 4-dimensional Einstein
 spaces,