Removable singularities and Liouville-type property of analytic multivalued functions

<http://www.numdam.org/item?id=AFST_1992_6_1_2_261_0>
Removable singularities and Liouville-type property of analytic multivalued functions

TRAN NGOC GIAO(1)

RÉSUMÉ. — Le but de cet article est l'étude du prolongement des fonctions analytiques à valeurs multiples. Nous obtenons l'équivalence entre une propriété du genre Liouville et les ensembles pour lesquels on peut prolonger ces fonctions.

ABSTRACT. — The purpose of this note is to study removable singularities for analytic multivalued functions. Moreover, the equivalence between Liouville-type properties and removable singularities results is proved.

Introduction

Let X a complex space. By $F_c(X)$ we denote the hyperspace of non-empty compact subsets of X.

As in [8] we say that an upper semi-continuous multivalued function $K : X \to F_c(Y)$, where X and Y are complex spaces, is analytic if for every open subset W of X and every plurisubharmonic function ψ on a neighbourhood of $\Gamma_K \mid W$, the graph of K on W, the function

$$\varphi(x) = \sup\{\psi(x, y) \mid y \in K(x)\}$$

is plurisubharmonic on W.

Analytic multivalued functions (for short: A.M.V. functions) have been investigated by several authors, in particular by Slodkowski [8, 9] and Ransford [5, 6, 7].

(1) Department of Mathematics, Pedagogical University of Vinh, Vietnam
In [7], Ransford has proved that every A.M.V. function

\[K : D \rightarrow F_c(V), \]

where \(D = \{ z \in \mathbb{C} | |z| < 1 \} \), \(D^* = D \setminus \{0\} \) and \(V \) is either \(D \) or \(D_{rs} = \{ z \in \mathbb{C} | r < |z| < s \}, 0 < r < s \), can be extended analytically to \(D \).

This note considers a removable-singularity result for A.M.V. functions. Moreover, the equivalence between a Liouville-type property and extendibility of A.M.V. functions is proved.

1. Removable-singularities for analytic multivalued functions

An A.M.V. function \(K : G \rightarrow F_c(Y) \) is said to be locally compact if for every \(x \in X \) there exists a neighbourhood \(U \) of \(x \) such that \(K(U \cap G) \) is relatively compact in \(Y \), where \(G \) is an open subset of \(X \).

Theorem 1.1. Let \(G \) be an open set in \(\mathbb{C}^n \), \(S \) a closed subset of \(G \), \(Y \) is a Stein space. Then every A.M.V. function \(K : G \setminus S \rightarrow F_c(Y) \) can be extended analytically to \(G \) if one of the following conditions is satisfied

- a) \(S = H \cap (G \setminus U) \), where \(H \) is an analytic set in \(G \), \(U \) is an open subset of \(G \) such that \(U \) meets every component of \(H \);
- b) \(S \) is a set of zero \((2n - 2)\)-Hausdorff measure in \(G \);
- c) \(S \) is a pluripolar set in \(G \) and \(K \) is locally compact.

We first need the following, which is a generalization of the important result of Wermer [10].

Lemma 1.2. Let \(A \) be a uniform algebra with Shilov boundary \(\partial_A^0 \) and \(U \) an open subset of \(\mathbb{C} \). Let \(h : U \rightarrow A \) be a holomorphic map. Then for every \(f \in A \) such that \(\sigma(f) \setminus f(\partial_A^0) \subset U \), where \(\sigma(f) \) is the spectrum of \(f \), the form

\[K(\lambda) = \{ \tilde{h}(\lambda, w) = \overline{h(\lambda)}(w) \mid w \in \tilde{f}^{-1}(\lambda) \} \]

defines an A.M.V. function on \(\sigma(f) \setminus f(\partial_A^0) \).

Proof. This is basically Slodkowski’s argument [8]. It is enough to show that \(K(\lambda) \) satisfies condition (ii) of [8, theorem 3], i.e. for every
polynomial $p(\lambda)$ and for every $a, b \in \mathbb{C}$ the function $\lambda \mapsto \max |f_\lambda(K(\lambda))|$, where $f_\lambda(z) = (z - \lambda a - b)^{-1} \exp(p(\lambda))$, has local maximum property in $G = \{\lambda \in \sigma(f) \setminus \hat{f}(\partial^0_A) \mid a\lambda + b \not\in K(\lambda)\}$. Let D be a disc such that $\overline{cD} \subset G$. Put $N = \hat{f}^{-1}(D) \subset M_A$, where M_A is maximal ideal space of A, and let B denote the uniform closure of $A|_{\overline{cN}}$ on \overline{cN} and the form $k = (h(y) - af - b)^{-1} \exp(p(f))$, where $a, b \in \mathbb{C}$ and p is a polynomial, defines an element of B. Denote

$$f_\lambda(z) = (z - \lambda a - b)^{-1} \exp(p(\lambda)).$$

For $\lambda_0 \in D$, we have

$$\max f_{\lambda_0}(K(\lambda_0)) = \max |\hat{k}\hat{f}^{-1}(\lambda_0)|$$

$$\leq \max |\hat{k}|_{\overline{cN}} \text{ (by Rossi's local maximum principle)}$$

$$\leq \max \left\{ \max |\hat{k}(\hat{f}^{-1}(\lambda_0))| \mid \lambda \in \partial D \right\}$$

$$= \max \left\{ \max |f_\lambda(K(\lambda))| \mid \lambda \in \partial D \right\}.$$

Thus the function $\lambda \mapsto \max |f_\lambda(K(\lambda))|$ has the local maximum property.

The lemma is proved. □

Lemma 1.3 (Slodkowski's theorem [9]). — Let G be a bounded planar domain and $K : G \rightarrow F_c(\mathbb{C}^k)$ be an A.M.V. function such that $\sup_{x \in G} \max_{y \in G} |K(x)| < \infty$. Then there exists a uniform algebra A and functions $f, g_1, \ldots, g_k \in A$ such that

i) $\hat{f}(M_A) \setminus \hat{f}(\partial^0_A) = G$, where \hat{f} denotes the Gelfand transformation of f, M_A and ∂^0_A are the maximal ideal space and the Shilov boundary respectively of A.

ii) $\hat{g}(\hat{f}^{-1}(x)) = K(x)$ for every $x \in G$, where $\hat{g} = (\hat{g}_1, \ldots, \hat{g}_k)$.

Lemma 1.4. — Let $K : G \rightarrow F_c(Y)$ be an upper semi-continuous multivalued function, where G is an open subset of \mathbb{C}^n and Y an analytic set in \mathbb{C}^k. If $K : F \rightarrow F_c(\mathbb{C}^k)$ is analytic, then $K : G \rightarrow F_c(Y)$ is also analytic.

Proof. — We can assume that $n = 1$. Given φ a plurisubharmonic function on a neighborhood W of $\Gamma_K|_U$, where U is an open subset of G, consider the plurisubharmonic function $\tilde{\varphi}(z, w) = \varphi(z, \tilde{\varphi}(w))$ on
(id x \tilde{g})^{-1}(W), where f, g, A are constructed as in lemma 1.3. By [3] we have
\[\tilde{\varphi}(z, w) = \lim \max \left\{ c_j^n \log |\tilde{h}_j^n(z, w)| \right\} \]

for all \((z, w) \in (id x \tilde{g})^{-1}(W), where h_j^n are holomorphic maps from U into A.

Since \((id x \tilde{g})\) is continuous and \(W\) is open, it implies that
\[(id x \tilde{g})^{-1}(W) \supset \varnothing \Rightarrow \partial (id x \tilde{g})^{-1}(W) \supset \varnothing \]
\[\partial (id x \tilde{g})^{-1}(W) \cup (id x \tilde{g})^{-1}(W) \subset (id x \tilde{g})^{-1}(W) \cup (id x \tilde{g})^{-1}(\partial W) \Rightarrow \]
\[\partial (id x \tilde{g})^{-1}(W) \subset (id x \tilde{g})^{-1}(\partial W). \]

By lemma 1.2, the multivalued function
\[L(z) = \{ \tilde{h}_j^n(z, w) \mid w \in \tilde{f}^{-1}(z) \} \]
is analytic on \(\sigma(f) \setminus \tilde{f}(\partial A)\). On the other hand \(\tilde{f}^{-1}(\partial G) \subset \partial A\), by Rossi's local maximum principle we have
\[\max |\tilde{h}_j^n(z, w)|_{\partial (id x \tilde{g})^{-1}(W)} = \max |\tilde{h}_j^n(z, w)|_{(id x \tilde{g})^{-1}(\partial W)}. \]

Since for every sequence of upper semi-continuous function \(\psi_n, \psi = \lim \psi_n\) point-wise, \(\lim \max (\psi_n|_F) = \max (\psi|_F)\) on every compact subset \(F\) [8], and since \((id x \tilde{g})^{-1}(\partial W) \supset (id x \tilde{g})^{-1}(W)\), it follows that the function \(\gamma\) given by
\[\gamma(z) = \max \{ \varphi(z, y) \mid y \in K(z) = \tilde{g}\tilde{f}^{-1}(z) \} \]
\[= \max \{ \tilde{\varphi}(z, y) \mid w \in \tilde{f}^{-1}(z) \} \]
is plurisubharmonic on \(U\). Hence the multivalued function \(K : G \to F_c(Y)\) is analytic.

Proof of theorem 1.1

Without loss of generality we may assume that \(Y\) is an analytic set in \(C^k\). Then the function
\[\theta(x) = \sup \{|y| \mid y \in K(x)\} \]
is plurisubharmonic on \(G_0 = G \setminus S\), where \(S\) satisfies one of the conditions a) or b) or c) of the theorem. By [4], \(\theta\) can be extended to a plurisubharmonic function on \(C\). This implies that for every \(x_0 \in S\) there exists a
neighbourhood U of x_0 such that $K(U \cap G_0)$ is relatively compact. Define a upper semi-continuous extension of K by

$$\hat{K}(x) = \begin{cases} \frac{K(x)}{y \in Y \mid \exists \{(x_n, y_n)\} \subset \Gamma_K, (x_n, y_n) \to (x, y)} & \text{for } x \in G_0 \\ \frac{\gamma \{aA\}}{8(L \cap \{G' \cap S\})} & \text{for } x \in S. \end{cases}$$

We prove that \hat{K} is analytic at every $x_0 \in S$. Let G' be an open ball around x_0, $G' \subset G$. It suffices to show that $\hat{K} |_{L \cap G'}$ is analytic for every complex line L in \mathbb{C}^n. Using the Slodkowski theorem we can find a uniform algebra A and $f, g_1, \ldots, g_k \in A$ such that

i) $\hat{g} f^{-1}(x) = \hat{K}(x)$ for all $x \in L \cap (G' \setminus S)$;

ii) $f(\partial_A^0) = \partial (L \cap (G' \setminus S))$.

We have to prove that $f(\partial_A^0) \cap (L \setminus G') = \emptyset$.

Suppose the contrary. Then there exists a complex line L in \mathbb{C}^n such that $f(\partial_A^0) \cap (L \cap G') \neq \emptyset$. Since \hat{K} is analytic on $G' \setminus S$, it follows that $\hat{f}(\partial_A^0) \cap (L \cap (G' \setminus S)) = \emptyset$. Hence there exists $w_0 \in \partial_A^0$ such that $\hat{f}(w_0) = x_0$. Since G' is open and set of peak points of A is dense in ∂_A^0, we may assume that w_0 is a peak point. Hence there exists $h \in A$ such that $|\hat{h}(w_0)| = 1$ and $|\hat{h}(w)| < 1$ for $w \in M_A \setminus \{w_0\}$.

Consider the plurisubharmonic function

$$\varphi(x) = \log \max |\hat{h} f^{-1}(x)| \ \text{on} \ \ G' \setminus S.$$

Then φ is plurisubharmonic on $G' \cap L$. Since

$$\log \max |\hat{h} f^{-1}(x)| \leq 0 = \log \max |\hat{h} f^{-1}(x_0)|$$

for every $x \in G'$, it follows that φ = constant, which is impossible.

Thus $f(\partial_A^0) \cap (G' \cap L) = \emptyset$.

Theorem 1.1 is proved. \square

2. Liouville-type property for analytic multivalued functions

In the section we study the relation between a Liouville-type property and removable singularities of A.M.V. functions with values in convex domains.
THEOREM 2.1. — Let D be a convex domain in \mathbb{C}^n. Then the following conditions are equivalent

a) for every A.M.V. function $K : \mathbb{C} \to F_c(D)$, the multivalued function $\hat{K} : \mathbb{C} \to F_c(D)$ given by $\hat{K}(x) = \overline{K(x)}$, where $\overline{K(x)}$ is polynomial convex hull of $K(x)$, is constant;

b) every A.M.V. function $K : \Delta^* \to F_c(D)$ can be extended analytically on Δ, where Δ is the unit disc, $\Delta^* = \Delta \setminus \{0\}$;

c) every A.M.V. function $L : \Delta \setminus S \to F_c(D)$ can be extended analytically on Δ, where S is a polar set in Δ.

To prove the theorem we shall use the hyperbolicity of convex domains. In [1] Bath proved that a convex domain D is hyperbolic if and only if D does not contain complex lines (i.e. every holomorphic map $h : \mathbb{C} \to D$ is constant).

Proof of theorem 2.1

Consider the condition:

$$D \text{ is hyperbolic}$$ \hspace{1cm} (1)

We shall prove that a) \iff (1) \Rightarrow c) \Rightarrow b) \Rightarrow (1).

We first write

$$D = \bigcap_{\alpha \in I} \{ \text{Re} x_\alpha^* < \varepsilon_\alpha \},$$

where $\{x_\alpha^*\}$ are linear forms on \mathbb{C}^n. Without loss of generality we may assume that $0 \in D$. Then $\varepsilon_\alpha > 0$ for all α.

Let $\{x_{\alpha_1}^*, \ldots, x_{\alpha_p}^*\}$ be a maximal linearly independent system of $\{x_\alpha^*\}$. Take $\theta_\alpha : H_\alpha \to \Delta$, where $H_\alpha = \{z \in \mathbb{C} : \text{Re} z < \varepsilon_\alpha\}$, is a biholomorphism. Define a holomorphic map

$$\gamma : D_1 \to \Delta^p, \text{ where } D_1 = \bigcap_{j=1}^p \{ \text{Re} x_{\alpha_j}^* \},$$

by

$$\gamma(x) = \left(\theta_{\alpha_1}(x_{\alpha_1}^*(x)), \ldots, \theta_{\alpha_p}(x_{\alpha_p}^*(x)) \right).$$

Obviously, γ is a biholomorphism if and only if $\bigcap_{j=1}^p \text{Ker} x_{\alpha_j}^* = \{0\}$ or, equivalently, D_1 does not contain C.

- 266 -
a) \implies (1) Because every holomorphic map $h : \mathbb{C} \to D$ is an A.M.V. function and $h(z) = h(z)$, from a) we have $h = \text{const}$, thus D is hyperbolic.

(1) \implies a) Let $K : \mathbb{C} \to F_c(D)$ be an A.M.V. function. Suppose $\bar{K}(z_1) \neq \bar{K}(z_2)$ for two points $z_1, z_2 \in \mathbb{C}$. Take a plurisubharmonic function φ on Δ^p such that
\[
\sup \{ \varphi(y) \mid y \in \gamma \bar{K}(z_1) \} \neq \sup \{ \varphi(y) \mid y \in \gamma \bar{K}(z_2) \}.
\]
Since K is analytic, the function
\[
\bar{\varphi}(z) = \sup \{ \varphi(y) \mid y \in \gamma K(z) \} = \sup \{ \varphi(y) \mid y \in \gamma \bar{K}(z) \} = \sup \{ \varphi(y) \mid y \in \gamma \bar{K}(z) \}
\]
is subharmonic on \mathbb{C}. On the other hand, since $\gamma \bar{K}(z) \subset \Delta^p$ for all $z \in \mathbb{C}$, $\bar{\varphi}$ is bounded on \mathbb{C}. This is impossible because of the subharmonicity of $\bar{\varphi}$ and of the relation $\bar{\varphi}(z_1) \neq \bar{\varphi}(z_2)$.

(1) \implies c) By the hypothesis, D and hence D_1 is hyperbolic. By theorem 1.1, γL and hence L can be extended to an A.M.V. function $\bar{L} : \Delta \to F_c(D_1)$. It remains to show that $\bar{L}(z_0) \subset D$ for every $z_0 \in S$.

Let $\alpha \in I$ and $\tilde{x}_\alpha^* L$ be an extension of $x_\alpha^* L$ with values in $F_c(H_{\alpha})$.

Assume that $\tilde{x}_\alpha^* L(z_0) \neq \tilde{x}_\alpha^* L(z_0)$ for $z_0 \in S$. Take a plurisubharmonic function φ on \mathbb{C} such that $\varphi_1(z_0) \neq \varphi_2(z_0)$, where
\[
\varphi_1(z) = \sup \{ \varphi(y) \mid y \in \tilde{x}_\alpha^* L(z) \} = \sup \{ \varphi(y) \mid y \in \tilde{x}_\alpha^* L(z) \}
\]
and
\[
\varphi_2(z) = \sup \{ \varphi(y) \mid y \in \tilde{x}_\alpha^* L(z) \} = \sup \{ \varphi(y) \mid y \in \tilde{x}_\alpha^* L(z) \}
\]
for $z \in \mathbb{C}$.

Since φ_1 and φ_2 are plurisubharmonic on Δ and $\varphi_1 = \varphi_2$ on $\Delta \setminus \{z_0\}$ we have $\varphi_1(z_0) = \varphi_2(z_0)$. This is impossible because of the choice of φ. Thus, $\Re x_\alpha^*(z) < \epsilon_\alpha$ for all $z \in \bar{L}(z_0)$ and for all $\alpha \in I$. Hence $\bar{L}(z_0) \subset D$.

c) \implies b) Obvious.
b) ⇒ (1) By [1], it suffices to show that every holomorphic map \(\beta : \mathbb{C} \to D \) is constant. By the hypothesis, \(\beta \) can be extended to an A.M.V. function \(\tilde{\beta} \) on \(\mathbb{C}P^1 \). By the normality of \(\mathbb{C}P^1 \), it follows that \(\tilde{\beta} \) is holomorphic on \(\mathbb{C}P^1 \) [2]. Since \(\tilde{\beta} : \mathbb{C}P^1 \to D \) is holomorphic on the compact space \(\mathbb{C}P^1 \), it implies that \(\tilde{\beta} \) and hence \(\beta \) is constant.

The theorem is proved. □

Acknowledgement

The author would like to thank Prof. Dr. N.V. Khue for helpful advice and encouragement.

References

