TRAN NGOC GIAO

H^∞-extensibility and finite proper holomorphic surjections

<http://www.numdam.org/item?id=AFST_1994_6_3_2_293_0>
H^∞-extensibility and finite proper holomorphic surjections(*)

TRAN NGOC GIAO(1)

The extension of holomorphic maps from a Riemann domain D over a Stein manifold to its envelope of holomorphy \hat{D}_∞ for the Banach algebra of bounded holomorphic functions $H^\infty(D)$ has been investigated by some authors.

For holomorphic maps with values in finite dimensional complete C-spaces, the problem was considered by Sibony [6], Hirschowitz [3], and recently by Nguyen van Khue and Bui Dac Tac [4]. The aim of the present paper is to consider the problem in the infinite dimensional case.

(*) Reçu le 21 novembre 1993
(1) Department of Mathematics, Pedagogical University of Vinh, Viêt-nam
Let X be a Banach analytic space in the sense of Douady [1]. As in the finite dimensional case, we define the Carathéodory pseudodistance C_X on X by the formula

$$C_X(x, y) = \sup \{|f(x) - f(y)| : |f| \leq 1, f \in H^\infty(X)\}.$$

We say that X is a C-space if C_X is a distance defining the topology of X.

Let (D, p, B) and (D', q, B) be Riemann domains over a Banach space B. D' is called a H^∞-extension of D if there is a holomorphic map $e : D \to D'$ such that $p = q \cdot e$ and for every bounded holomorphic function f on D, there exists a bounded holomorphic function f' on D' such that $f = f' \cdot e$.

A Banach analytic space X is said to be a space having the holomorphic H^∞-extension property (for short, the HEH$^\infty$-property) if for every holomorphic map g from a Riemann domain D over a Banach space into X there exists a holomorphic map g' from D' into X such that $g = g' \cdot e$, where D' is a H^∞-extension of D and D' is a C-space. In this case we say also that g can be extended to a holomorphic map g' on D'.

The main result of this note is the following.

Theorem 1. — Let θ be a finite proper holomorphic map from a Banach analytic space X onto a Banach analytic space Y. Then:

(i) if Y has the HEH$^\infty$-property and $H^\infty(X)$ separates the points of the fibers of θ, then X has the HEH$^\infty$-property;

(ii) if X has the HEH$^\infty$-property and X does not contain a compact analytic set of positive dimension, then every holomorphic map from D into Y can be extended Gateaux holomorphically on D', where D' is a Riemann domain over a Banach space, D' is a H^∞-extension of D and D' is a C-space. In this case we say also that g can be extended to a holomorphic map g' on D'.

Moreover, the extension is holomorphic outside a hypersurface.

Let X be a Banach analytic space. We say that an upper semi-continuous function $\varphi : X \to [\pm \infty]$ is plurisubharmonic if for every holomorphic map $\sigma : \Delta \to X$ the function $\varphi \circ \sigma$ is subharmonic, where Δ is the unit disc.

Let Z be a Banach analytic space. By $F_c(Z)$ we denote the hyperspace of non-empty compact subsets of Z. An upper semi-continuous multivalued function $K : X \to F_c(Z)$, where X is a Banach analytic space, is called analytic in the sense of Slodkowski [?] if for every plurisubharmonic function
H^∞-extensibility and finite proper holomorphic surjections

Let $K : Y \to F_c(X)$ be an analytic multivalued function such that $\text{card } K(y) < \infty$ for all $y \in Y$, where Y is a connected Banach analytic space. Assume that U and V are disjoint open subsets of X such that $K(y) \subseteq U \cup V$ for all $y \in Y$. Then either $K(y) \cap U = \emptyset$ for all $y \in Y$ or $K(y) \cap U \neq \emptyset$ for all $y \in Y$.

Proof. Define Ψ on $Y \times (U \cup V)$ by

$$\Psi(y, z) = \begin{cases} 1 & \text{if } z \in U \\ 0 & \text{if } z \in V. \end{cases}$$

Then Ψ is plurisubharmonic on a neighbourhood of the graph of K, so φ is plurisubharmonic on Y, where

$$\varphi(y) = \max\{\Psi(y, z) \mid z \in K(y)\} = \begin{cases} 0 & \text{if } K(y) \cap U = \emptyset \\ 1 & \text{if } K(y) \cap U \neq \emptyset. \end{cases}$$

By the plurisubharmonicity of φ and the connectedness of Y, it implies that either $K(y) \cap U = \emptyset$ for all $y \in Y$ or $K(y) \cap U \neq \emptyset$ for all $y \in Y$. The lemma is proved. \square

Lemma 2. Let $K : Y \to F_c(X)$ be an analytic multivalued function such that $\text{card } K(y) < \infty$ for all $y \in Y$. Then

$$V_m = \{y \in Y \mid \text{card } K(y) < m\}$$

is closed in Y for every $m \geq 1$.

Proof. Given a sequence $\{y_n\}$ in V_m, $y_n \to y^*$, choose disjoint neighbourhoods U_i of x_i, $i = 1, \ldots, \ell$, where $\{x_1, \ldots, x_{\ell}\} = K(y^*)$. Take a neighbourhood D of y^* such that

$$K(D) \subseteq \bigcup_{i=1}^{\ell} U_i.$$
Then by lemma 1, $K(y) \cap U \neq \emptyset$ for all $i = 1, \ldots, \ell$ and for all $y \in D$. Hence $m > \text{card } K(y_n) \geq 1$ for sufficiently large n. This implies that $y^* \in V_m$. The lemma is proved. □

Lemma 3. — Let $\theta : X \to Y$ be a finite proper holomorphic surjection, where X and Y are Banach analytic spaces. Then the multivalued function

$$K : Y \to F_c(X)$$

given by

$$K(y) = \theta^{-1}(y)$$

is analytic.

Proof

(i) Consider first the case where $Y = \Delta$, the unit disc in \mathbb{C}.

Since θ is proper, K is upper semi-continuous. Let Ψ be a plurisubharmonic function on a neighbourhood of $\Gamma K \mid G$, where G is an open subset of Δ. Since θ is a branch covering map [2], there exists a discrete sequence A in Δ such that

$$\theta : X \setminus \theta^{-1}(A) \to \Delta \setminus A$$

is an unbranched covering map of order $m < \infty$. Let $y_0 \in \Delta \setminus A$ and

$$\theta^{-1}(y_0) = \{x_1, \ldots, x_m\}.$$

Take a neighbourhood W of y_0 such that

$$\theta^{-1}(W) = U_1 \cup \cdots \cup U_m,$$

where U_j are disjoint, $x_j \in U_j$ and $\theta : W \cong U_j$, $j = 1, \ldots, m$. Then the function

$$\varphi(y) = \max_j \max \{\Psi(y, x) \mid z \in \theta^{-1}(y) \cap U_j\}$$

is subharmonic on $W \cap G$. Since φ is locally bounded on G, it follows that φ is subharmonic on G.

– 296 –
(ii) Consider now the general case where \(Y \) is a Banach analytic space.

Let \(\varphi \) be as in (i). Obviously \(\varphi \) is upper semi-continuous because of the upper semi-continuity of \(K \) and \(\Psi \). It remains to check that \(\varphi \circ h \) is subharmonic on \(\Delta \) for every holomorphic map \(h : \Delta \rightarrow X \). Consider the commutative diagram

\[
\begin{array}{ccc}
\tilde{\Delta} & \xrightarrow{\tilde{h}} & X \\
\downarrow \theta & & \downarrow \theta \\
\Delta & \xrightarrow{h} & Y
\end{array}
\]

where \(\tilde{\Delta} = \Delta \times_Y X \). By (i) and by the relation

\[
\varphi \circ h(\lambda) = \max \left\{ \Psi(h(\lambda), z) \mid \theta(z) = h(\lambda) \right\}
\]

it follows that \(\varphi \circ h \) is subharmonic on \(\Delta \). The lemma is proved. \(\square \)

Let \(X \) and \(D \) be Banach analytic spaces. A finite proper holomorphic surjection \(\pi : X \rightarrow D \) is called a branch covering map if it satisfies the following:

(i) there is a closed subset \(A \) of \(D \) which is a removable for bounded holomorphic germs on \(D \setminus A \);

(ii) \(\pi : X \setminus \pi^{-1}(A) \rightarrow D \setminus A \) is a local biholomorphism and \(\card \pi^{-1}(z) \) is constant on every connected component of \(D \setminus A \).

Lemma 4. Let \(\theta \) be a finite proper holomorphic map from a Banach analytic space \(X \) onto an open set \(D \) in a Banach space \(B \). Then \(\theta \) is a branch covering map.

Proof. Without loss of generality we may assume that \(D \) is convex. For each \(n \geq 1 \) put

\[
F_n = \{ y \in D \mid \card \theta^{-1}(y) < n \}.
\]

By lemma 2 and lemma 3, \(F_n \) is closed in \(D \). Applying the Baire theorem to \(D = \bigcup_{1}^{\infty} F_n \), we can find \(n_0 \) such that \(\text{Int} F_n \neq \emptyset \). Put

\[
m = \max \{ \card \theta^{-1}(y) \mid y \in \text{Int} F_{n_0} \}.
\]
Since $\theta : \theta^{-1}(E \cap D) \to E \cap D$ is a branch covering map for every finite dimensional subspace E of B [2], by the connectedness of $D \cap E$ for all subspace E of B, $\dim E < \infty$, we have

$$\sup\{\text{card } \theta^{-1}(y) \mid y \in D\} = \sup\{\text{card } \theta^{-1}(y) \mid y \in D \cap E, \ E \subset B, \ \dim E < \infty\} = m.$$

Put

$$Z = \{y \in D \mid \text{card } \theta^{-1}(y) < m\}.$$

Then Z is closed in D, and from the finiteness and properness of θ it follows that

$$\theta : X \setminus \theta^{-1}(Z) \to D \setminus Z$$

is an unbranched covering map. It remains to show that Z is removable for bounded holomorphic germs. Let h be a bounded holomorphic function on $U \setminus Z$, where U is an open subset of D. Then for every finite dimensional space E of B such that

$$\sup\{\text{card } \theta^{-1}(y) \mid y \in E \cap D\} = m,$$

$h|_{U \setminus Z}$ can be extended holomorphically on U. From the relation

$$D = \bigcup\left\{E \cap D \mid E \subset B, \ \dim E < \infty, \ \sup\{\text{card } \theta^{-1}(y) \mid y \in D \cap E\} = m\right\},$$

it follows that h can be extended to a bounded Gateaux-holomorphic function \hat{h} on U. By the boundedness of \hat{h}, we deduce that \hat{h} is holomorphic on U. The lemma is proved. □

Lemma 5. Let $\theta : X \to D$, where D is a C-manifold, be a branch covering map. Denote by $\text{SH}^{\infty}(X)$ and $\text{SH}^{\infty}(D)$ the spectra of Banach algebras $H^{\infty}(X)$ and $H^{\infty}(D)$, respectively. Let $\theta : \text{SH}^{\infty}(X) \to \text{SH}^{\infty}(D)$ be the map induced by θ. Then

$$\hat{\theta} : \hat{\theta}^{-1}(D) \to D$$

is also a branch covering map.
Proof. — Obviously \(\tilde{\theta} : \tilde{\theta}^{-1}(D) \to D \) is finite, proper and surjective, since \(H^\infty(X) \) is an integral extension of finite degree of \(H^\infty(D) \). By lemma 4, it suffices to prove that \(\tilde{\theta}^{-1}(D) \) is a Banach analytic space. Let \(B(0, r) \) (resp. \(B^*(0, r) \)) denote the open ball in \(H^\infty(X) \) (resp. \((H^\infty(X))^* \)) centred at 0 with radius \(r > 0 \). Consider the holomorphic map

\[
F : (D \setminus Z) \times B^*(0, 2) \to H^\infty(B(0, 2))
\]
given by

\[
F(z, w)(h) = w(h)^m + \sigma_{m-1}(h \circ p_1(z), \ldots, h \circ p_m(z))w(h)^{m-1} + \\
\cdots + \sigma_0(h \circ p_1(z), \ldots, h \circ p_m(z)),
\]

where \(z \) is the branch locus of \(\theta \), \(m \) the order of \(\theta \) and \(\sigma_0, \ldots, \sigma_{m-1} \) are elementary symmetric polynomials in \(m \) variables and

\[
\theta^{-1}(z) = (p_1(z), \ldots, p_m(z)) \quad \text{for} \; z \in D \setminus Z.
\]

Since \(\sigma_0, \ldots, \sigma_{m-1} \) are bounded holomorphic functions on \(D \setminus Z \), it follows that \(F \) is holomorphic on \(D \times B^*(0, 2) \). We have

\[
F^{-1}(0) = \{(z, w) \mid \tilde{\theta}(w) = z\} \cong \tilde{\theta}^{-1}(D).
\]

Hence \(\tilde{\theta} : \tilde{\theta}^{-1}(D) \to D \) is a branch covering map. The lemma is proved. \(\square \)

Lemma 6. — Every Banach space has the HEH\(^\infty\)-property.

Proof. — Let \(D \) be a Riemann domain over a Banach space \(B \) and \(D' \) a \(H^\infty \)-extension of \(D \). Let \(f : D \to E \) be a holomorphic map, where \(E \) is a Banach space.

For each \(x^* \in E^* \), by \(\widehat{x^*f} \) we denote the holomorphic extension of \(x^*f \) on \(D' \). Since \(D' \) is a \(H^\infty \)-extension of \(D \), from the open mapping theorem, it follows that

\[
\|\widehat{x^*f}\| = \|x^*f\| \quad \text{for all} \; x^* \in E^*.
\]

On the other hand, by the uniqueness, \(\widehat{x^*f}(z) \) is a continuous linear function on \(E^* \) for every \(z \in D' \). Thus we can define a bounded map \(\widehat{f} : D' \to E^{**} \) by

\[
(\widehat{f}(z))(x^*) = \widehat{x^*f}(z)
\]

- 299 -
which is separately holomorphic in variables \(z \in D' \) and \(x^* \in E^* \). From the boundedness of \(\tilde{f}(D') \) we deduce that \(\tilde{f} \) is holomorphic and \(\tilde{f}(D') \subset E \). Obviously \(\tilde{f} \) is a holomorphic extension of \(f \) on \(D' \). The lemma is proved. □

Proof of theorem 1

(i) Let first \(Y \) have the \(\text{HEH}^\infty \)-property. Let \(f : D \to X \) be a holomorphic map, where \(D \) is a Riemann domain over a Banach space \(B \). By hypothesis, there is a holomorphic map \(g : D' \to Y \) which is a holomorphic extension of \(\theta f \) on \(D' \), where \(D' \) is a \(H^\infty \)-extension of \(D \). Consider the commutative diagram

\[
\begin{array}{ccc}
D & \xrightarrow{f} & X \\
\downarrow \alpha & & \downarrow \theta \\
D' & \xrightarrow{\tilde{g}} & Y
\end{array}
\]

where \(G = D' \times_Y X \), \(\tilde{\theta} \) and \(\tilde{g} \) are the canonical projections, \(\alpha \) and \(e \) are the canonical maps. By lemma 4, \(\tilde{\theta} \) is a branch covering map. Let \(H \) denote the branch locus of \(\tilde{\theta} \). Consider the commutative diagram

\[
\begin{array}{ccc}
G \setminus \tilde{\theta}^{-1}(H) & \xrightarrow{\tilde{\theta}^{-1}} & (D' \setminus H) \\
\downarrow \tilde{\theta} & & \downarrow \delta \\
D' \setminus H & \xrightarrow{\delta} & SH^\infty(D' \setminus H) = SH^\infty(D')
\end{array}
\]

where

\[
\tilde{\theta} : SH^\infty(G \setminus \tilde{\theta}^{-1}(H)) \to SH^\infty(D' \setminus H) \cong SH^\infty(D')
\]

is induced by \(\tilde{\theta} : G \setminus \tilde{\theta}^{-1}(H) \to D' \setminus H \). From lemma 5, it follows that

\[
\tilde{\theta} : \tilde{\theta}^{-1}(D' \setminus H) \to D' \setminus H
\]

is a branch covering map. By lemma 6, \(\left(H^\infty(G \setminus \tilde{\theta}^{-1}(H)) \right)^* \) has the \(\text{HEH}^\infty \)-property.
Since \(D' \setminus H \) is also a \(H^\infty \)-extension of \(D \setminus e^{-1}(H) \), there exists

\[
h : D' \setminus H \rightarrow \left(H^\infty \left(G \setminus \tilde{\theta}^{-1}(H) \right) \right)^*\]

which is a holomorphic extension of

\[
\tilde{id} \alpha : D \setminus e^{-1}(H) \rightarrow \left(H^\infty \left(G \setminus \tilde{\theta}^{-1}(H) \right) \right)^*.
\]

From the relation \(\tilde{\theta} h = \delta \), where \(\delta : D' \setminus H \rightarrow SH^\infty(D' \setminus H) \) is the canonical map, we have \(h(D' \setminus H) \subset \tilde{\theta}^{-1}(D' \setminus H) \). Since \(H^\infty(X) \) separates the points of the fibers of \(\tilde{\theta} \), there exists a holomorphic mapping \(\tilde{g} : \tilde{\theta}^{-1}(D' \setminus H) \rightarrow X \) such that \(g \tilde{\theta} = \theta \tilde{g} \). Put

\[
f_1 = \tilde{g} h.
\]

Assume now \(z \in H \). Take two neighbourhoods \(U \) and \(V \) of \(z \) and \(g(z) \), respectively, such that \(g(U) \subset V \) and \(\theta^{-1}(V) \) is an analytic set in a finite union \(W \) of balls in a Banach space. Then \(f_1 : U \setminus H \rightarrow W \) can be extended holomorphically on \(U \). This implies that \(f_1 \) and hence \(f \) can be extended holomorphically on \(D' \).

(ii) Let \(X \) be a space having the \(HEH^\infty \)-property and let \(g : D \rightarrow Y \) be a holomorphic map, where \(D \) is a Riemann domain over a Banach space \(B \). Let \(D' \) be a \(H^\infty \)-extension of \(D \) which is a \(C \)-space. Consider the commutative diagram

\[
\begin{array}{ccc}
G & \xrightarrow{\tilde{g}} & X \\
\downarrow \tilde{\theta} & & \downarrow \theta \\
D & \xrightarrow{g} & Y
\end{array}
\]

where \(G = D \times_Y X \), \(\tilde{\theta} \) and \(\tilde{g} \) are the canonical projections.

Obviously \(\tilde{\theta} : SH^\infty(G) \rightarrow SH^\infty(D') \) is finite, proper and surjective, since \(H^\infty(G) \) is an integral extension of finite degree of \(H^\infty(D) \) and every bounded holomorphic function on \(D \) can be extended to a bounded holomorphic function on \(D' \). By lemmas 4 and 5, \(\tilde{\theta} \) and \(\tilde{\theta}^{-1}(D') \) are branch covering maps. Let \(H \) denote the branch locus of \(\tilde{\theta} : \tilde{\theta}^{-1}(D') \rightarrow D' \). Consider the commutative diagram

\[
\begin{array}{ccc}
G & \xrightarrow{\tilde{g}} & X \\
\end{array}
\]
where δ is the canonical map. Since every bounded holomorphic function on $G \setminus \tilde{\theta}^{-1}(e^{-1}(H))$ can be extended to a bounded holomorphic function on $\text{SH}^\infty\left(G \setminus \tilde{\theta}^{-1}(e^{-1}(H)) \right)$ and the topology of $\tilde{\theta}^{-1}(D' \setminus H)$ is defined by bounded holomorphic functions, it follows that $\tilde{\theta}^{-1}(D' \setminus H)$ is a H^∞-extension of $G \setminus \tilde{\theta}^{-1}(e^{-1}(H))$ and it is a C-space. By hypothesis, \tilde{g} can be extended to a holomorphic map

$$\tilde{g}_0 : \tilde{\theta}^{-1}(D' \setminus H) \to X.$$

It is easy to see that $e \tilde{\theta}^{-1}(x) = \tilde{\theta}^{-1}(e(x))$ for every $x \in D \setminus e^{-1}(H)$. This yields

$$\tilde{g}_0 |_{\tilde{\theta}^{-1}(e(x))} = \text{const} \quad \text{for all } x \in D \setminus e^{-1}(H).$$

Since $\tilde{\theta} : \tilde{\theta}^{-1}(D' \setminus H) \to D' \setminus H$ is a branch covering map, it follows that there exists a holomorphic map $\tilde{g}_0 : D' \setminus H \to Y$ such that $\theta \tilde{g}_0 = \tilde{g} \tilde{\theta}$.

X does not contain a compact set of positive dimension. By the Hironaka singular resolution theorem, for every finite dimensional subspace E of B such that $q^{-1}(E) \not\subset e(H)$,

$$\tilde{g}_0 |_{\tilde{\theta}^{-1}(q^{-1}(E) \setminus H)}$$

can be extended to a holomorphic map $\tilde{g}_E : \tilde{\theta}^{-1}(q^{-1}(E)) \to X$. This yields that $\tilde{g}_0 |_{q^{-1}(E) \setminus H}$ can be extended to a holomorphic map $\tilde{g}_E : q^{-1}(E) \to Y$. Thus \tilde{g}_0 and hence g can be extended to a Gateaux holomorphic map $\tilde{g} : D' \to Y$ which is holomorphic on $D' \setminus H$. The theorem is proved. \Box

Acknowledgment

I should like to thank my research supervisor Dr. N. V. Khue for helpful advice and encouragement.
H^∞-extensibility and finite proper holomorphic surjections

References

