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Galois representations(*)

RICHARD TAYLOR(1)

Annales de la Faculté des Sciences de Toulouse Vol. XIII, n° 1, 2004

ABSTRACT. - In the first part of this paper we try to explain to a
general mathematical audience some of the remarkable web of conjectures
linking representations of Galois groups with algebraic geometry, complex
analysis and discrete subgroups of Lie groups. In the second part we briefly
review some limited recent progress on these conjectures.

RÉSUMÉ. - Dans la première partie nous essayons d’expliquer à un public
mathématique général le remarquable faisceau de conjectures reliant les
représentations Galoisiennes avec la géométrie algébrique, l’analyse com-
plexe et les sous-groupes discrets des groupes de Lie. Dans la deuxième
partie nous mentionnons des progrès récents mais limités sur ces conjec-
tures.

0. Introduction 

This is a longer version of my talk at the Beijing ICM. The version to be
published in the proceedings of the ICM was edited in an attempt to make
it meet restrictions on length suggested by the publishers. In this version
those cuts have been restored and I have added technical justifications for a
couple of results stated in the published version in. a form slightly different
from that which can be found in the literature.

The first four sections of this paper contain a simple presentation of
a web of deep conjectures connecting Galois representations to algebraic
geometry, complex analysis and discrete subgroups of Lie groups. This will
be of no interest to the specialist. My hope is that the result is not too banal
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and that it will give the non-specialist some idea of what motivates work in
this area. I should stress that nothing I write here is original. In the final
section 1 briefly review some of what is known about these conjectures and
very briefly mention some of the available techniques.

I would like to thank Peter Mueller and the referee for their helpful
comments.

1. Galois representations

We will let Q denote the field of rational numbers and Q denote the field
of algebraic numbers, the algebraic closure of Q. We will also let GQ denote
the group of automorphisms of Q, that is Gal (Q/Q), the absolute Galois
group of Q. Although it is not the simplest it is arguably the most natural
Galois group to study. An important technical point is that GQ is naturally
a topological group, a basis of open neighbourhoods of the identity being
given by the subgroups Gal (Q/K) as K runs over subextensions of Q/Q
which are finite over Q. In fact GQ is a profinite group, being identified
with the inverse limit of discrete groups lim Gal (K/Q), where K runs
over finite normal subextensions of Q/Q.

The Galois theory of Q is most interesting when one looks not only at GQ
as an abstract (topological) group, but as a group with certain additional
structures associated to the prime numbers. I will now briefly describe these
structures.

For each prime number p we may define an absolute value 1 Ip on Q by
setting

if 03B1 = pra/b with a and b integers coprime to p. If we complete Q with
respect to this absolute value we obtain the field Qp of p-adic numbers, a
totally disconnected, locally compact topological field. We will write GQp
for its absolute Galois group Gal (Qp/Qp). The absolute value 1 ip has a
unique extension to an absolute value on Qp and GQp is identified with

the group of automorphisms of Qp which preserve | Ip, or equivalently the
group of continuous automorphisms of Qp. For each embedding Q ~ Qp
we obtain a closed embedding GQp ~ GQ and as the embedding Q Qp
varies we obtain a conjugacy class of closed embeddings GQp ~ GQ. Slightly
abusively we shall consider GQp a closed subgroup of GQ, suppressing the
fact that the embedding is only determined up to conjugacy.

This can be compared with the situation ’at infinity’. Let | |~ denote
the usual Archimedean absolute value on Q. The completion of Q with
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respect to | |~ is the field of real numbers M and its algebraic closure is C
the field of complex numbers. Each embedding Q ~ C gives rise to a closed
embedding 

As the embedding Q ~ C varies one obtains a conjugacy class of éléments
c E GQ of order 2, which we refer to as complex conjugations.

There are however many important differences between the case of finite
places (i. e. primes) and the infinite place | |~. For instance Qp/Qp is an
infinite extension and Qp is not complete. We will denote its completion by
Cp. The Galois group GQp acts on Cp and is in fact the group of continuous
automorphisms of Cp.

The elements of Qp (resp. Qp, resp. Cp) with absolute value less than
or equal to 1 form a closed subring Zp (resp. OQp, resp. OCp). These rings
are local with maximal ideals pZp (resp. mQp, resp. mCp) consisting of the
elements with absolute value strictly less than 1. The field OQp/mQp =
OCp/mCp is an algebraic closure of the finite field with p elements Fp =
Zp/pZp, and we will denote it by Fp. Thus we obtain a continuous map

which is surjective. Its kernel is called the inertia subgroup of GQp and
is denoted IQ . The group GIF is procyclic and has a canonical generator
called the (geometric) Frobenius element and defined by

In many circumstances it is technically convenient to replace GQp by a dense
subgroup WQ , which is referred to as the Weil group of Qp and which is
defined as the subgroup of 03C3 E GQp such that 03C3 maps to

We endow W Qp with a topology by decreeing that IQp with its usual topol-
ogy should be an open subgroup of WQP -

We will take a moment to describe some of the finer structure of IQp
which we will need for technical purposes later. First of all there is a (not
quite canonical) continuous surjection
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such that

for all 03C3 E IQp. The kernel of t is a pro-p-group called the wild inertia group.
The fixed field ker t Qp is obtained by adjoining n p to Qp for all n coprime
to p. Moreover

for some primitive nth-root of unity (n (independent of a, but dependent
on t). Also there is a natural decreasing filtration IuQp of IQp indexed by
u E [0, oo) and satisfying

is the wild inertia group,

This is called the upper numbering filtration. We refer the reader to [Sel]
for the precise definition.

In my opinion the most interesting question about GQ is to describe
it together with the distinguished subgroups GR, GQp, IQp and the distin-
guished elements Frobp E GQp/IQp.

I want to focus here on attempts to describe GQ via its representations.
Perhaps the most obvious representations to consider are those representa-
tions

with open kernel, and these so called Artin representations are already very
interesting. However one obtains a richer theory if one considers represen-
tations

which are continuous with respect to the l-adic topology on GLn(Ql). We
refer to these as l-adic representations.

One justification for considering l-adic representations is that they arise
naturally from geometry. Here are some examples of l-adic representations.
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1. A choice of embeddings Q ---+ C and Q ~ Qi establishes a bijection
between isomorphism classes of Artin representations and isomor-
phism classes of l-adic representations with open kernel. Thus Artin
representations are a special case of l-adic representations.

2. There is a a unique character

such that

for all l-power roots of unity (. This is called the l-adic cyclotomic
character.

3. If X/Q is a smooth projective variety (and we choose an embedding
Q C C) then the natural action of GQ on the cohomology

is an l-adic representation. For instance if E/Q is an elliptic curve
then we have the concrete description

where E[lr] denotes the l’’-torsion points on E. We will write Hi(X(C),
Ql(j)) for thé twist

Before discussing l-adic representations of GQ further, let us take a mo-
ment to look at l-adic representations of GQp. The cases l =1= p and l = p
are very different. Consider first the much easier case l =1= p. Here l-adic
representations of GQp are not much different from representations of WQp
with open kernel. More precisely define a Weil-Deligne (or simply, WD-)
representation of WQ over a field E of characteristic zero to be a pair

and

where V is a finite dimensional E-vector space, r is a representation with
open kernel and N is a nilpotent endomorphism which satisfies
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for every lift E WQp of Frobp. The key point here is that there is nc
référence to a topology on E, indeed no assumption that E is a topological
field. Given r there are up to isomorphism only finitely many choices foi
the pair (r, N) and these can be explicitly listed without difficulty. A WD-
representation (r, N) is called unramified if N = 0 and r(IQp) = {1}. It
is called Frobenius semi-simple if r is semi-simple. Any WD-representation
(r, N) has a canonical Frobenius semi-simplification (r, N)ss, which may be
defined as follows. Pick a lift 0 of Frobp to WQ and decompose r(~) =
03A6s03A6u = 03A6s03A6s where 03A6s is semi-simple and 03A6u is unipotent. The semi-
simplification (r, N) SS is obtained by keeping N and rlip unchanged and
replacing r(~) by 03A6s. In the case that E = Qi we call (r, N) l-integral il
all the eigenvalues of r(~) have absolute value 1. This is independent of the
choice of Frobenius lift 0.

If l =1= p, then there is an equivalence of categories between 1-integral
WD-representations of WQp over QI and l-adic representations of GQp. To
describe it choose a Frobenius lift ~ E W Qp and a surjection tl : 7Qp --* Zl.
Up to natural isomorphism the equivalence does not depend on these choices.
We associate to an 1-integral WD-representation (r, N) the unique l-adic
representation sending

for all n ~ Z and a E IQp. The key point is Grothendieck’s observation that
for l i= p any l-adic representation of GQp must be trivial on some open
subgroup of the wild inertia group. We will write WDp(R) for the WD-
representation associated to an l-adic representation R. Note that WDp(R)
is unramified if and only if R(IQp) = {1}. In this case we call R unramified.

The case l = p is much more complicated because there are many
more p-adic representations of GQp. These have been extensively studied by
Fontaine and his coworkers. They single out certain p-adic representations
which they call de Rham representations. 1 will not recall the somewhat
involved definition here (see however [Fo2] and [Fo3]), but note that ’most’
p-adic representations of G’Q are not de Rham. To any de Rham represen-
tation R of GQp on a Qp-vector space V they associate the following.

1. A WD-representation WDp (R) of WQp over Qp (see [Berg] and [Fo4]).
(We recall some of the definition of WDp(R). By the main result of
[Berg] one can find a finite Galois extension L/Qp such that, in the no-
tation of [Fo3], Dst,L (R) is a free Qp 0Qp Lo-module of rank dimQp R,
where Lo/Qp is the maximal unramified subextension of L/Qp. Then
Dst,L(R) comes equipped with a semilinear action of Gal (L/Qp) (03C3
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acts 10 s-linearly), a 10 Frobp- 1 -linear automorphism ~ and a nilpo-
tent linear endomorphism N. The Gal (L/Qp)-action commutes with
~ and N and ~N~-1 = pN. Define a linear action r of WQp on
Dst,L(R) with open kernel by setting r(03C3) = ~a03C3 if cr maps to Frobap
in GFp. If T : L0 ~ Qp set WDp (R)T - (r, N) ~Qp~L0,1~03C4 Qp. The
map ~ provides an isomorphism from WDp (R),r to WDp(R)03C4Frobp,
and so up to equivalence WDp(R)? is independent of T. Finally set
WDp(R) = WDp(R)T for any T.)

2. A multiset HT(R) of dim V integers, called the Hodge-Tate numbers
of R. The multiplicity of i in HT(R) is

where GQp acts on Cp(i) via ~p(03C3)i times its usual (Galois) action
on Cp.

A famous theorem of Cebotarev asserts that if K/Q is a Galois extension
(possibly infinite) unramified outside a finite set of primes S (i.e. if p ~ S
the IQp has trivial image in Gal(K/Q)) then

is dense in Gal (K/Q). (Here [Frobp] denotes the conjugacy class of Frobp in
Gal (K/Q).) It follows that a semi-simple l-adic representation R which is
unramified outside a finite set S of primes is determined by {WDp(R)ss}p~S.

We now return to the global situation (i.e. to the study of GQ). The
l-adic representations of GQ that arise from geometry, have a number of
very special properties which I will now list. Let R : GQ ~ GL(V) be
a subquotient of Hi(X(C),Ql(j)) for some smooth projective variety X/Q
and some integers i  0 and j.

1. (Grothendieck, [SGA4], [SGA5]) The representation R is unramified
outside a finite set of primes.

2. (Fontaine, Messing, Faltings, Kato, Tsuji, de Jong, see e.g. [Il], [Bert])
The representation R is de Rham in the sense that its restriction to

GQl is de Rham.

3. (Deligne, [De3]) The representation R is pure of weight w = i - 2j
in the following sense. There is a finite set of primes S, such that
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for p ~ S, the representation R is unramified at p and for even
eigenvalue a of R(Frobp) and every embedding i : (Ql ~ C

In particular a is algebraic (i.e. a E Q).

A striking conjecture of Fontaine and Mazur (see [Fol] and [FM]) asserts
that any irreducible l-adic representation of GQ satisfying the first two of
these properties arises from geometry in the above sense and so in particular
also satisfies the third property.

CONJECTURE 1.1 (FONTAINE-MAZUR) . - Suppose that

is an irreducible l -adic representation which is unramified at all but finitely
many primes and with R|GQl de Rham. Then there is a smooth projective
variety X/Q and integers i  0 and j such that V is a subquotient of
Hi(X(C),Ql(j)). In particular R is pure of some weight w E Z.

We will discuss the evidence for this conjecture later. We will call an
l-adic representation satisfying the conclusion of this conjecture geometric.

Algebraic geometers have formulated some very precise conjectures about
the action of GQ on the cohomology of varieties. We don’t have the space
here to discuss these in general, but we will formulate some of them as
algebraically as possible.

CONJECTURE 1.2 (TATE). - Suppose that X/Q is a smooth projective
variety. Then there is a decomposition

with the following properties.

1. For each prime l and for each embedding c, : Q ~ Ql, Mj ~Q,i Ql is
an irreducible subrepresentation of Hi(X((C),Ql).

2. For all indices j and for all primes p there is a WD-representation
WDp(Mj) of WQp over Q such that

for all primes l and all embedding
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3. There is a multiset of integers HT(Mj) such that

(a) for all primes l and all embeddings i : Q ~ (Ql

(b) and for a

is the multiplicity of a in HT(Mj).

If one considers the whole of Hi(X(C),Q) rather than its pieces Mj,
then part 2. is known to hold up to Frobenius semisimplification for all but
finitely many p and part 3. is known to hold (see [Il]). The whole conjecture
is known to be true for i = 0 (easy) and i = 1 (where it follows from
a theorem of Faltings [Fa] and the theory of the Albanese variety). The
putative constituents Alj are one incarnation of what people call ’pure’
motives.

If one believes conjectures 1.1 and 1.2 then ’geometric’ l-adic represen-
tations should come in compatible families as varies. There are many ways
to make precise the notion of such a compatible family. Here is one.

By a weakly compatible system of l-adic representations R = {Rl,i} we
shall mean a collection of semi-simple l-adic representations

one for each pair (l, i) where l is a prime and i : Q ~ Ql, which satisfy the
following conditions.

2022 There is a multiset of integers HT(R) such that for each prime l and
each embedding c : Q ~ Qz the restriction Rl,i|GQl is de Rham and

HT(Rl,k|GQl) = HT(R). 
2022 There is a finite set of primes S such that if p ~ S then WDp(Rl,i) is

unramified for all and t.

2022 For all but finitely many primes p there is a Frobenius semi-simple
WD-representation WDp(R) over Q such that for all primes l =1= p
and for all i we have
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We make the following subsidiary definitions.

e We call IZ strongly compatible if the last condition (the existence of
WDp(R)) holds for all primes p.

e We call 7Z irreducible if each Ri,,- is irreducible.

e We call R pure of weight w E Z, if for all but finitely many p and for
all eigenvalues ce of rp (Frobp) , where WDp(R) = (rp, Np), we have
03B1 E Q and

for all embeddings i, : Q ---+ C.

e We call 7Z geometric if there is a smooth projective variety X/Q and
integers i  0 and j and a subspace

such that for all l and i, W ~Q,i Ql is GQ invariant and realises Rl,i.

Conjectures 1.1 and 1.2 lead one to make the following conjecture.

CONJECTURE 1.3. -

1. If R : GQ GLn(Ql) is a continuous semi-simple de Rham repre-
sentation unramified at all but finitely many primes then R is part of
a weakly compatible system.

2. Any weakly compatible system is strongly compatible.

3. Any irreducible weakly compatible system IZ is geometric and pure of
weight (2/ dim R) 03A3h~HT(R) h.

Conjectures 1.1 and 1.3 are known for one dimensional representations,
in which case they have purely algebraic proofs based on class field the-
ory (see [Se2]). Otherwise only fragmentary cases have been proved, where
amazingly the arguments are extremely indirect involving sophisticated
analysis and geometry. We will come back to this later.
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2. L-functions

L-functions are certain Dirichlet series

which play an important role in number theory. A full discussion of the
role of L-functions in number theory is beyond the scope of this talk. How-
ever let us start with two examples in the hope of conveying some of their
importance.

The Riemann zeta function

is the most celebrated example of a Dirichlet series. It converges to a non-
zero holomorphic function in the half plane Re s &#x3E; 1. In its region of con-
vergence it can also be expressed as a convergent infinite product over the
prime numbers

This is called an Euler product and the individual factors are called Euler
factors. (This product expansion may easily be verified by the reader, the
key point being the unique factorisation of integers as products of primes.)
Lying deeper is the fact that 03B6(s) has meromorphic continuation to the
whole complex plane, with only one pole: a simple pole at s = 1. Moreover
if we set 

then Z satisfies the functional equation

Encoded in the Riemann zeta function is lots of deep arithmetic infor-
mation. For instance the location of the zeros of (( s) is intimately connected
with the distribution of prime numbers. Let me give another more algebraic
example.

A big topic in algebraic number theory has been the study of factori-
sation into irreducibles in rings of integers in number fields, and to what
extent it is unique. Particular attention has been paid to rings of cyclotomic
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integers Z[e203C0i/p] for p a prime, not least because of a relationship to Fer-
mat’s last theorem. In such a number ring there is a finite abelian group, the
class group CI (Z[e203C0i/p]), which ’measures’ the failure of unique factorisa-
tion. It can be defined as the multiplicative semi-group of non-zero ideals in
Z[e203C0i/p] modulo an equivalence relation which considers two ideals I and J
equivalent if I = aJ for some ce e Q(e203C0i/p) . The class group Cl (Z[e203C0i/p])
is trivial if and only if every ideal of Z[e21ri/p] is principal, which in turn
is true if and only if the ring Z[e21ri/p] has unique factorisation. Kummer
showed (by factorising xp+yp over Z[e203C0i/p]) that if p#Cl (Z[e203C0i/p]) then
Fermat’s last theorem is true for exponent p.

But what handle does one have on the mysterious numbers #Cl (Z[e203C0i/p])?
The Galois group Gal (Q(e203C0i/p)/Q) acts on CI (Z[e203C0i/p]) and on its Sylow
p-subgroup CI (Z[e203C0i/p])p and so we can form a decomposition

into Gal (Q(e203C0i/p)/Q)-eigenspaces. It turns out that if CI (Z[e203C0i/p])p =
(0) for all even i then CI (Z[e203C0i/p])p = (0). Herbrand [Her] and Ribet [R1]
proved a striking theorem to the effect that for any even positive integer
n the special value ((1 - n) is a rational number and that p divides the

numerator of 03B6(1 - n) if and only if CI (Z[e203C0i/p])p ~ (0). Note that 03B6(s)
is only defined at non-positive integers by analytic continuation.

Another celebrated example is the L-function of an elliptic curve E:

(where a, b E Q are constants with 4a3 + 27b2 * 0). In this case the L-
function is defined as an Euler product (çonverging in Re s &#x3E; 3/2)

where Lp(E, X) is a rational function, and for all but finitely many 1

with p - ap(E) being the number of solutions to the congruence

in F2p. It has recently been proved [BCDT] (see also section 5.4 below) that
L(E, s) can be continued to an entire function, which satisfies a functional
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equation

for some explicit positive integer N(E). A remarkable conjecture of Birch
and Swinnerton-Dyer [BSD] predicts that y2 = x3 + ax + b has infinitely
many rational solutions if and only if L(E, 1) = 0. Again we point out that
it is the behaviour of the L-function at a point where it is only defined by
analytic continuation, which is governing the arithmetic of E. This conjec-
ture has been proved when L(E, s) has at most a simple zero at s = 1.

(This combines work of Gross and Zagier [GZ] and of Kolyvagin [Koll] with
[BFH], [MM] and [BCDT]. See [Kol2] for a survey.)

There are now some very general conjectures along these lines about
the special values of L-functions (see [BK]), but we do not have the space
to discuss them here. We hope these two special cases give the reader an
impression of what can be expected. We would like however to discuss the
definition of L-functions in greater generality.

One general setting in which one can define L-functions is l-adic represen-
tations. Let us look first at the local setting. If (r, N) is a WD-representation
of WQp on an E-vector space V, where E is an algebraically closed field of
characteristic zero, we define a local L-factor

(VIQp, N=0 is the subspace of V where 7Q acts trivially and N = 0.) One
can also associate to (r, N) a conductor 

which measures how deeply into IQp the WD-representation (r, N) is non-
trivial. It is known that f (r, N) e Z0 (see [Sel]). Finally one has a local
epsilon factor ~((r,N), 03A8p) E E, which also depends on the choice of a
non-trivial character 03A8p : Qp ~ EX with open kernel (see [Tat]).

If R : GQ ~ GL(V) is an l-adic representation of GQ which is de Rham
at and pure of some weight w E Z, and if c : Qz ~ C we will define an
L-function

which will converge to a holomorphic function in Re s &#x3E; 1 + w/2. For ex-
ample


