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pp. 285–302

On functional linear partial differential equations
in Gevrey spaces of holomorphic functions(∗)

Stéphane Malek (1)

ABSTRACT. — We investigate existence and unicity of global sectorial
holomorphic solutions of functional linear partial differential equations in
some Gevrey spaces. A version of the Cauchy-Kowalevskaya theorem for
some linear partial q−difference-differential equations is also presented.

RÉSUMÉ. — Nous étudions l’existence et l’unicité de solutions globales
holomorphes sectorielles d’équations fonctionnelles linéaires aux dérivées
partielles dans certains espaces de fonctions Gevrey. Une version du théo-
rème de Cauchy-Kowalevskaya pour des équations linéaires aux q−diffé-
rences-différentielles partielles est également présentée.

0. Introduction

In this paper, we study linear functional partial differential equations of
the form

∂S
z X̂(t, z) =

∑
k=(k0,k1,l)∈S

bk(t)zl(∂k0
t ∂k1

z X̂)(φk(t), zq−m1,k) (0.1)

where q > 1 is a real number, S � 1 is a positive integer and S is a finite
subset of N

3. The coefficients bk and the deviations φk are holomorphic
functions on some open domain G ∪ Dρ where G is an open sector with
infinite radius centered at 0 and Dρ an open disc centered at 0 with radius ρ
and m1,k � 1 are positive integers. To fix the notations, in the formula (0.1)
the partial derivatives ∂k0

t ∂k1
z X̂ are evaluated at the point (φk(t), zq−m1,k).

Several authors have studied this kind of equations (0.1) in the situation
where the deviations φk are shrinking maps, meaning that |∂tφk(t)| � 1
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on some domain, see for instance [2], [9],[10],[19]. Moreover, there are some
results when this assumption is missing, see for instance [11],[23].

Here, we focus on the case when each deviation (t, z) �→ (φk(t), zq−m1,k)
satisfies the property that the modulus of the determinant of its jacobian
matrix is smaller than 1 on G∪Dρ ×C, which is equivalent to the fact that
the deviations φk(t) satisfy

|∂tφk(t)| � qm1,k

on G∪Dρ, for all k = (k0, k1, l) ∈ S. In particular, if the variables t, z were
real, these deviations would be volume shrinking maps.

The goal of this paper is to provide an approach to construct actual
holomorphic solutions X(t, z) of (0.1) with estimates on the l-th derivative
of X(t, z) with respect to t on G, for given initial conditions (∂j

zX̂)(t, 0),
0 � j � S − 1, be holomorphic functions of some Gevrey type on G (see
Definition 3.1). To achieve this goal, we will have to make several additional
assumptions on the form of the equation (0.1), see Theorem 1.

Due to the presence of q−difference operators in the functional equation
(0.1), we are led to work in spaces of holomorphic functions whose l-th
derivative rate of growth is like e(l2/2)(log(q))2(l!)s for s � 0 (see Definition
3.2).

Such phenomenon of fast growing derivatives appears in a natural way in
the study of q−difference equations for which general results on q−Gevrey
asymptotic expansions of actual holomorphic solutions have been obtained,
see [6], [8], [18], [21].

The leading idea will be the same as in the paper [12], where we have
dealt with linear partial differential equation, with an additional difficulty
because of the presence of the deviations φk. To this aim, we will use a
higher order chain rule which has been introduced by T. Yamanaka, see [20],
and which is much more suitable than the classical Faà di Bruno formula
to deal with Gevrey estimates. Moreover, instead of the classical Cauchy-
Kowalevskaya theorem for partial differential equations, we will need a sim-
ilar result for some linear partial q−difference-differential equations of the
form

∂S
x V (t, x) =

∑
k=(k0,k1,l)∈S

ak(t)xl(∂k0
t ∂k1

x V )(qm0,k t, xq−m1,k),

where q > 1 is a real number, m0,k,m1,k � 1 are positive integers and ak(t)
are holomorphic functions on a neighborhood of the origin. The method
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of proof uses functional analysis in Banach spaces of formal series. We no-
tice that a similar result has been obtained by C. Zhang for general linear
and non-linear ordinary q−difference-differential equations in one complex
variable, see [22].

1. A Cauchy-Kowalevskaya theorem in a class of q-Gevrey
formal series

Definition 1.1. — Let q,X, T, s be real numbers such that q > 1, X,T >
0 and s � 1. We define a vector space Gq(X,T, s) which is a subspace of
the formal series C[[t, x]]. A formal series U(t, x) ∈ C[[t, x]],

U(t, x) =
∑
β,l�0

uβ,l
xβ

β!
tl

l!

belongs to Gq(X,T, s), if the series

∑
β,l�0

|uβ,l|
qP (l,β)(sl + β)!

XβT l,

converges, where P (l, β) denotes the polynomial

P (l, β) = lβ − 1
2
(β2 − β)

and where x! stands for Γ(1+x) for all x � 0 to simplify the notations. We
also define a weighted L1 norm on Gq(X,T, s) as

||U(t, x)||X,T =
∑
β,l�0

|uβ,l|
qP (l,β)(sl + β)!

XβT l.

One can easily show that (Gq(X,T, s), ||.||X,T ) is a Banach space.

Remark. — Let U(t, x) be in G(X0, T0, s) for given X0, T0 > 0 and s � 1.
Then, U(t, x) also belong to the spaces Gq(X,T, s) for all X � X0 and
T � T0. Moreover, the maps X �→ ||U(t, x)||X,T and T �→ ||U(t, x)||X,T are
increasing functions from [0, X0] (resp. [0, T0]) into R+.

We define the integration operator ∂−1
x : C[[t, x]] → C[[t, x]] as

∂−1
x U(t, x) :=

∫ x

0

U(t, ζ)dζ.

By convention, given two functions f, g : R → R, we will write f(x) ∼ g(x)
as x tends to +∞ if limx→+∞ f(x)/g(x) = 1.

– 287 –
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Lemma 1.2. — Let µ, h1, h2,m1,m2 � 0 be non negative integers. As-
sume that the following inequalities hold:

h2 + µ � m1, m2 � h1 + h2 + µ, h2 � sh1. (1.1)

Then, there exists a constant C > 0 such that

||xµ(∂−h2
x ∂h1

t U)(qm1t, q−m2x)||X,T � CXµ+h2T−h1 ||U(t, x)||X,T ,

for all U(t, x) ∈ Gq(X,T, s).

Proof. — For U(t, x) ∈ Gq(X,T, s) we have

xµ(∂−h2
x ∂h1

t U)(qm1t, q−m2x) =
∑
β,l

β!
(β − µ)!

uβ−h2−µ,l+h1q
m1lq−m2(β−µ)x

β

β!
tl

l!
.

By definition, we have

||xµ(∂−h2
x ∂h1

t U)(qm1t, q−m2x)||X,T

= Xµ+h2T−h1
∑
β,l

|uβ−h2−µ,l+h1 |(β!/(β − µ)!)qm1lq−m2(β−µ)

qP (l,β)(sl + β)!
Xβ−h2−µT l+h1

So that

||xµ(∂−h2
x ∂h1

t U)(qm1t, q−m2x)||X,T

= Xµ+h2T−h1
∑
β,l

A(l, β)
|uβ−h2−µ,l+h1 |

qP (l+h1,β−h2−µ)(s(l+h1)+β−h2−µ)!
Xβ−h2−µT l+h1

where

A(l, β) =
(s(l + h1) + β − h2 − µ)!β!

(sl + β)!(β − µ)!
1

q(P (l,β)−P (l+h1,β−h2−µ)−m1l+m2(β−µ))
.

By construction, we have

P (l, β) − P (l + h1, β − h2 − µ) −m1l + m2(β − µ)
= l(h2 + µ−m1) + β(−h1 − h2 − µ + m2) + h1(h2 + µ)

+(1/2)((h2 + µ)2 + h2 + µ) −m2µ.

We recall the classical estimates

Γ(x + b)/Γ(x) ∼ xb (1.2)
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for any b � 0, as x > 0 tends to +∞. From (1.2) we deduce that

(sl + β + sh1 − h2 − µ)!β!
(sl + β)!(β − µ)!

∼ (sl + β)sh1−h2−µβµ,

as l, β tend to infinity. By these latter estimates and the assumptions (1.1)
we get a constant C > 0 such that A(l, β) � C, for all l, β. This gives the
lemma. �

Lemma 1.3. — There exists a constant C > 0 such that for all α ∈ N,

||tαU(t, x)||X,T � CTα||U(t, x)||X,T ,

for all U(t, x) ∈ Gq(X,T, s). Let a(t) =
∑

j�0 ajt
j be a holomorphic function

on a neighborhood of the origin in C. We define |a|(t) =
∑

j�0 |aj |tj. We
deduce that there exists a constant C > 0 such that

||a(t)U(t, x)||X,T � C|a|(T )||U(t, x)||X,T ,

for all U(t, x) ∈ Gq(X,T, s).

Proof. — Let U(t, x) ∈ Gq(X,T, s). We have

tαU(t, x) =
∑
β,l

l!
(l − α)!

uβ,l−α
xβ

β!
tl

l!
.

By definition, we have

||tαU(t, x)||X,T = Tα
∑
β,l

|uβ,l−α|(l!/(l − α)!)
qP (l,β)(sl + β)!

XβT l−α

= Tα
∑
β,l

{ (s(l − α) + β)!l!
(sl + β)!(l − α)!

1
qP (l,β)−P (l−α,β)

} |uβ,l−α|
qP (l−α,β)(s(l − α) + β)!

XβT l−α

By construction, we have that P (l, β) − P (l − α, β) = αβ. Moreover,
from the estimates (1.2), we also get that

(s(l − α) + β)!l!
(sl + β)!(l − α)!

∼ (sl + β)−sαlα

as l, β tend to infinity. So that there exists a constant C > 0 such that

(s(l − α) + β)!l!
(sl + β)!(l − α)!

1
qP (l,β)−P (l−α,β)

� C

for all l, β. This gives the lemma. �

– 289 –
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Lemma 1.4. — Let δ1, δ2 > 0 be positive real numbers and let U(t, x) be
in Gq(X0, T0, s). Then, there exist X,T > 0 small enough (depending on
δ1, δ2) such that the formal series U(δ1t, x

δ2
) belongs to Gq(X,T, s).

Proof. — Let U(t, x) ∈ Gq(X,T, s). We have

U(δ1t,
x

δ2
) =

∑
β,l�0

uβ,lδ1
lδ2

−β x
β

β!
tl

l!
.

By definition, we have

||U(δ1t,
x

δ2
)||X,T =

∑
β,l

|uβ,l|
qP (l,β)(sl + β)!

(X/δ2)β(δ1T )l.

Due to the fact that U(t, x) ∈ Gq(X0, T0, s), this latter series converges if
X/δ2 � X0 and δ1T � T0. So that, if X/δ2 � X0 and δ1T � T0, then
U(δ1t, x

δ2
) ∈ Gq(X,T, s). �

Lemma 1.5. — Let µ ∈ N and let U(t, x) be in Gq(X0, T0, s). Then,
there exist X,T > 0 small enough (depending on µ) such that the formal
series xµU(t, x) belongs to Gq(X,T, s).

Proof. — Let U(t, x) ∈ Gq(X,T, s). From the proof of Lemma 1.2, we
get a constant C > 0 such that

||xµU(t, x)||X,T � C(qµX)µ
∑
β,l

|uβ−µ,l|
qP (l,β−µ)(sl + β − µ)!

(qµX)β−µT l.

Due to the fact that U(t, x) ∈ Gq(X0, T0, s), the series on the right hand
side of the latter inequality is convergent if qµX � X0 and T � T0. So that
if qµX � X0 and T � T0, then xµU(t, x) ∈ Gq(X,T, s). �

Lemma 1.6. — Let h1 ∈ N and let U(t, x) be in Gq(X0, T0, s). Then,
there exist X,T > 0 small enough (depending on h1) such that the formal
series ∂h1

t U(t, x) belongs to Gq(X,T, s).

Proof. — Let U(t, x) ∈ Gq(X,T, s). Like in the proof of Lemma 1.2,
we get

||(∂h1
t U)(t, x)||X,T =

T−h1
∑
β,l

{ (s(l+h1)+β)!
(sl + β)!

1
qP (l,β)−P (l+h1,β)

} |uβ,l+h1 |
qP (l+h1,β)(s(l+h1)+β)!

XβT l+h1
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By the estimates (1.2), we have

(s(l + h1) + β)!
(sl + β)!

∼ (sl + β)sh1 ,

as l, β tend to infinity. By construction, we also have P (l, β)−P (l+h1, β) =
−h1β. So that there exist K,C1, C2 > 0 such that

||(∂h1
t U)(t, x)||X,T

� T−h1K
∑
β,l

|uβ,l+h1 |
qP (l+h1,β)(s(l + h1) + β)!

(qh1C2X)β(C1T )l+h1 .

Due to the fact that U(t, x) ∈ Gq(X0, T0, s), the series on the right hand
side of the latter inequality is convergent if qh1C2X � X0 and C1T � T0.
Finally, if qh1C2X � X0 and C1T � T0 then ∂h1

t U(t, x) ∈ Gq(X,T, s).
�

Let D be the linear operator from C[[t, x]] into C[[t, x]] defined as

D(u(t, x)) = ∂S
x u(t, x) −

∑
k=(k0,k1,l)∈S

ak(t)xl(∂k0
t ∂k1

x u)(qm0,k t, xq−m1,k),

where S is a finite subset of N
3 and ak(t) are holomorphic functions on a

neighborhood of the origin in C. Moreover, the integers S,m0,k,m1,k � 1
satisfy the following assumption.

Assumption (A). —

i) S − k1 � sk0, S > k1,

ii) S − k1 + l � m0,k, m1,k � k0 + S − k1 + l,

for all k = (k0, k1, l) ∈ S.

We consider the following operator from C[[t, x]] into C[[t, x]],

D ◦ ∂−S
x = id −A,

where

A(u(t, x)) =
∑

k=(k0,k1,l)∈S
ak(t)xl(∂k0

t ∂k1−S
x u)(qm0,kt, xq−m1,k),

for all u(t, x) ∈ C[[t, x]], and id is the identity operator. As a consequence
of Lemma 1.2, 1.3 we get the following lemma.
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Lemma 1.7. — There exist real numbers X,T > 0 small enough (that
depend on the coefficients ak(t) for k = (k0, k1, l) ∈ S) such that A is a
bounded linear operator, from (Gq(X,T, s), ||.||X,T ) into itself. Moreover the
estimates hold,

||Au(t, x)||X,T � (1/2)||u(t, x)||X,T ,

for all u(t, x) ∈ Gq(X,T, s).

Corollary 1.8. — There exist real numbers X,T > 0 small enough
(that depend on the coefficients ak(t) for k = (k0, k1, l) ∈ S) such that
D ◦ ∂−S

x is a bounded invertible operator from (Gq(X,T, s), ||.||X,T ) into
itself. In particular, there exist a constant C > 0 such that

||(D ◦ ∂−S
x )−1b(t, x)||X,T � C||b(t, x)||X,T ,

for all b(t, x) ∈ Gq(X,T, s).

The main result of this section is the following.

Theorem CK. — Consider a functional partial differential equation

∂S
x u(t, x) =

∑
k=(k0,k1,l)∈S

ak(t)xl(∂k0
t ∂k1

x u)(qm0,kt, xq−m1,k), (1.3)

where S is a finite subset of N
3 and ak(t) are holomorphic functions on a

neighborhood of the origin in C.

We make the hypothesis that the integers S,m0,k,m1,k � 1 satisfy the as-
sumption (A).

We impose the initial conditions : For all 0 � j � S − 1,

(∂j
xu)(t, 0) = φj(t), (1.4)

where φj(t) ∈ Gq(X0, T0, s), for given X0, T0 > 0 and s � 1.

Then, there exist X,T small enough such that the problem (1.3), (1.4)
has a unique solution u(t, x) in Gq(X,T, s).

Proof. — Every formal series u(t, x) ∈ C[[t, x]] can be written in the
form

u(t, x) = ∂−S
x v(t, x) + w(t, x),
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where

w(t, x) =
S−1∑
j=0

ϕj(t)
xj

j!
.

From the initial conditions (1.4) and Lemma 1.5, let us assume that w(t, x)
belongs to Gq(X,T, s) for X,T > 0 small enough. Then, the formal series
u(t, x) is a solution of (1.3), (1.4) if and only if v(t, x) satisfies the equation

D ◦ ∂−S
x v(t, x) = −Dw(t, x). (1.5)

From the fact that w(t, x) ∈ Gq(X,T, s) is a polynomial in x of degree less
than S−1, we deduce from the lemma 1.3, 1.4, 1.5, 1.6 that −Dw(t, x) also
belongs to Gq(X,T, s), for all X,T > 0 small enough. From the corollary 1.8,
we deduce that for X,T small enough, there exists a unique solution v(t, x)
of (1.5) which belongs to Gq(X,T, s). It remains to show that u(t, x) belongs
to Gq(X,T, s) for X,T small enough. From Lemma 1.2 and 1.4 we get that
the formal series ν(t, x) = u(qSt, xq−S) = ∂−S

x v(qSt, x
qS ) + w(qSt, xq−S)

belongs to Gq(X,T, s) for X,T small enough. Finally, again by Lemma 1.4,
we deduce that u(t, x) = ν( t

qS , q
Sx) belongs to Gq(X,T, s) for X,T small

enough. �

2. Formal series solutions of functional linear partial differential
equations

In the sequel we consider a functional linear partial differential equation

∂S
z X̂(t, z) =

∑
k=(k0,k1,l)∈S

bk(t)zl(∂k0
t ∂k1

z X̂)(φk(t), zq−m1,k), (0.1)

where q > 1 is a real number, S � 1 is a positive integer and S is a finite
subset of N

3, the coefficients bk(t) and the functions φk(t) are holomorphic
on a common domain G∪Dρ where G is an open sector with infinite radius
centered at 0 and Dρ an open disc centered at 0 with radius ρ. Moreover,
we assume that φk(0) = 0 and that φk(G) ⊂ G, for all k = (k0, k1, l) ∈ S.
Notice that by convention 0 does not belong to the sector G.

We study formal series X̂(t, z) in the variable z of the form

X̂(t, z) =
∑
n�0

Xn(t)
n!

zn, (2.1)

with holomorphic coefficients Xn(t), n � 0, on G.
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In the next lemma we describe formal series solutions of (0.1) in term of
differential relations.

Lemma 2.1. — The formal series X̂(t, z) is a solution of (0.1) if and
only if the following differential relation is satisfied,

Xm+S(t)
m!

=
∑

k=(k0,k1,l)∈S
l+n=m

bk(t)
(∂k0

t Xn+k1)(φk(t))
n!

1
qnm1,k

, (2.2)

for all m � 0.

In the next proposition, we give sufficient conditions for the existence
and uniqueness of formal series (2.1) that are solutions of (0.1).

Proposition 2.2. — We assume that the finite set S satisfies

S ⊂ {(k0, k1, l) ∈ N
3 : k1 � S − 1}.

Moreover, assume that holomorphic functions Xµ(t), for 0 � µ � S−1, are
given on G. Then, there exists a unique sequence (Xµ(t))µ�0 of holomorphic
functions which satisfies the differential recurrence (2.2). As a result, for
given holomorphic functions Xµ(t), for 0 � µ � S − 1 on G, there exists a
unique formal series (2.1), solution of (0.1).

3. Global sectorial holomorphic solutions to functional linear
partial differential equations in Gevrey spaces

First of all, we recall the definitions of the Gevrey spaces of analytic
functions in which we will choose our initial conditions and expect to find
our solutions.

Let Ω be an open sector centered at the origin in C with bisecting di-
rection d ∈ R and with infinite radius. Consider a bounded holomorphic
function w(t) from Ω into C

∗ with the property that for all closed sector of
infinite radius S̄d,δ = {t ∈ C : |d− arg(t)| � δ} included in Ω, there exists a
constant M > 0 such that

sup
t∈S̄d,δ

|w(t)|
|w(φk(t))| � M,

for all k = (k0, k1, l) ∈ S.
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Definition 3.1. — Let X(t) be a holomorphic function on an open sec-
tor Ω centered at the origin in C with bisecting direction d ∈ R and with
infinite radius. Let s be a real number such that s � 1. We say that X(t) is
of Gevrey type of order s− 1 on Ω if the following inequalities hold.

For all closed sector of infinite radius S̄d,δ = {t ∈ C : |d − arg(t)| � δ}
included in Ω, there exist constants C, T0 > 0 such that

sup
t∈S̄d,δ

|∂l
tX(t)||w(t)| � C(1/T0)l(sl)!

for all l � 0.

Definition 3.2. — Let X(t, z) be a holomorphic function on Ω × C

where Ω is an open sector centered at the origin in C with bisecting di-
rection d ∈ R and with infinite radius. Let s, q be a real numbers such that
q > 1 and s � 1. We say that X(t, z) is of Gevrey type with double filtration
of order s− 1 and q with respect to t on Ω × C if the following inequalities
hold.

For all closed sector of infinite radius S̄d,δ = {t ∈ C : |d − arg(t)| � δ}
included in Ω and for all closed disc D̄r centered at 0 with radius r, there
exist constants C, T0 > 0 such that

sup
t∈S̄d,δ,z∈D̄r

|∂l
tX(t, z)||w(t)| � C(1/T0)l(sl)!e

l2
2 (log(q))2

for all l � 0.

In the following, we will need a rule to evaluate high order derivatives of
compositions of functions which has been introduced in [20] and is compat-
ible with Gevrey estimates. We recall this higher order chain rule (Theorem
2.1 in [20]) under stronger assumptions which will be sufficient for our scope.

Lemma 3.3. — Let D,G be open sets in C. Let v : D → G and w :
G → C be holomorphic functions. Then, the n-th order derivative of the
composite function w ◦ v : D → C is given by the formula,

∂n
x (w◦v)(x) =

n∑
j=1

n!
j!(n− j)!

(∂j
xw)(v(x))

{
∂n−j

h [
∫ 1

0

(∂xv)(x + θh)dθ]j
}

|h=0

.

Consider now an open set D1 ⊂ D and D0 a small disc centered at
0 in C, such that, for all x ∈ D1, h ∈ D0, we have x + θh ∈ D, for all
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θ ∈ [0, 1]. Let q > 1 be a real number. Assume that |∂xv(x)| � q for all
x ∈ D. Consider the function

ψj,x(h) = [
∫ 1

0

(∂xv)(x + θh)dθ]j ,

for all h ∈ D0, with x ∈ D1 and j ∈ N. We deduce that |ψj,x(h)| � qj , for
all h ∈ D0, with x ∈ D1 and j � 0. From the Cauchy formula, we deduce
that there exist r > 0, such that

|∂k
hψj,x(0)| � qjk!rk,

for all k, j ∈ N, x ∈ D1. From these latter estimates, we deduce

Lemma 3.4. — Let D,G be open sets in C and q > 1 a real number. Let
v : D → G and w : G → C be holomorphic functions, such that |∂xv(x)| � q
for all x ∈ D. Then, there exist r > 0 which depends only D0, such that the
estimates hold,

|∂n
x (w ◦ v)(x)| �

∑
a1+a2=n

n!
a1!

|(∂a1
x w)(v(x))|qa1ra2 ,

for all x ∈ D1 and n ∈ N.

we note that similar computations have been made in the paper [10], pp.
667–668.

The next result gives sufficient conditions under which there exist holo-
morphic solutions X(t, z) to (0.1) which are of Gevrey type with double
filtration of order s− 1 and q, for given initial conditions be of Gevrey type
of order s− 1.

Theorem 3.5. — Consider the functional linear partial differential equa-
tion,

∂S
z X̂(t, z) =

∑
k=(k0,k1,l)∈S

bk(t)zl(∂k0
t ∂k1

z X̂)(φk(t), zq−m1,k), (0.1)

where q > 1 is a real number, S � 1 is a positive integer and S is a finite
subset of N

3 which satisfies the hypothesis of Proposition 2.2, the numbers
m1,k � 1 are positive integers. The coefficients bk(t) and the functions φk(t)
are holomorphic on a common domain G ∪ Dρ where G is an open sector
with bisecting direction d ∈ R with infinite radius centered at 0 and Dρ an
open disc centered at 0 with radius ρ.
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1. Assume that φk(0) = 0 and that the functions φk(t) satisfy

|∂tφk(t)| � qm0,k ,

for integers m0,k � 1, for all k = (k0, k1, l) ∈ S, and t in G ∪Dρ.

2. Assume that φk(S̄) ⊂ S̄, for all closed sector centered at 0 of infinite
radius S̄ ⊂ G with bisecting direction d, for all k = (k0, k1, l) ∈ S.

3. Assume that the quantity

sup
t∈G∪Dρ

|∂l0
t bk(t)|
l0!

= |b|k,l0

exists and that
|b|k(t) =

∑
l0�0

|b|k,l0t
l0

is an holomorphic function on a neighborhood of the origin in C for
all k = (k0, k1, l) ∈ S.

4. Let the assumption (A) from section 1 be fulfilled for the integers
S,m0,k,m1,k.

5. We make the following assumption on initial conditions. Let Xµ(t),
for 0 � µ � S−1, be given holomorphic functions which are of Gevrey
type of order s− 1 on G.

Then, the formal series

X(t, z) =
∑
n�0

Xn(t)
n!

zn

solution of (0.1) with initial conditions (∂µ
z X)(t, 0) = Xµ(t), 0 � µ � S−1,

constructed in the proposition 2.2 is convergent for all z ∈ C. Moreover, the
function X(t, z) is of Gevrey type with double filtration of order s− 1 and q
with respect to t on G× C.

Example 1. — This latter theorem can be used to study q-difference-
differential equations if one takes the deviations φk(t) to be dilations of the
form φk(t) = qm0,k t.

Example 2. — The theorem 3.5 can also be applied to study difference-
differential equations. Indeed, consider the equation (0.1) and choose the
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deviations φk(t), k ∈ S of the form φk(t) = t/(1 + αkt), where αk > 0
are positive real numbers, and assume that bk(t) are equal to zero for all
k = (k0, k1, l) ∈ S with k0 �= 0. Assume that the sector G has bisecting
direction d = 0 and satisfies |1 + αkt|2 � q−m0,k for all t ∈ G ∪Dρ with ρ
small enough and k ∈ S. One checks easily that the assumptions 1) and 2)
of Theorem 3.5 are fullfilled. Under these conditions, a function X(t, z) is
solution of (0.1) on G × C if and only if the function Y (u, z) = X(1/u, z),
with u = 1/t, is solution of the difference-differential equation

∂S
z Y (u, z) =

∑
k=(0,k1,l)∈S

bk(1/u)zl(∂k1
z Y )(u + αk, zq

−m1,k),

on G′ × C where G′ = {u ∈ C : 1/u ∈ G}.

Proof of Theorem 3.5. — The goal of the proof is to show that the func-
tions Xn(t) constructed from the proposition 2.2 satisfy the following es-
timates. For all closed sector of infinite radius S̄ ⊂ G centered at 0 with
bisecting direction d, there exist C,X0, T0 > 0, independent of n, l, such
that

sup
t∈S̄

|∂l
tXn(t)||w(t)| � C(1/X0)n(1/T0)lqnl−(1/2)(n2−n)(sl + n)!, (3.1)

for all l, n � 0. Indeed, from (3.1) we get X ′
0, T

′
0 > 0 such that

sup
t∈S̄

|∂l
tX(t, z)||w(t)| �

∑
n�0

supt∈S̄ |∂l
tXn(t)||w(t)|
n!

|z|n

� C(
1
T ′

0

)l(sl)!
∑
n�0

q−
n2
2 (|z|q 1

2+l/X ′
0)

n,

for all z ∈ C. From Lemma 2.2 in [16], we get a constant C ′ > 0 such that

∑
n�0

q−
n2
2 (|z|q 1

2+l/X ′
0)

n � C ′ exp{1
2
(log(2|z|q 1

2+l/X ′
0))

2}

for all z ∈ C. So that for all r > 0,

sup
|z|�r

sup
t∈S̄

|∂l
tX(t, z)||w(t)| � CC ′(

1
T ′

0

)l(sl)! exp{1
2
(log(

2rq1/2

X ′
0

ql))2}

It follows from the latter inequality that X(t, z) is Gevrey type with double
filtration of order s− 1 and q with respect to t on G× C.
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We consider now the sequence of quantities

wn0,m1 = sup
t∈S̄

|∂n0
t Xm1(t)||w(t)|,

for n0,m1 � 0, where S̄ is a closed sector centered at 0 of infinite radius
in G with bisecting direction d. We show that this sequence is in fact real
valued and satisfies a multivariate recursion inequality.

From the Leibniz formula, we have that

w(t)∂n0
t

(
bk(t)

(∂k0
t Xn+k1)(φk(t))

n!qnm1,k

)

=
∑

h1+h2=n0

n0!
h2!h1!

∂h2
t bk(t)

w(t)∂h1
t ((∂k0

t Xn+k1)(φk(t)))
n!qnm1,k

.

From Lemma 3.4, the assumption 1) in Theorem 3.5 and the definition of
w(t), we deduce that there exist M > 0 and rk > 0 for all k = (k0, k1, l) ∈ S
such that

|w(t)||∂h1
t ((∂k0

t Xn+k1)(φk(t)))|

�
∑

a1+a2=h1

h1!
a1!

|w(t)||(∂a1+k0
t Xn+k1)(φk(t))|qa1m0,kra2

k

�
∑

a1+a2=h1

h1!
a1!

M |w(φk(t))||(∂a1+k0
t Xn+k1)(φk(t))|qa1m0,kra2

k .

From the assumptions 2) and 3) in Theorem 3.5 we deduce

sup
t∈S̄

|w(t)|
∣∣∣∣∣∂n0

t

(
bk(t)

(∂k0
t Xn+k1)(φk(t))

n!qnm1,k

)∣∣∣∣∣
�

∑
h1+h2=n0

n0!M |b|k,h2

qnm1,k

∑
a1+a2=h1

supt∈S̄ |(∂a1+k0
t Xn+k1)(φk(t))||w(φk(t))|

a1!n!
qa1m0,kra2

k

�
∑

h1+h2=n0

n0!M |b|k,h2

qnm1,k

∑
a1+a2=h1

supt∈S̄ |(∂a1+k0
t Xn+k1)(t)||w(t)|

a1!n!
qa1m0,kra2

k

From the latter estimates, we get inequalities for the number wn0,n1 ,

wn0,m1+S

n0!m1!
�

∑
k=(k0,k1,l)∈S

l+n=m1

∑
h1+h2=n0

M |b|k,h2

qnm1,k

∑
a1+a2=h1

wa1+k0,n+k1

a1!n!
qa1m0,kra2

k ,

(3.2)
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for all n0,m1 � 0.

We define the functions,

Rk(t) =
∑
j�0

rj
kt

j ,

where rk are positive real numbers for all k = (k0, k1, l) ∈ S. Consider now
the auxiliary functional partial differential equation,

∂S
z V (t, z) =

∑
k=(k0,k1,l)∈S

M |b|k(t)Rk(t)zl(∂k0
t ∂k1

z V )(qm0,kt,
z

qm1,k
), (3.3)

constructed from (0.1). Due to the assumption 4) in Theorem 3.5, we deduce
that the hypotheses of Theorem CK in section 1 are satisfied for the latter
equation (3.3). From Theorem CK, we deduce the existence of a unique for-
mal series V (t, z) ∈ Gq(X,T, s), for X,T > 0 small enough, solution of (3.3),
if (∂j

zV )(t, 0) are prescribed formal series which belong to Gq(X0, T0, s), for
all 0 � j � S − 1, for given X0, T0 > 0.

If we expand V (t, z) into a Taylor series in the variables t, z,

V (t, z) =
∑

n0,n1�0

vn0,n1

tn0zn1

n0!n1!
,

we get that

Rk(t)(∂k0
t ∂k1

z V )(qm0,k t,
z

qm1,k
)=

∑
h1,n1

(
∑

a1+a2=h1

ra2
k qa1m0,k

va1+k0,n1+k1

a1!n1!qn1m1,k
)th1zn1 ,

and

M |b|k(t)zlRk(t)(∂k0
t ∂k1

z V )(qm0,k t,
z

qm1,k
) =

∑
n0,m1

An0,m1t
n0zm1 ,

with

An0,m1 =
∑

h1+h2=n0
l+n1=m1

M |b|k,h2

qn1m1,k

∑
a1+a2=h1

va1+k0,n1+k1

a1!n1!
qa1m0,kra2

k ,

for all n0,m1 � 0. From this, we deduce a multivariate linear recurrence
satisfied by the coefficients vn0,n1 ,

vn0,m1+S

n0!m1!
=

∑
k=(k0,k1,l)∈S

l+n=m1

∑
h1+h2=n0

M |b|k,h2

qnm1,k

∑
a1+a2=h1

va1+k0,n+k1

a1!n!
qa1m0,kra2

k ,

(3.4)
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for all n0,m1 � 0. From the fact that V (t, z) ∈ Gq(X,T, s), we deduce the
following estimates for the coefficients vn0,n1 . There exists C > 0 such that

|vn0,n1 | � C(1/X)n1(1/T )n0qn1n0−(1/2)(n2
1−n1)(sn0 + n1)!, (3.5)

for all n0, n1 � 0. From Theorem CK, we see that the sequence (vn0,m1)n0,m1

is uniquely determined by the sequences (vn0,m1)n0,m1 , 0 � m1 � S−1. We
choose now the latter sequences as follows.

vn0,m1 := wn0,m1 ,

for all 0 � m1 � S − 1, n0 � 0.

From the assumption 5) in Theorem 3.5, we deduce that the series

V (t, 0), . . . , (∂S−1
z V )(t, 0)

are formal series with Gevrey order s − 1, which means in particular that
they belong to Gq(X0, T0, s) for X0, T0 > 0. Moreover, due to the relations
(3.2) and (3.4), we deduce that

wn0,m1 � vn0,m1 ,

for all n0,m1 � 0.

From the estimates (3.5), we finally deduce that there exist C > 0, such
that the sequence wn0,n1 satisfies

wn0,n1 � C(1/X)n1(1/T )n0qn1n0−(1/2)(n2
1−n1)(sn0 + n1)!,

for all n0, n1 � 0, which yields the result. �
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[7] Écalle (J.). — Les fonctions résurgentes. Publications Mathématiques d’Orsay
(1981).

[8] Fruchard (A.), Zhang (C.). — Remarques sur les développements asymptotiques.
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