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Ann. Inst. Fourier, Grenoble
12 (1962), 573-621.

BOUNDARY PROPERTIES OF FUNCTIONS
WITH FINITE DIRICHLET INTEGRALS

by J. L. DOOB (Urbana)

1. Introduction.

Let R be a Green space (Brelot-Choquet [4]) of dimension^ 2.
Denote by D(u, v) the Dirichlet bilinear functional of the
pair {u, P) of functions on R, computed on the set R of finite
points of R. Denote by D(u) (== D(u, u)) the Dirichlet
integral of u on R. We shall as usual write « quasi-every-
where » for « except on a subset of R of outer capacity
zero ». Here capacity is defined using the Green function
of R. Note that if the dimensionality of R is at least 3 a
set of outer capacity zero can contain no infinite point. Let
u be a function defined quasi-everywhere on R, and let \u^
n^i} be a sequence of infinitely differentiable functions
on R, with finite Dirichlet integrals. Suppose that

(a) lim D(u» — uj == 0
m, n->oe

and that (6) lim u^ = u quasi-everywhere on R. Then u is
n->oo

fine-continuous (continuous in the Cartan fine topology
on R) quasi-everywhere on ft. If (c) u is even fine-continuous
quasi-everywhere on R we shall call u a « BLD function »
(Beppo Levi-Deny) following Brelot. The class of BLD
functions was introduced by Deny. (See also Aronszain [2]).
We refer to Deny [5], Deny-Lions [6], where such a function
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is called a « BL function made precise », and Brelot [3] for
the fundamental properties of these functions.

If u is a BLD function, gradu is defined almost everywhere
on R, and D(u) is finite. If [u^ n ^ l j is a sequence of
BLD functions satisfying (a) above, and if there is a pointwise
limit quasi-everywhere on R, then the limit u necessarily
exists quasi-everywhere on R, is a BLD function, and

D(u——Un) -^0.

The sequence will be said to converge « in the BLD sense ».
If only (a) is satisfied, there is a subsequence of the u^ sequence
which, when centered by suitable additive constants, converges
in the BLD sense. Thus the condition (&) is not so stringent
as it appears to be at first sight. Finally, if u is a BLD
function locally on R, and if D(u) is finite, then u can be
extended to be a BLD function on R.

The BLD harmonic functions on R are simply the harmonic
v

functions with finite Dirichlet integrals over R. At the
other extreme are the BLD functions which we shall call
those « of potential type)). A BLD function will be said
to be of potential type if it is the BLD limit of a sequence of

\r

infinitely differentiable (on R) functions with compact sup-
ports.

In this paper, H will denote the Hilbert space of BLD
functions with inner product D(u, ^), two functions being
identified if the restriction of their difference to the comple-
ment of some set of zero capacity is a constant function.
The class of BLD harmonic functions corresponds to a closed
linear manifold H/» of H, and the class of functionals of poten-
tial type corresponds to the orthogonal complement Hp of H^.

Brelot showed that every BLD function u has a limit in a
certain Li sense along almost every Green line (orthogonal tra-
jectory of level manifolds of the Green function with a preassi-
gned pole) defining the ((radial » of u, a function on the set
of Green lines, and Godefroid [10] showed that u even has
the radial as an ordinary limit along almost, every Green
lines ^Here the limit is to be taken along the Green line as
the point on the line recedes to oo, that is as the Green func-
tion decreases to 0, and the measure of a set of Green lines
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is the measure of the solid angle of their initial directions at
the pole, normalized to have maximum value 1. In this
paper the Brelot theorem just quoted will be strengthened
to Lg convergence, if the function is harmonic. Brelot also
proved that BLD convergence of a sequence of functions
implies Li convergence of the sequence of radials, and it
will be shown that there is even Lg convergence of the latter
sequence.

Let RM be the Martin boundary of R. In this paper it
is shown that every BLD function has a fine topology limit
at almost every (harmonic measure) point of R^ Thus
there is always a « fine boundary function ». The fine boun-
dary function is in I^R^, and it is shown that BLD conver-
gence of a sequence of functions implies Lg convergence of
the sequence of boundary functions. Moreover, if u is BLD
harmonic, with fine boundary function u', D(u) is evaluated
in terms of u'. This evaluation reduces to that of Douglas [9]
when R is a disc. It is known that when R is a domain in
Euclidean N-space with a sufficiently smooth boundary, the
boundary function of a sufficiently smooth BLD function is
in L2 relative to ordinary boundary « area » (Sobolev [14],
Aronszajn [2]). The interest of the present version of thijs
result lies in the absence of any smoothness hypothesis on
either the space or the function.

These results are used in treating the first, second, mixed,
and an unusual form of the third boundary value problem.
Only in treating the latter problem (Sections 18 and 19)
is any condition imposed on the Green space. The boundary
of R is always taken as R^ and it is accordingly necessary
to define a generalized normal derivative, denoted by ^u/Bg,
on RM. There is always a Green function of R, by definition
of a Green space (except in Doob [7] where the nomenclature
was poorly chosen). It is shown that there is always a Green
function of the second kind, with the usual properties, as
well as a mixed Green function. Let u be a BLD harmonic
function with fine boundary function u'. The characteristi.c
value problem ^uf^g == const. fju is solved, for cr a positive
(but not necessarily strictly positive) bounded function on W.
The solution involves a complete orthogonal sequence in H^,
corresponding to a sequence of BLD harmonic functions
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whose fine boundary functions form an orthonormal sequence
on RM (relative to a measure determined by o" and harmonic
measure). Series expansions in terms of these orthogonal
sequences are found for the kernels involved in the various
Green functions studied.

2. Harmonic measure on R^

In the following we shall write p.(2;, A) for the harmonic
measure of a subset A of R1^ relative to the point ^ of R.
The class of sets on R^1 of harmonic measure 0 is independent
of the reference point ^, and we write « almost everywhere
on RM » to mean « except for a set of pi.(^, .) measure 0 ». The
class of functions on RM which are measurable and whose
absolute values have integrable p-th powers with respect to
a(S, .) on a measurable subset A of R1^1 is independent of $
and will be denoted by Lp(A). The property of mean conver-
gence with specified index of a sequence of functions on R1^
relative to p.(^, .) is also independent of S, so there is no need
to mention the reference point in discussing mean conver-
gence. We choose a point S;o °t R once and for all as a refe-
rence point, and any otherwise unspecified concepts involving
a measure on RM will always be relative to the measure ^oy .).

Let i Ryi, n ̂  1 \ be an increasing sequence of open subsets
of R, with union R, containing no infinite points on their
boundaries, whose closures are compact subsets of R. In
the following such a sequence of sets will be called a « stan-
dard nested sequence of subsets of R ». In fact, somewhat
more generally, we shall even allow R^ not to have its full
closure in R, as long as its relative boundary R, has harmonic
measure 1 relative to points in it. For example, we can
choose R^ as the set of points where the Green function of R,
with specified pole, is greater than o^ where a^ is chosen so'1
that Rn has no infinite point on its boundary a^ < — and

a^ is supposed less than the value of the Green fonction
at the pole, if the pole is an infinite point. Harmonic measure
of subsets of Rn relative to S; will be denoted by ^(^, .).
It is well known that p.n(S, .) ~> p.(S, .) in the weak (vague)
sense.
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If a function on R has a limit at a point of R n R^ on
approach to the point in the fine topology of Cartan-Brelot-
Naim, it is said to have a fine limit at the point, denoted
by « f lim ». If the function has a fine limit at almost every
point of R^ it will be said to have a fine boundary function on
IP*. In generative shall use primes to denote fine boundary func-
tions, so that u will denote the fine boundary function of u.

It is known (Doob [7], [8]) that a superharmonic function
on R, under suitable restrictions, for example if positive, has
a finite fine boundary function, in L^R^. We shall use
the following related fact. Let \ R^, n ̂  1 \ be a standard
nested sequence of subsets of R, and let ^o be a point of R.
Let u be a function harmonic on R. If the sequence of
restrictions of u to ^R^, n^_\.\ is uniformly integrable
with respect to the sequence of measures \^^-> • ) ? n^H,
then u has a fine boundary function u' and

(2.1) ^)^^(^)

for all ^ in R. Conversely if u is any function in L^R^
and if u is defined by (2. 1), u has the above uniform inte-
grability property and has fine boundary function u. Moreo-
ver u is then the solution to the Dirichlet problem correspon-
ding to the assigned boundary function u as derived using
the Perron-Wiener-Brelot method. A function u defined ]yy
(2. 1) will be called a Dirichlet solution for the boundary
function u\

We shall also use the following fact, a slight extension of a
well-known one, which we state as a lemma for ease in reference.

LEMMA 2.1. — Let f be a bounded function on R u 1^ with
the following properties, (a) The restriction offtoR is a Baire
function. (6) The restriction of f to R^1 is measurable, (c) f
has the fine limit f(^) at almost every point r\ of R^ on approach
from R. Then if \ R^, n ̂  1 j is a standard nested sequence
of subsets of R,

( 2 - 2 ) i""^^^-)-^^^-)-
If fine limits are interpreted as limits along probability

paths, this lemma is proved by an elementary transition to a
37
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limit under the sign of integration. In particular, if f is
continuous on R u RM this lemma expresses the convergence
(JL^ -> p. already noted. An easy corollary of the lemma,
the only case we shall use, is that if u is a harmonic function
which is a Dirichlet solution for the fine boundary function u',
and if y is a continuous bounded function from the reals to the
reals, then

(2. 3) UjnJ;̂ (u)̂ , d .) =J^{ufM, d .).

3. Decomposition of u2.

All potentials, unless specifically described otherwise, will
be defined by means of the Green function g of R as kernel.
The potentials of positive measures are positive superharmo-
nic functions and are characterized among these functions
by the fact that they have fine boundary function 0 (almost
everywhere) and enjoy |the uniform integrability property
described in the preceding section.

Throughout this paper we denote by q either 2iT if R has
dimension N = 2 or the product of N — 2 and the unit ball
boundary « area » if N > 2.

THEOREM 3.1. — Let u be a function harmonic on R. (i)
Suppose that u is the Dirichlet solution corresponding to the
fine boundary function u' and that u e= I^R^. Then we
can write u2 in the form

(3. 1) u2 = nu — pU

where ^ is harmonic, the Dirichlet solution corresponding to
the fine boundary function u'2, and pU is the potential of a positive
measure. Moreover the total value M(^oo) of this measure
is 2D(u)/g. (ii) Conversely if u2 is dominated by a harmonic
function, the hypothesis of (i) is satisfied.

Proof of (i) Under the hypotheses of (i), let ^u be the Dirichlet
solution corresponding to u'2,

(3.2) ^)==f^u^d.),

and define pU == /»u — u2. An application of Schwarz's ine-
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quality shows that u2 <^, ̂ u. Then pU is a positive super-
harmonic function with fine boundary function 0. Since ^u
is a Dirichlet solution, it has the uniform integrability property
described in the preceding section, so that the smaller
function pU also has the property. Then pU is the potential of
a positive measure. The evaluation of M is obvious from the
fact that

— ApU = A(u2) = 2|grad u|2.

Proof of (ii) Conversely if u2 is dominated by some harmonic
function, ^u, and if | R^, n ̂ : 1 ^ is a standard nested sequence
of subsets of R, with compact closures, omitting the members
of the sequence not containing a preassigned point ^, then

^P^/R^2^ d9}^SUPf^hU^n^ d.) <^U(S) < 00.

Thus u has the uniform integrability property described
in Section 2, so u is a Dirichlet solution corresponding to a
fine boundary function u'. Since u2 is dominated by the
fine boundary function of ^u, u' is in the class I^R^, as was
to be proved.

As an application of the decomposition of u2 in Theorem 3.1
we strengthen a theorem of Brelot. Let u be a BLD function,
let S;o be a point of R, and let Uy,(l} be the value of u at the
point of the Green line I from ^o where the Green function
with pole ^o has value a. Then Brelot [3] proved that, if
dl refers to the measure of Green lines (see Section 1),
Ua has a mean limit u of index 1,

(3. 3) lim f \uM) — u(l)\ dl = 0.
a-x^

The following theorem strengthens Brelot's result by increasing
the index to 2, under the added hypothesis that u is harmonic.

THEOREM 3.2. — Let u be a BLD harmonic function on J?.
Then

(3. 4) lim f \u^{l) — u{l)\2 dl = 0.
a-x^

We use Theorem 3.1. Since ^u is a Dirichlet solution,
its restriction to the boundary Sa of the set Sa where g(^o, S;) > a
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defines a family uniformly integrable with respect to harmonic
measures relative to ^o on the members of |Sa, a > O j contai-
ning no infinite points. Since u2 <_ ^u, i^2 has this same uniform
integrability property. Now (Brelot-Choquet [4]) Green line
measure dl determines a measure on Sa a Green line correspon-
ding to the point in which it meets Sa, which is precisely harmo-
nic measure relative to E;o. Hence the family of integrands in
(3.4) is uniformly integrable. Since the integrand converges to
0 when a —> 0, almost everywhere, (3.4) must be true.

4. The fine boundary functions of BLD harmonic functions.

THEOREM 4.1. — Let u be a BLD harmonic function on
R. Then the hypotheses of Theorem 3.1 (ii) are satisfied, so
that u has a fine boundary function u' in L^R^, u is the Dirichlet
solution corresponding to u\ and D(u) = gM/2.

To prove the theorem we first remark that — u2 is super-
harmonic, with corresponding measure of total value 2D(u)/^.
The Riesz decomposition of —u 2 therefore yields (3.1),
where now pU is the potential of a measure of the above
total value and ^u 1s a harmonic function. Since u2 < ^u
the hypotheses of Theorem 3.1 (ii) are satisfied, as was to
be proved.

Thus each BLD harmonic function u has both a radial u
and a fine boundary function u'. (The radial is defined
relative to a specified initial point of Green lines). The
functions u and u are each defined on a measure space of
total value 1. We shall now prove that the distributions of
these measurable functions are the same, that is, that if f
is a continuous bounded function from the reals to the reals,
and if the Green lines start at S;o?

(4.1) ffW]dl=f^f{u')^,d.}.

To see this we use the notation of Theorem 3.2. Obviously

(4. 2) Vi^ff[u^l)]dl =ff[u(l)}dl.

Moreover, since the measure on Sa induced by dl measure
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by way of the transformation from I into the point in which I
meets S^ is harmonic measure relative to S;o,

(4.3) ff[^{l)]dl=f^f(u)^(d^

where ̂  is harmonic measure on Sa relative to So- Finally,
as we remarked in discussing Lemma 2.1 the integral on the
right in (4. 3) has as limit (a -> 0) that on the right in (4. 1).
Combining this fact with (4. 2) and (4. 3) we see that (4. 1)
is true. Since this equation is true for bounded continuous f
it is true for every Baire function f for which either integral
exists, and we shall use this fact without further discussion
in the next section.

We can obtain a stronger result in exactly the same way.
If /*is a continuous bounded function from M-space to the reals,
and if Ui, . . . , u ^ are BLD harmonic functions, then

(4. 1') ff[u^ . . ̂ u^l)]dl =f^f{u^ .. ..uQ^o, d.Y

That is, the joint distribution of Ui, . . . , u^ is the same as that
of u[, . . ., u'n.

THEOREM 4.2. — Let u be a BLD harmonic function on 7?,
with radial u and fine boundary function u\ Let ^ be a point
of jR. Then there is a constant c, depending on R and ^ but
not on u such that

(4.4) /lu^—u^l^Z^^Ju'—u^o)!2^^.)^^^).

We can and shall suppose in the following that u(^o) == 0.
Since u and u' have the same distribution, we need only prove
the inequality involving u. Using the notation of (3. 1)
this inequality takes the form

(4. 5) ,u(^o) = pu(^o) ̂  cD(u) = cqM/2.

Unless the theorem is true, there is a sequence \u^ n^> 1\
for which in the obvious notation

(4. 6) ,u^o) = pu^o) = 1, D(uJ = <?MJ2 ̂  g2-n+l.

But then ^ p Un is the potential of a measure of total value 1
n

or less. Hence the series converges and pU^ -> 0 except
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possibly on a set of zero capacity. Since D(uJ-> 0 and
^(^o) == 0, u^ -> 0 uniformly on compact subsets of R. Com-
bining these facts we obtain at once that ^ -> 0 except
possibly on a set of zero capacity. Since ̂  is positive the
Harnack inequality yields the fact that ^u^ —> 0 uniformly
on compact subsets of R, contradicting (4.6). The theorem
is therefore true.

The normalization by an additive constant in (4. 4) is
not essential. In fact, for example, it A is a measurable
subset of R^ of strictly positive measure, and if we consider
the class of BLD harmonic functions u with u = 0 almost
everywhere on A, then there is a constant y for which

(4. 4') fWdl=f^^d.)^^{u)

for every u in the class. The constant y depends on A. If
there were no such constant, there would be a sequence
{u^ ^ ̂  1} of functions in the class such that

(^•7) f^ulM„d.)=l, D(u,)^0.

But then u'n — u^o) -> 0 in the mean, according to Theorem
4.2, contradicting the fact that u'n vanishes almost everywhere
on A and that (4. 7) is true.

We observe that (Brelot [3]) if u is an arbitrary BLD func-
tion it is the sum of a uniquely determined harmonic BLD
function and an orthogonal (in H) function of potential type
with radial vanishing almost everywhere. It will be shown
in Section 6 that the fine boundary function of a function
of potential type exists and vanishes almost everywhere on
R^ It is therefore obvious that (4. 4) remains true if u is
merely supposed a BLD function^ at the price of replacing
u(^o) by the value at ̂  of the harmonic component of u. Ine-
quality (4. 4') is true with no change for general BLD functions
vanishing almost everywhere on A. Since the constant OQ
replacing u(^o) in (4. 4) is the average of the radial, as well
as the (Ji(^o? • ) average of the fine boundary function of u,
the constant OQ is the constant minimizing

f[u(l) - a? dl =f^[u' - a? (^o, .)
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Suppose that u^ and u are BLD functions with radials u^,
u and fine boundary functions Un, u' respectively, and that
u^ -> u in the BLD sense. Brelot proved that then u^ -> u in
the mean, index 1. We shall improve this result by showing
that there is mean convergence of index, 2 for both ju^, n^ 1|
and | Un, n ̂ >_ 1 j . This result, together with our earlier
results, illustrate the central role of Lg spaces in the study of
the Dirichlet integral. For analogous results in a somewhat
more classical framework, involving domains in Euclidean
space with smooth boundaries see Sobolev [I],

THEOREM 4.3. — Let u^ u be BLD functions on -fi, with
radials u^y u and fine boundary functions u'^ u'. Then if
u^ —> u in the BLD sense,

(4. 8) lim /^-u^^lim L\Un—u^ (x(^.) ==0.
n-> oo «-' n->oo l/"

Since the nth integrals involved are equal, we need discuss
only the u'n sequence. By our extension of (4. 4) there is a
sequence of constants | a^ n ̂  1 \ such that u'n — u1 — a^ -> 0
in the mean of order 2. Since u^ -> u quasi-every where
on R, a^ -> 0, so that we can take a^ = 0. Then (4. 8) is
true.

An alternative statement of this theorem is that if
D(i^i — u) ~> 0 then

(4. 8') lim /[u,(0 - u{l) — u^) + u($)|2 dl
n-> oo ^

= lim Lk - "' - "n(S) + u(S)|2 P^o, d.) = 0,
n-> oo t/ n

for quasi-all ^, all ^ if the functions involved are harmonic.
We omit the easy proof.

This theorem means that the transformation form H/i
into I^R^ representing an element of H/i by a harmonic
function vanishing at a preassigned point, the image being
the fine boundary function of this harmonic function, is
continuous.
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5. Some results involving capacity.

THEOREM 5.1. — Let u be a BLD function of potential type
on R. Then if a > 0,

(5. 1) cap ^ : |u(^)| > a| ̂  D(u)/(a^).

Here the capacity is that relative to the whole space R,
the Green function capacity. This theorem was proved by
Deny and Lions [6] for R-Euclidean space of dimensionality
> 2. Their proof is applicable to the more general case
stated here, with the help of the decomposition technique
used by Brelot [3, pp. 390-391].

We shall need the following rather trivial lemma.

LEMMA 5.2. — Let A. be a Borel subset of R, of finite capacity.
Then A has almost no point of R1^1 as fine limit point.

In fact if u is the equilibrium potential of A, u, like any
potential, has fine limit 0 at almost every point of R^ Since
u has the value 1 quasi-everywhere on A, almost no point
of W1 can be a fine limit point of A.

6. The fine boundary function of a BLD function.

In this section we shall prove that every BLD function u
has a fine boundary function. Since u can be written as the
sum of a BLD harmonic function and a BLD function of poten-
tial type, and since we have already proved the theorem
for u harmonic, all that remains is to deal with functions of
potential type.

If R is a bounded domain in N-dimensional Euclidean
space, satisfying certain restrictive hypotheses, Deny [5]
proved that a BLD function u can be extended to a BLD
function v on the whole space. Since v is fine continuous
quasi-everywhere, Deny concluded that u has a fine limit
quasi-everywhere on the relative boundary of R. Here
« fine limit » refers to the fine topology on the entire N-space.
One can also conclude that at almost every (harmonic measure)
point of R^ u has a fine limit in our sense, in which the fine


