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Ann. Inst. Fourier, Grenoble
13 (1963) 99-109.

ON THE ISOMETRIES OF REFLEXIVE ORLICZ SPACES
by Gunter LUMER (1) (Seattle).

I. Introduction.

The problem we consider is that of determining the form
of all isometries of an arbitrary Orlicz space. A partial result
on Orlicz space isometries was obtained in recent years by
J. LAMPERTI [4]. It was also Lamperti who suggested the
problem to us. In this paper we solve the question for any
reflexive Orlicz space over a non atomic measure space (2).
The method used is of a more general nature, and can be
applied to the case of discrete or not purely atomic measure
spaces. However for the latter cases additional new argument
is needed. Also the results are not exactly the same, since
other isometries than the analogous to the V case may occur
and we intend therefore to publish this material separately
later. '

The best known examples of reflexive Orlicz spaces are
the Lebesgue V spaces, for 1 < p < oo, and their isometries
were determined by Banach [1] (at least for I/ on the real
line). In that caseanisometryUisoftheform (U/') (.) == u(.)/'(T.),
where fis any function in 1̂ , T a measurable set isomorphism,'
u(.) = U !(,) a fixed function in lA

The general Orlicz space situation is of a less explicit nature
(1) The research on this paper was supported in part by a National Science Foun-

dation grant, NSF-G 16434.
(2) An abstract appeared in the Bulletin of the Amer. Math. Soc. Vol 68, n° 1 (1962).
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100 GUNTER LUMER

than are the L/ cases, but for the situation treated here, the
end result is essentially the same.

The ideas of the proof are closely related ot those used by
the author to develop a unified approach to results of
Banach [I], Stone [9] and Kadison [2] on isometries of L^ C(X)
and C* algebras. Although the systematic use of semi-inner-
products and hermitian operators [5] plays a central role,
the paper is essentially self-contained.

2. Semi-inner-products.

The concept of a semi-inner-product was introduced in [5].
However we shall need here very little of the general theory,
and proceed thus to state explicitly all the facts we shall
actually use. A vector space E (which we shall consider
complex unless mentioned otherwise) will be called a semi-
inner-product space if to each pair a;, ye E there corresponds
a complex number denoted by [x,y], and the following holds :

(t) D^y] linear in x.
(u) i ^ ^ ' [x,x] real > 0 if x ̂  0.

"W:.:;,, ';,',:.:'„: ^^<-W\y^
[Xy.y] is called the semi-inner-product of x and y. If E is a
semi-inner-product space, then {[x,x])112 actually defines
a norm'; on E. Conversely, given a normed vector space E,
it always admits a semi-inner-product, such that [ ,̂ x] = \\x\\2.
There are however in general infinitely many semi-inner-
products compatible with the same norm. Given an operator H
on a semi-inner-product space E, we call it bounded if it is
bounded with respect to the norm ([Xyx])112.
An operator H on E will be called hermitian, if [Ho;,̂ ] is
real valued for every x in the domain of H (in particular if
H is hounded, for every XQ E).

In [5.3 itwa3 shown that if H is a bounded hermitian operator
on the semi-inner-product space E, then H is a (bounded of
course) hermitian operator on any semi-inner-product space
obtained by providing E with another semi-inner-product
inducings the same norm.

We fixiidl.this section with a simple but useful lemma,
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going back, with different notation to McShane [7], and whose
existence in the literature was called to our attention recently
by C. A. McCarthy.

LEMMA 1. — If E is any semi-inner-product space, x, y e E,
\\x\\={[x,x\Y\then:

M^ |il2/+^||^r.[^^/]^||y!|-rf+ {\\y+tx\\}
ai (=0- al t^O^

d- d+

where 7 ^ 7 ^ denote left hand and right hand derivatives with
at at

respect to the real variable t. In particular, if the norm is diffe-
rentiable, then

[^y]=M•± {\\y+ tx\\ + ij|y -iix\\\
ai (=0

PROOF. — Suppose y =/= 0. Then

\\y + tx\\\\y\\ ̂  \[y + tx, y}\ = |||̂  + t[x, y]\
^W+UWre[x,y^.

Thus (\\y^tx\\—\\y\\)lt^\\y\\-^re[x,y]+o{t) for ( > 0,
and the right (left) hand side derivative exists by the
convexity of the function \y + tx\\. Similarly for t -> 0~. If the

norm is differentiable, from above re [x, y] = \ \y\ \ — i | \y + tx\ \ |,
a^ <=o

and the rest follows from re [—ix, y] = im [x, y].

3. Semi-inner-products on Orlicz spaces.

From now on, (Q, A, [x) will denote a measure space,
A being the (T-ring of « measurable » subsets of Q, UL being
countably additive, complete, and (7-finite. Let F denote the
set of all measurable complex valued functions on Q.

From here on, and until further notice, E will denote the
Banach function space (whose elements are functions in F)
with unit sphere given by S = ^ j f e F f'f^(\f\) <. 1^ where
the integral is taken with respect to the measure pi, pi(Q) << oo.
Here ^{t) is a non negative real valued convex function of
the real variable t ̂  0. It shall be understood also that $

7.



102 GUNTER LUMER

is everywhere finite (i. e. does not ((jump to + °° )))- It is well
known that in these conditions S is in fact the unit sphere
of a Banach space [6].

Since the function $ is convex, it possesses a derivative
except at most for a countable set of values of t which we
shall denote by A. We shall say that a function /*<= F « avoids A »
if the pi-measure of the set ixe Q: \f(x)\ e A ? is 0.

LEMMA 2. — Suppose /*, ge= E^Q, A, pi), .^ avoids A; and
11§11

let any semi-inner-product be given on E$ then

Kd=C(^(^).^
where

rgl where s=^0sgng= g
0 where g = 0

'̂(Jĵ 'Q î'-
ProoF. — We shall suppose first ||g|| == 1, and ( sufficiently

small whenever needed. Then we have, since (^(Q) <; oo

r $doD = i r $/ \s+tf\\ ^
I - • -V '& l / -L? i \ ||/y _i f^H /

JQ JQ \\\8+tf\\/
We shall write

g- \s+tf\t llg+^ll 'bl

S^eL 0 0 for any fixed (, and |]S(|]oo is uniformly bounded for (
small. Here of course || |[^ denotes the usual « essential supre-
mum » norm. One has explicitly :

^=(llg+</>||)- lK-llg+^ll+l)lgl+t^e/•sgng+o(t)^

On the other hand since $(() == j f{s)ds, where <p is non
negative, monotone increasing with discontinuities on the
set A, it follows that

ydgDo^^'f^^-^igD^^dgi + w
V i l e i~ " / l l /

and also since g avoids A, we have that y(|gj + S^) -> 9(|g|)
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almost everywhere as t -> 0. But we have (identically in ():

{ Wig+^/l \__^|gJ-QJQ; \\\g+tf\\) '̂ r
and dividing first by ( > 0, and then by t < 0, and passing
to the limit we obtain:

d-. {\\8 + tf\\} C |g|9(|g|) + f re /•9(|g|) sgn g = 0,
ai t==o+ JQ JQ

^- {\\8 + ̂ ||! f lg|9(|g|) + f re ^(Igl) sgn g == 0.
a£ f=o- J^ JQ

Thus using Lemma 1, and replacing /* by -if and finally ^
^ gl\\g\\^ we obtain

^^^^o^^)88-^^^/^'^)^^

where we may substitute ^ for y since ,1.^1, avoids A.
11^11

LEMMA 3. — Suppose g e L00, g^O, ,j^ 6w?i(fo A. L^ /"e E,

aTzrf any semi-inner-product be given on E (compatible with the
norm), then if E has an absolutely continuous norm [6, p. 12]

[̂ -c^ ,̂,,.
PROOF. — If E has an absolutely continous norm, then

for fe E, there is a sequence /„ e L°° such that fn->f in the

E-norm [6]. Since ^>/,(4) is bounded f^(-^} has a finite
, , , MIgll/ MIgll/

integral, hence by Lemma 2

V.. d = ̂ ^^•^^^^^^^s.n,

but clearly also [/*„, g] -> [/*, g].
Next let us remove the restriction concerning « g avoids A ».
LEMMA 4. — Suppose E Aa5 absolutely continous norm, fe E,

geL°°, g =/= 0, <Aen ^re ^5^ a semi-inner-product on E
compatible with the norm, such that

[f, s] == C(g) f /•^-1^JQ^'^-^fA^1
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where
[ <t>(() for t not in A

^kK^^N ^-A-
PROOF. — Let us assume for the moment that given

geL°° there exist two sequences of functions g^ g^eL 0 0 ,
such that gn -> g, g'n -> g (as n —> oo) pointwise and in the
norm of E; sgn g^ == sgn g ' ^ = sgn g;

,/ \g\ \ _ i L/ Ignl \ , ./ 1^1 ̂ , , |], | ] (-/ 1 \<w - ̂ r^ + <M^ + pn? "p""00 = "w-
also g^, ' g ' n are uniformly bounded in the L00 norm and all
avoid A. Then we have : C(g^) —> C(g), C(g^) -> C(g). Let us
now consider E provided with any semi-inner-product
compatible with the norm (which always exists). Then for
/*e E, Lemma 3 implies that:

.̂C^)8^
4 |(C(g)/C(^) [f, g'1] + C(g)/C(g;) [/; ̂ }\ + 0(-1
2 \ n

Thus

^fAw^^\s\
' Q MIell/ I
^ tic(g)/c(^)|||g,|| + |C(g)/c(g;)||ig;||^||y|| + o(^),

'^/J^^)
==-1- ^C(g)/C(g,)[g, §„] + C(g)/C(g:)[g, g;]^ + 0^

and

|l|gn|i2-[g,gn]|=i[gn-^^i^ll§^n-g|!l|gn|l-^0.

It follows that the conditions for a semi-inner-product are
satisfied.

To complete the proof we shall show how g^, g'n are
obtained. Consider the sequence of sets Q^ c Q such that
|g(Q^)|eA, |g| being constant on such Q^. If y^ is the
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characteristic function of 0^, then it is easy to find numbers
£^, such that if

g + W.m on Q^

gn= ' g on Q-U0-
i

and similarly for g'^ then all above conditions are satisfied
(here of course the fact that A is countable plays a role).

4. Hermitian operators.

The task being eventually to determine the bounded hermi-
tian operators on various classes of Orlicz spaces, we derive
some general properties, assuming absolutely continuous norm.

LEMMA 5. — Let H be any bounded hermitian operator on
E, /*', / '"eL^Q, A, [Ji) not identically zero, and with supports
Q', Q" such that ^.(Q' n Q") = 0. Then

V^r^)88"f"= ̂ "^(r^ri!)86" ' ' •
PROOF. — It is clear that ||f + f'l! = il^T + ^f\\ where a.

p are reals; applying now Lemma 4, to
[H^/" + ^f'), e^f + e^f] = real

we obtain
r / in \ / • / if "i \

Hf.(^-,,,,)sgnf+ H^?(-.JLL,)sgn^
^'Q' Ml/ +/ ll/ ^Q" Ml/ +/ II/

+,<.-̂ H (̂̂ )sgnr
+.-.<^^Hr,(^^)sgnr=re.,.

Since a and ^ are arbitrary the above conclusion readily
follows.

An immediate consequence is

LEMMA 6. — If Q', Q" e A, are (almost) disjoint, i. e.
\^(Q! n Q") == 0, y/, y" t/ieir characteristic functions, then
f^, Hy: = 0 if and only if f^ Hy,' == 0.
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LEMMA 7. — If h e L°°(Q, A, p.) 1.9 rod! valued, the operator H/»
defined by H^f = hf for all fe E 15 a bounded hermitian operator;
and ||H,|| = ||/̂ .

PROOF. — We shall prove the hermiticity of H/» directly
since our formula for the semi-inner-products is not proved
for all /*, g e E. We shall construct a special semi-inner-
product in the following way: given fe E, /*== ufr where
|u| = 1, f^ is real valued. Using the real Banach space E^
generated by the real valued functions in E, we obtain a
functional /? such that (/•,, /;) = ||/',||2, |[^[| = ||̂ ||. We
extend /•? to E by setting /'*(gi + ^2) = ^(^i) + ^(ga)
where gi, gg are real and imaginary components of g e E
(and since |gi| ̂  |g| implies \\g^ ̂  ||g||, g^, ga^E) . Then
l^^)! = ̂ (g) - f^g) = n (re e-g) ̂ ||re ̂ gH ||̂ ||̂ ||g|| I]/1!!.

Next define f e E*, by setting f{g) = f^u^g), where u is the
fixed function defined above. Then we have

m = w) == m = ii/'n2, iini - ii/oii = 1 1 ^ 1 1 .
There is thus a semi-inner-product such that

[Hf, /,] = f(hf) == f^n ^uQ = real.
The rest is easily shown.

The following lemma will be needed later on.
LEMMA 8. — Let Qo be any measurable subset of Q, and P

the projection of E on the subspace Eo of functions in E vanishing
outside Qo? ^en PH == PHP is a hermitian operator on Eo.

PROOF. — Cleary ||P[| == 1; and for any /*e Eo, I the identity
operator^ real, ||(I + itPHP)f\\=\\P{l+itH)Pf\\^(l+o{t))\\f\\
since H is hermitian; (see[5], p. 39); !and it then follows easily
that ||I + i(PHP|| == 1 + o{t), which proves PHP is hermitian.

5. Hermitians and isometries
when the measure space is non-atomic.

THEOREM 9 (3). — Suppose H is a bounded hermitian operator
on E, E is reflexive, and the measure space (Q, A, (x) contains
no y.-atoms, then either there exists a real valued function

(3) A recent letter from C. A. McCarthy shows that McCarthy independently
knew, or at least had conjectured, Theorem 9.
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AeL^Q.A, (x) such that Hf=hf, for f^E, and ||H[| = ||/i||,,
or else E == L2 (Q, A, p.).

PROOF. — Let Q' be any measurable subset of Q, and y'
its characteristic function. Suppose now that H%/ is not
identically zero (almost everywhere) on Q — Q', then there
exists a measurable set (of positive measure) Q" on which
^Hy/^O, and Q" c Q—Q' . Let y/' be the characteristic
function of O", and a any real non-negative number.

We have from Lemma 5 (4) :

F Hay-J__^___^= r Hy-J < ^
^ x ̂ W +7J^ Jo ^W + x;ll/

r H-y^gY •̂/ ^== a i Hy'aY ^g

JQ- x ̂ ir + 7:11^ Ja- ^^ll^ + y;11U-^r+Tii^
hence :

L/ a \ // 1
^^\)~^^\) L^ == 0

and a contradiction is reached unless

?(!I^^X'll)==a?(l|a7/+X'||)
but since the measure space is non atomic we may without
changing the situation replace Q" by subsets of arbitrary
small measure so that (9 may be supposed continuous from
the left) we reach a contradiction, or else

^ (̂M) fOTa" 1 > 0-
From this it would follow <&(() = Ct2 and E = L^Q, A, (Ji).
Now if we exclude E == L2, we conclude Hy/ == 0 on Q — Q'.

Next suppose f is a step function, and Q' is the « support of
one step of /*)), then by the previous argument, since, the
support of /—/•(Q')! is in Q—Q', H(/—/ ' (Q') l )=OonQ' ,
so that on £2', H/*== (Hl)/*^'), where 1 denotes of course the
constant function 1. We conclude by linearity H/*== hf, where
h == HI. The step functions are dense, and the proof is complete.

(4) Since E is reflexive the norm is absolutely continuous, [6]. Theorem 9
remains valid if the hypothesis «E is reflexive» is replaced by «E has an
absolutely continuous norm».
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THEOREM 10. — Let U denote an isometry from E onto E.
Suppose same hypothesis as in Theorem 9, and that
E ^=- L^Q, A, m), t/ieyz there exists a measurable set isomor-
phism T (i. e. not necessarily a point transformation in Q),
and a fixed function u e E, such that

(Vf)(.)=u{.)f{T.) for a l iy .E .

PROOF. — By Lemma 7, if h e L°°, H^/*== /^defines a hermi-
tian operator. On the other hand given a semi-inner-product
on E, then [U"~1/*, U""1^] defines a new semi-inner-product
compatible with the norm, and it follows that if H is a bounded
hermitian operator, the same holds for UHU"'1. Hence by Theo-
rem 9, for each real valued he L00, there exists a real valued
he L00 such that UH/JU-1/'^ hf, fe E; i. e.

VhV^f^hf, /*eE.

From above relation follows also at once that the corres-
pondence « " » is multiplicative as well as linear, and one-one
onto (in the real L°°). In particular « A », when applied to
h = y/ where /' is the characteristic function of a generic
measurable set Q' e A, gives yj = y/2. y/ is the characteristic
function of a set 0" which we shall denote T^Q' (notice that
in general \\h\\^ = ||H,|| == IIUH.U-1!! = ||A||J. It is immediate
that T~1 is a set isomorphism, and we have

Uy;g=:y;Ug, g e E

so that if g vanishes on Q', then Ug vanishes on T-^Q', from
this it follows, as done at the end of Theorem 9, that for any
step function/*, (U/^TT1) == (U1)(T-1. )/•(.), hence if Ul == u

WK.^O/Tr.)
for all step functions; but these are dense in the present situa-
tion, [6].

We shall now connect the previous results with the usual
Orlicz space definitions (and notations) in the literature.
Here we follow [6], (compare also [8], [10] Chapter 4, and [3]).

Reflexivity assumed, the question reduces in terminology
of [61 to the isometries of L^ and L^>. Theorem 10 applies
directly to L^ (with the same assumptions on the measure
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space). The result also follows readily for L^>, since in our
situation L^ = L^^, and if U is an isometry (H a hermitian)
on L$, then U* is an isometry a her (H*mitian) on L^.

6. o-finite measure spaces.

So far we have assumed that (x(Q) <; oo. One can see,
however, that this restriction may now be dropped, in Theo-
rems 9 and 10, and substituted by the assumption that
« p. is o'-finite ». One starts by extending Theorem 9 :

Let thus Q^ be an increasing sequence of subsets of finite
measure. If H is a bounded hermitian on E, Lemma 8 shows
that the restriction H^ of H to the E^-space corresponding to Q/»,
is hermitian, hence of the form h^f. The rest of the argument is
clear (since we have absolute continuity of the norm).
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