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BRELOPS AXIOMATIC THEORY OF THE DIRICHLET
PROBLEM AND HUNT'S THEORY

by Paul-Andre MEYER (1) (Strasbourg)

Since the axiomatic theory of the Dirichlet problem has
been developed, by Doob, Brelot, and Bauer, it has been a
very natural question to wonder whether it would come into
the general probabilistic theory of potentials of Hunt. We
show here that the answer is positive, under very mild assump-
tions. This paper, however, does not involve probabilistic
considerations, not even at some places where they might
simplify the proofs.

Our hypotheses are those of Brelot, as they appear for
instance in [3]. Namely, we assume Brelot's axioms 1-2-3,
the existence of a countable base of open sets for the basic
space E, the existence of a positive potential, and the harmoni-
cityofthe constant functions. On the other hand, we obviously
are not using the full strength of Brelot's axiomatics; our
reasoning would probably apply without essential modifica-
tions to the latest version of Bauer's axiomatic approach
(see [2]).

While we shall use freely the results from Brelot's papers,
which are sufficiently well known, we shall refrain from doing
the same thing with Mme Herve's thesis [5]. Indeed, we shall
give a complete proof of the construction of the kernel (2),

(1) Cet article a etc redige pendant un sejour de 1'auteur a FUniversite de Washing-
ton, sous les auspices de la National Science Foundation, grant P-ll 008; il a etc
public sous la forme d'un «technical report» en Juin 1963, en Anglais, et il n'a pas
semble utile de Ie traduire en Fran9ais pour cette publication definitive (qui
comporte quelques ameliorations de detail).

(2) Let ^+ be the cone of all positive (possibly infinite) Borel measurable functions
on E. A kernel V on E is a function /-^/w^--* Vf from ^+ to ^+ which is additive,
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358 PAUL-ANDRE MEYER

in the most economical way possible; this paper thus will
almost be self contained.

In order to simplify things as much as possible, we shall
only consider finite superharmonic functions. This will not
hamper the generality, as almost all the superharmonic func-
tions we shall consider will in fact be bounded and continuous.

Notations. ^, 94- are the cones of (finite) superharmonic
and positive superharmonic functions in E (3). The cones
^(W), ^(W) are defined in the same way for any open set
W c E .

6, 6^, Co? ^b respectively are the spaces of continuous func-
tions, continuous functions with compact support, continuous
functions tending to 0 at infinity, continuous bounded func-
tions in E. The last two spaces are Banach spaces for the
uniform norm. Similar notations (°(A) . . . are used for any
locally compact subspace A c E. If A is compact, all four spaces
are identical.

Let f be a function on E, and A be any subset of E. Then
/'JA is the restriction of f to A. The boundary of A in E will
be denoted by A*.

Let W be any regular open set, and f any (sufficiently regular)
function defined on E. We denote by Hw/^4) the function equal
to f on E\W, to the (generalized) Dirichlet solution associated
with f in W. If f is superharmonic, the same is true for Hwf.
More generally, we recall that if W is an arbitrary open set,
if f is a superharmonic function in E, g a superharmonic
function in W such that:

lim inf g(y) > f(x)
y-^x, yeW

for every x e W*, then the function equal to f in E\W, to
min{f, g) in W, is superharmonic in E.

positively homogeneous, and such that V (lim /J = lim Vf^ for any increasing
n n

sequence (/„) of elements of ^+. A kernel V is submarkovian (markovian) if VI
is smaller than (equal to) 1. The function Vf may be defined also when / is uni-
versally measurable and positive, or universally measurable and such that V|/| is
finite. A more detailed account may be found in the seminar volume (8).

(3) M™® HERVE uses the notation ^+ as we do (except for the restriction of
finiteness), but uses 9 for differences of superharmonic functions.

(4) The standard notation of Brelot and M"1® HERVE would be H{y; ours emphasizes
the fact that H^y is a kernel.
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The specific order for (finite) functions ( ^ ) is the order
defined by the cone ^+. The ordinary order for functions
(-^) w1!! be called the natural order in the sequel.

1. M^ Herve's partition theorem.

Let W be an open set in E, g belong to ^+, and f belong to
^(W) (more generally, we might take for f any finite function
defined on a subset of E which contains W) (5). We follow
]\/[me Herve, and say that g is a W-majorant of fit the function
g — fis superharmonic in W (not necessarily positive). The set
of all W-majorants of f is not affected if one adds to f any
function which is harmonic in W (and quite arbitrary out of
W).

Let g and h be two W-majorants of /*$ then min(g, h) still
W-majorizes /*. Let then F be any set of functions, and let G
be the set of all functions g ^ i S ^ which are W-majorants of
every fe F. If G is not empty, it contains a smallest element
go (tor the natural order; go is the lower semi-continuous
regularized function of inf g). Then we have the basic:

geG

THEOREM 1 (Mme Herve) (e). — Every g e G majorizes go
in the specific sense.

To prove this result, we must take a regular open set U
and check the relation (g — go) ;> Hu(g — go)? or

(g-Hug)[u>(go-Hugo)|u.

These functions obviously are (W n U)-majorants of the func-
tions /*|u, /e F. So the theorem will be a consequence of the
following:

LEMMA. — The function (go—Hugo)|u is (for the natural
order in U) the smallest (W n V)-majorant of the functions
/WeF.

(5) A function / which possesses a W-majorant is equal, in W, to a difference of
superharmonic functions. We shall often use the fact that a finite function h,
which is equal in W to a difference of elements of ^f(W), is superharmonic in W if
and only if the inequality H^jA ̂  h holds for any regular open set U c W. This
is applied below to the functions g^ — /, and g — g^

(•) See [5], p. 456, theorem 12.1.
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Proof. — Let /cetf+(U) be a (W n U)-majorant of all func-
tion yiu? f^P- Let h be the function:

min {k + Hugo, go) in U
go in E\U

h belongs to ^+, by the positivity of k and the inequality
lim inf Hugo (y) ̂  go(^) t^ x e U*. The lemma will be proved
y-^x, yeV

if we show that h is greater than go, and this will follow if
we prove that h is a W-majorant of every /e F. Now we have :

, /.. min(/c + Hugo — A go — f} in W n U
(h-f)\^=^_^ inW\U

go — f being superharmonic in W, k + Hugo — f superhar-
monic in W n U and majorizing go— f at the boundary of
W n U in W, this function is superharmonic in W and the
theorem is proved.

DEFINITION (Mme Herve). — Let f be a finite potential^ W be
any open set in E, and K any compact subset of E. We shall
denote by fw the smallest W-majorant of /, by fn the function
f—/E\K.

We shall follow M^ Herve, and prove that the set function
K^w^/K is induced by a kernel. The finite potential f will be
kept fixed in the sequel.

2. Properties of the set functions /w and f^.

1) f being a W-majorant of itself, the theorem implies
fw^f' Both functions /w and /K thus are potentials.

2) /w being a W-majorant of />, and f a W-majorant of
/w, the function f—fw is harmonic in W; the function /K is
harmonic out of K.

3) /K is [specifically) the greatest specific minorant of f
which is harmonic out of K. Let indeed h be much a minorant;
f—h is a (E\K)-majorant of f, thus f—h^f—/& and
A^/K. _

4) The function fw is harmonic out of W$ the function f— fji
is harmonic in K°. Let indeed U be a regular open set such
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that U n W= 0; the set of W-rnajorants of f is closed under
the operation Hy$ it is thus saturated in E\W, and its infimum
is harmonic in that set.

5) Wi c W, =^ ;̂ Ki c K, =^/K^/K,;
W c K ^ / w ^ / K ; Kcw^/^/w.

The first two properties are obvious. The third one follows
from the harmonicity of f—/K in K° (4) which implies that
/K is a W-majorant of /*. To prove the fourth property, we
remark that fw + /E\K—f is superharmonic in W and E\K,
and thus in E; on the other hand, it majorizes —/*, and f
is a potential: the minimum principle ([3], p. 93, proposition 9)
implies that this function is positive. We thus have f^ /w +/E\K,
or /K^ /w.

6) KcW-^/K-(/w)K.
Because /^/w (5), thus (f^ifw^^f^ and {f^ = f^ (3).
7) Let W be the union of an increasing sequence of open

sets W^$ then /w=Max/w^. Let K be the intersection of a
n

decreasing sequence of compact sets K^; then /K == Min /K
_ ^
The second sentence obviously follows from the first one,
which we prove now. Let g be Max /w^; we only have to show

n

that g^fw^ or that g is a W-majorant of /*, or that f— g is
harmonic in W. Let U be an open set with a compact closure
U c W$ it follows from 6 that fu == gu. Now f— fu and g _ gu
are harmonic in U(4), so f—g is harmonic in U. This open
set being arbitrary, f—g is harmonic in W.

8) / w = M a x / K ; / K = = M i n /w.
KCW WDK

Easy corollary of 5, and 7.
9) (/KJK, ==/K,pK,; (/wjw. = /w,nw,.
The first relation is obvious from (3). The second one follows

by taking an increasing sequence of compact sets K^(n e N)
such that W, == |j Kt (i = 1,2) and passing to the limit
using 5,7. n

10) /W,UW,+/W,nW,= /W,+/W,; /K,UK,+ /K<nK<==/K,+/K,.

We need only prove the first equality, as the second one is
an obvious consequence and it and the relation /K + /E\K = f'
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Let h be the function /w,uw< + /w^nw,—fw,—/w,. From
9, we get the equality /w,uw.—/w.=/w,uw.—(/w,uw.)w.$ the
first member is thus harmonic in Wg. In the same way

fw, — /w,nw, == /w, — (/wjw,

is harmonic in W2; /i itself is thus harmonic in Wg, and sym-
metrically in Wi.

/w,uw, + /w,nw,—/w, is a Wg-majorant of /w,, and thus a
specific majorant of /w<- So we have:

/w< u w, + /w, n w, ̂  /w, + /w,.

To prove that we have equality, we remark that, h being
harmonic in Wi u Wg, /w, + /w.—/w,nw. is a (Wi u Wa^majo-
rant (and thus a specific majorant) of /w,uw,, and we get the
reversed inequality. We are now able to prove the following:

THEOREM 2 (M^ Herve) (7). Let f be a finite potential. There
is one and only one positive kernel V which possesses the follo-
wing properties:

a) for every positive bounded Borel measurable function g,
the function Vg is superharmonic, positive, harmonic in the
complement of the closed support of g.

b) V(l) =f.
If the function f is continuous, and the function g is Borel

measurable and bounded, then Vg is continuous.

Proof. — We shall first establish the existence part. Let x be
any element of E; it follows from properties 5,8,10 that the
set function K -^^^ /K(^) is increasing, right continuous and
additive. It may thus be extended to all subsets of E as a
capacity (8), and the additivity implies that the restriction of
this capacity to the Borel sets is a measure V.p. Define, for
any positive Borel function f:

V/^)=^ f{y) d^(y)
(7) See [5], pp. 490-493, and specially theorem 20.2.
(8) M"1® Herve ([5], p. 464) constructs her kernels with the help of a theorem

from Bourbaki's Integration (chapter iv, § 4, n° 10). The general capacitability
theorem of Choquet (see for instance part II of [3]) leads to the same result, and
it has the advantage of being much better known than Bourbaki*s theorem (and
of having independent interest).
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The function V/' is Borel measurable when f is the indicator
of a compact set K, and thus also for any Borel function f.
This implies that the mapping f-^^'Vf is a kernel. Let A be
any Borel set; the equality V(VA) = Max V(/K) = Max /K

'' KCA '' KCA

shows that the function V(^A) is superharmonic, positive,
and a specific minorant of f. Let g be measurable, positive,
bounded by 1; then g is the limit of an increasing sequence
of finite linear combinations of characteristic functions of
sets; Vg thus is positive, superharmonic, and a specific mino-
rant of /*. So V^ is continuous if f is continuous.

If A is a Borel set, V(y^) is harmonic in the complement
of A. The above approximation procedure shows that Vg is
harmonic in the complement of the support of g.

Let V be another kernel with the same properties — more
precisely, we shall only assume that property a) holds when g
belongs to (%. This first implies, by an increasing passage to
the limit, that V'g is superharmonic whenever g is positive
and lower semicontinuous. Let K be a compact set, (KJ be
a decreasing sequence of compact neighbourhoods of K such
that ^ ^ K^ = K, and let W be the complement of K. Let (fn)

n

be a decreasing sequence of positive continuous functions^
such that fn == i on K, f^ = 0 out of K^; finally, set /K = V'(y^).
This function is harmonic out of K, and possesses the pro-
perty that HU/K ̂  fvi tor any regular open set U, because
of the relation f'^ = inf V'/n. On the other hand,

71

/•K == f- V^w)

is a difference of superharmonic functions, and thus is super-
harmonic. The relation f'K^f then implies /& ̂  /K (property
3), or V(TK)^/K. This being true for compact sets is true
for open sets too (property 8). The inequalities

V'(y^/K, V'(yw)-!/w

cannot be strict, as one gets an equality by adding them.
So we have V(y^K) = /K for any compact K, and the kernels
V and V are identical.
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3. Construction of the resolvent.

We suppose now that the potential f is bounded and conti-
nuous. The kernel V associated with f defines a bounded
positive operator in the Banach space C^. We shall use Hunt's
method (or rather the modification of it Lion gave in [7])
to get a submarkovian resolvent (9) (V^x) such that V° = V.
We only sketch the proofs.

Let us remark first that V satisfies the weak principle
of the positive maximum. Namely, if g is any function in 6^,
and S is the closed set ^ x : g(x) ̂ 0|, we have:

Max Vg(a;) = Max Vg(^)
a?eE a?eS

provided the first member is positive.
In order to prove it, let us call m the second member, and

assume that m is ^0. The function Vg^ being harmonic
in E\S, the function m—Vg is superharmonic in E\S. The
function V|g| is a potential, and we have m—Vg ^—V|g|.
Now m—Vg is positive at every boundary point of E\S.
The result then follows from the minimum principle (Brelot
[3] p. 93).

Let us assume now that X is a strictly positive number,
and that we have been able to find an operator V^ in (^ such
that: v — v^ = AVV^ = xv^v
we may check the following points :

a) V^ is a positive operator.
Let us show indeed that g ̂  0 implies V^g ̂  0. If this

were not true, V^g = V(g — XV^g) would have a strictly
positive maximum, and thus take a strictly positive value
on the set | g — ^V^g ^> 01, which is impossible, g being
negative.

b) V^ is a kernel (it is majorized by V, which is a kernel).
c) II^V^I is smaller than 1.
It is sufficient to check the inequality XV^l ̂  1. Remark

that 1 majorizes AVM on the set | 1 — X V M ^ O j ; now

(9) We also refer the reader to [7] for the definition of a resolvent, and a statement
of the Hille-Yosida theorem.
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XV^l == V[X(i—XVM)]; so the positive maximum principle
implies that 1 majorizes XV^l everywhere.

To conclude the proof of the existence of a resolvent, we
make a few easy remarks. First, V^ = V(I + XV)""1 exists
for small X $ the set of all X > 0 such that V^ exists is open
(as the complement of the spectrum of — V). Whenever the
operators V^ and V^ exist, they satisfy the resolvent equation
V^ — V^ = — (X — p^V^V^. A simple Cauchy sequence argu-
ment then shows that the set of all X > 0 such that V^ exists
is also closed in R+S^O^. So V^ exists for all X > 0.

Our aim in this paper is the construction of the semi-group
(P() which admits (V^) as its resolvent. Unfortunately, the
denseness conditions of the Hille-Yosida theorem are not
satisfied here, and we shall need more complicated conside-
rations.

We recall (10) that a positive measurable function u is said
to be supermedian with respect to the resolvent (V^) if it
satisfies the inequality XV^u ̂  u for every X > 0. We have
the following result, which will be improved later on :

LEMMA. — Every positive superharmonic function u is
supermedian with respect to the resolvent (V^).

Proof. — It is sufficient to check the inequality XV^u ̂  u
in the case of a bounded positive superharmonic function u.
The function V^u = V[u — XV^u] may be written as
a.V(^ — w), where a is a constant, and the functions v and w
take their values in [0,1]. The functions V^, Nw are specific
minorants of /", and therefore continuous. The function XV^u
thus is continuous, and its absolute value is majorized by a
potential; it is subharmonic in the open set | u—XV^u^O \ ==W,
and majorized on E\W by the superharmonic function u.
The minimum principle then implies that it is majorized by
u on E.

4. Construction of new kernels.

Let W be a regular open set. We define a new kernel:

Twg == Vg — HwVg (g measurable and bounded).

(l9) See the seminar volume [8].
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If g is positive and bounded, Vg is superharmonic, continuous
and bounded, so Twg is positive, continuous, bounded, equal
to 0 on E\W. If we identify the space (°o(W) to the set of
all continuous functions on E which vanish on E\W, we may
consider the operator Tw as an operator on Co(W), and thus
as a kernel on W. We shall be rather sloppy in distinguishing
these two interpretations of Tw.

The operator Tw satisfies the weak principle of the positive
maximum on (°o(W); one may therefore find a submarkovian
resolvent (T^)^o on (°o(W), such that Tw = Tw. The mea-
sures T}v(x, dy) will equivalently be considered as measures on
W, or as measures on E concentrated on W (with T^r(rc, dy) === 0
for a;e=E\W). The positive superharmonic functions in W
are supermedian functions with respect to the resolvent (Tw).

We now define a new resolvent by setting:
/j

Swg == -Y Hwg + T^(g — Hwg) (g Borel measurable and

bounded, X > 0). We get this time a markovian resolvent on
E; the measures ^S^v(*r, dy) are concentrated on W for x e W,
and are unit masses at x for x e E\W. If g is harmonic, we
have XSwg = g- The positive superharmonic functions on E
are supermedian with respect to this resolvent, which carries
(°o(E) into (°o(E), We shall show that, if f has been properly
chosen, one may apply the Hille-Yosida theorem to (Sw) on
w-Any probabilist will recognize in (Tw) the resolvent of
a process killed at the complement of W, and in (Sw) the
resolvent of a process stopped at the complement of W.

5. Choice of/; construction of the local semi-groups.

Let (pn) be a sequence of bounded and continuous poten-
tials, which separates the points of E (n). For each n, let a^ be
a constant such that a^ — p^ is subharmonic and positive,
and let q^ be the positive subharmonic function:

qn = (^ —— Pn) + (^n —— Pn)2.

(ll) See [3] p. 97, or [5] p. 438.
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We choose now a sequence of positive constants bn such that
the series ^b^n converges to a (continuous and) bounded
function q. Let c be a constant such that c — q is positive.
We take for f the potential part of the positive superharmonic
function c — q. We begin the construction of the semi-groups
with the following lemma :

LEMMA. — The weak limit of the measures XS^r(.r, dy) is
^x f071 every x e E, as X tends to + oo.

Proof. — There is no problem at all for x e E\W, because
the measure XSw(^? d y ) remains equal to e^ For x e W, let ^
be any weak limit point of the measures XS^r(a;, dy} as X —> oo.
The lemma will be proved if we show that pi === £3;. The pas-
sages to the limit below are justified because the measures
involved are concentrated on the compact set W.

a) We have pi(A) <^ h[x) for any continuous function h,
which is supermedian with respect to (Sw). As a particular
case, we have y.{h) ̂  h[x) for any superharmonic positive
continuous function h.

b) p.(A) = h(x) for any harmonic function h.
c) We have f= VI, and therefore Twi == f— Hw/'. The

resolvent equation implies that lim XT^(/1—Hwjf) == f—Hw/^
X-^00

and thus also limXS^(/'—Hw/") = f—Hw/1. We thus have

^{f— Hw/") = ̂ 5 — Hw/M and finally ^(f) = f{x).
Let us use now the definition of f: (c) and the relation

(J.(l) = 1 imply ^{q) == q(x); using (a), we find that (^) = qn(x)
for every n, and thus :

t^n —— Pn) == »n —— Pn{x) $ ^[(^ —— pj2] = (^ —— pn{x))2

and : Wpn)]2 = ^(P^) == PS(^)

It then follows from Schwarz' inequality that p. is concen-
trated on the set \y : pn(y) == Pn{.^)\; the sequence {pn} sepa-
rating points, we must have (x = £,c.

This result would allow us to construct the stopped semi-
group and processes on W. We shall not try to do it here,
however, and rather concentrate our interest on the resolvent
(T^w).
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Let us consider the operators (T^y) as operators on Co(W),
and remark that the lemma and the explicit relation between
the measures XS^(rc, dy) and T^y imply (using the relation
Hwg=0 for ge(°o(W)):

Urn XT^g = g in the weak topology of (°o(W) (12) for g e (°o(W).
X^-oo

The image of the resolvent T^r is thus (weakly) dense in (°o(W).
We may now apply the theorem of Hille-Yosida and get a
submarkovian semi-group (P^), strongly continuous on (°o(W),
which admits (Tw) tor its resolvent. As above, we shall consider
the kernels P^^, dy) as kernels on W, or as kernels on E
such that Pw(x, dy) = 0 for x e E\W.

6. The definitive semi-group.

The following property is obvious from a stochastic point
of view.

LEMMA. — Let W and W be two regular open sets such that
W c W. Then we have P^g ̂  P '̂ g for every positive Borel
function g.

Proof. — It is sufficient (as we have P^g == P^g.y^w)) to
check this inequality when g is positive, continuous, with
compact support in W. The functions t --/w^-> P^g, t -^w^-> P^ g
being continuous, it is sufficient to verify that the function:

\ -^ f; ̂ Wg - P^g) dt == Tw'g - Twg

is completely monotone. Using the formula:

^Tu^nK-inT^g ( U = W o r W )

which follows from the resolvent equation, we find that we
must only check the inequality:

Twg<Twg (g^(W))
The resolvent equation implies the identity:

Tw — Tw == (I — XTw)(Tw — Tw)(I — XTw)
(12) We recall that the conjugate space of (°o(W) is the space of all bounded Radon

measures on W.


