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SOME CLASSICAL FUNCTION THEORY
THEOREMS AND THEIR MODERN VERSIONS

by J. L. DOOB

1. Introduction.

In 1940 Brelot defined a concept of thinness of a subset A of
a Green space R at a point of the space. In 1957 Nairn extended the
concept by defining thinness of A <= R at a point of the Martin
boundary 8R of R. Since a subset of a set thin at a point is also thin
at the point and since the union of two sets thin at a point is thin at
the point one can make the definition, for A c: R, that ^ is a fine
limit point of A if A is not thin at ^ If/is a function on R, the concept
of fine limit of/at ^ and related limit concepts, are thereby well-
defined, even without making R or R u 8R formally into topological
spaces. For most applications, including those in this paper, this
untopological approach to fine limit concepts is perfectly adequate.
There is some interest however in going further and defining topo-
logies as suggested by the thinness concept. The now7 classical fine
topology on R can be defined by the convention that a point ^ of R
is a fine limit point of a subset A of R if and only if A is not thin at ^.
A topology on R u 8R wdll be called compatible with the thinness
concept if a point ^ of R u 8R is a limit point of a subset A of R
if and only if A is not thin at ^. Any such topology induces the fine
topology on R,and all such topologies are equivalent in so far as
limiting values at points of R u 8R of functions defined on R are
concerned. Thus it is legitimate to discuss fine limits of such functions
wdthout specifying which of the topologies compatible wdth the
thinness concept is involved. «Fine topology» on R u 8R will
refer to any such topology. For example one simple topology
compatible with the thinness concept (and maximal in a certain
sense) is obtained by the definition that a subset A of R u 8R has a
point of this space as a fine limit point if and only if A n R is not
thin at the point.
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It is not yet obvious which topology compatible with the thinness
concept is the most useful one. See Gowrisankaran [8] for a discussion
of the possibilities. Cartan pointed out in .1940 that the topology on
R w^hich is the smallest topology (fewest open sets) making super-
harmonic functions continuous is precisely the fine topology on R,
defined above in terms of thinness. In a natural extension of Cartan's
idea Nairn [10] defined a (minimal in a certain sense) topology on
R u 8R compatible with the thinness concept, the smallest topology
making certain potentials on R u 8R {0 potentials) continuous.

In 1954 and 1957 Doob gave a probability interpretation of
thinness, thereby giving a probability interpretation of the fine
topology. The fine topology makes possible very elegant formulations
of various results. For example, a boundary point of a Euclidean
domain is regular for the Dirichlet problem if and only if the comple-
ment of the domain has the point as fine limit point; a conformal
map from one hyperbolic Riemann surface to another has a fine
limit at almost every Martin boundary point, and so on. These
results w^ere obtained in the natural course of various investigations,
not inspired by the fine topology. By now^ it is clear, however, that
the fine topology is intrinsic in potential theory and related subjects.
It is natural therefore to investigate its possible applications to the
cluster value theory of analytic functions. An obvious step is to find
the relations between the angular and fine cluster sets (at boundary
points) of functions defined on a ball or half-space. This step has
already been carried out by Doob and by Constantinescu and
Cornea, and more completely recently by Brelot and Doob [2]
w^here detailed references will be found. The purpose of the first
part of the present paper is to give some of the significant results of
cluster value theory, in so far as they involve the fine topology, of
superharmonic, harmonic, and meromorphic functions at the boun-
dary of a half-space of definition and at an isolated singularity. The
most interesting new^ results in this part are Theorems 4.1, 5.1, and
7.3. According to Theorem 4.1, if / is a function from a half-space
to a compact metric space, and if Q is a boundary point of the half-
space, the cluster set of/along the normal to Q is a subset of the
fine topology cluster set at Q for almost all Q. This theorem makes it
possible to derive the classical theorem on the almost everywhere
existence of normal limits of a positive superharmonic function at
boundary points of its (half-space) domain from the general theorem
on the existence of almost everywhere fine limits at Martin boundary
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points of an arbitrary (Green space) domain. In fact Theorem 5.1
generalizes the classical limit theorem to apply to ratios of positive
superharmonic functions. In Section 6, applying the results of this
and previous papers, the classical Plessner theorem for meromorphic
functions on a disk or half-plane is put into a new and more precise
form (Theorem 6.2) involving normal and fine cluster values. Theorem
7.3 is an analogue involving fine cluster values of the Casorati-
Weierstrass theorem for meromorphic functions in the neighborhood
of a singularity.

In the second part of this paper a Hardy-Littlewood inequality
(7.4) for positive subharmonic functions on a disk is extended to
positive subharmonic functions defined on an arbitrary Green space
of dimensionality N ^ 2. The generalization is given both in pro-
babilistic language (Theorem 10.1) and non-probabilistic language
(Theorem 11.1) but the probabilistic version is the more intuitive
one. The Hardy-Littlewood inequality is put into a setting which
makes it clear that the fundamental inequality underlying the work is
a much simpler maximal inequality, an application of an elementary
submartingale inequality. In Section 12 it is show^n that the original
Hardy-Littlew^ood inequality, in fact its generalization to N ^ 2
dimensions, is easily obtained from the general case.

I. APPLICATIONS OF THE FINE TOPOLOGY TO
FUNCTION THEORY.

2. Cluster values at the boundary of a half-space.

If/is a function from an N-dimensional half-space into a compact
metric space, it has a cluster set at the boundary point Q which
depends on the admissible method of approach. Let AQ be the cluster
set along the line through Q normal to the boundary. Let BQ be
the cluster set for non-tangential approach, and let CQ be the fine
cluster set, that is, the cluster set for approach in the fine topology.
These three sets are non-empty: AQ and CQ are compact; BQ is a
countable union of compact sets. In topological language, AQ is
the cluster set on approach to Q in the topology assigning as
deleted neighborhood of Q the part of the half-space on an interval
of the line through Q normal to the boundary, the interval to have
Q as one endpoint. If (« non-tangential topology ») a deleted neigh-
borhood of Q is defined as any subset of the half-space w^hose



116 J. L. DOOB

complement in the half-space is tangential, the non-tangential topo-
logy cluster set is the closure of Bp. A function on the half-space has a
non-tangential limit at Q, that is, a limit on every non-tangential
sequence to Q, if and only if it has a limit in the non-tangential
topology.

In the following, normal and fine limits will be denoted by n lim
and/lim respectively.

Using the relations to be described between AQ, BQ, CQ, Fatou's
boundary limit theorem, involving non-tangential approach, for
harmonic functions on a half-space, is equivalent to the same
result for approach in the fine topology (see [2]). The fine topology
approach is more natural however, for the following reasons.
(a) In terms of the fine topology there is a natural extension ofFatou's
theorem to the ratio u/h of two positive superharmonic functions [6]:
u/h has a fine limit, but not necessarily a non-tangential limit or even
a normal one, almost everywhere on the boundary, for the boundary
measure determining the harmonic component of h in its Poisson-
Stieltjes representation, (b) Even if h = 1 in (a), so that the boundary
measure is a constant multiple of Lebesgue measure, the stated result
does not become true for angular approach, although it is then true
for normal approach, (c) The fine topology version of Fatou's
theorem, even in the ratio form (a), remains true for functions on an
arbitrary Green space.

It is clearly a present task for mathematicians to go through the
extensive theory of cluster values of meromorphic functions and to
see what if any contribution the fine topology has to offer.

3. A projection theorem.

In the following, if ^[A] is a point [set] in a given half-space R,
<^*[A*] will denote its projection on the boundary 3R. Lebesgue
N-dimensional measure on 8R will be denoted by v. If N > 2 the
area of the unit sphere in N-space multiplied by N — 2 will be
denoted by I/ON ; a^ = l/(27c). The distance from ^ to 8R will be
denoted by d^. The Green function of R will be denoted by g and
the harmonic measure of a set A c= 8R relative to ^ by jn(^, A).

LEMMA 3.1.—Let S cz R be a countable union of Borel sets, each
on a hyperplane parallel to 8R, with disjoint projections on 8R. Let
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6 be the supremum of the distance from 8R to a point of S. Define

(3.1) r^aj8^^*).
Js ^

Then there is a constant c^ independent of S, <5, such that v ^ c^.
IfS is contained in the ball of center ^o and radius r, and if§ is suffici-
ently small, depending on £, r, but not on ^o or S,

(3.2) ^o)^(^S*)-£.

When ^ = ^o m (3.1) and all the points of S are within distance r
of <^o. the integrand is uniformly within ^/[a^S*)] of the normal
derivative ofg^o,. )at y;*, if 6 is sufficiently small, depending on £,
N, r. The second assertion of the lemma is therefore true. In proving
the first assertion we suppose that N > 2; the proof when N = 2
is similar. [The manipulations to follow are due to Mr. G. A.
Brosamler.] Fix ^ in R and let M(s} be the supremum of ^g(^ ti)/d^
as r\ varies on the intersection with R of the sphere of center ^ and
radius 5. On this sphere

(3J) aNg((^ = ^N[s-(N-2) _ (,2 ^ 4^-(N-2)/2j
dy, d^

and the derivative of the right side with respect to d^ is negative.
Applying this fact one finds that

(3.4) M(s) = o^N - 2) d^ if d^ ^ s
= ̂ [s-^-^ - (2<. - s)-^-2^ - s) if <. > 5.

An elementary calculus argument shows that M is a decreasing
function. It follows that if/(5) is the Lebesgue (N — l)-dimensional
measure of the part of S at distance ^s from ^ then/(.s) ^ as^'1
for some constant a depending only on N and

/»00 /•00

i^)<d M(s)d/(s)=- /(s)dM(s)
Jo Jo

(3.5)v / /•QO /»oo

^ - as^-^d^s) = a(N - 1) M(s)sN-2 ds.
J o J o

Now from the above evaluation of M(s),

(3.6) f ' M(s)s^-2 ds = ON [ [1 - (2 - O^-2^-2]/^ - 0 dt
J o •/ o
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and
pcc

(3.7) M(s}s^-2ds=2{^ -2)^.
J^

Hence v is bounded as stated in the lemma.
Throughout this paper, if h is a positive superharmonic function

on some domain and if A is a subset of the domain, R^ means the
regularized (to J3e lower semi-continuous) reduced function of h
on A, that is R^ is the positive superharmonic function which
coincides off a set of capacity zero with the lower envelope of the
positive superharmonic functions on the given domain which domi-
nate h on A. We shall use in the proof of Theorem 3.1 the fact that if v
is the Green potential of a positive measure on the domain, if the
measure is carried by A, and if v ^ h on A, then v ^ R^ on the whole
domain.

In the following theorem we describe a point on the boundary
of a half-space as a normal limit point of a subset of the half-space
if the boundary point is a limit point of the part of the subset on the
normal line through the boundary point.

THEOREM 3.1. — Let R be a half-space and let A. be a subset of R.
Then almost every normal limit point of A on 8R is a fine limit point
of A.

We can and shall suppose that A is a Borel set, and even a G^ set.
In fact let A' be the set of fine limit points of A in R. Then it is known
that A' is a G^, and that A - A n A' has capacity zero. Let A" be the
union of A' and of a G^ set of capacity zero covering A - A n A'.
Then A" is a G^ set including A, with the same fine limit points as A
on 8R. Thus if A is not already a G^ set we can replace it by A". We
can also suppose that A is bounded. Then the set B of normal limit
points of A is also a bounded G^ set. Let A^ be the part of A at
distance < 1/n from 8R. Fix some point ^o of R at which the re-
gularized reduced function R^ is equal to the reduced function (the
actual lower envelope involved) for n ^ 1. Given n, £, there is an
open set G =) A^ for which

Rf^o) ^ R%o) - ^
and for which each point of G is at distance < 1/n from 8R. Applying
Vitali's theorem, there is a subset S of G, consisting of countably
many (N - l)-dimensional intervals, parallel to 5R, whose pro-
jections on 8R are disjoint and cover almost all of B. Now according
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to the lemma, n can be chosen to make, in the notation of the lemma,
(3.8) f^o) ^ ^o, S*) - s ̂  /^o, B) - £,

and v ^ CN for some constant CN independent of <^o and n. But then,
since v/c^ is a Green potential dominated by 1 on S, whose measure
is carried by S,

(3.9) R^o) ^ ^O)/CN ^ /^o, B)/CN - £/CN.
Hence

(3.10) Rf^o) ^ ^o, B)/CN - £/CN - £
so that

(3.11) limRH^^B)/^.
n—»oo

Now according to a theorem of Nairn [10] the greatest harmonic
minorant ofRf" is /^( . , C), where C is the set of fine limit points ofA^,
that is of A, on 8R. Hence ^( . , C) ^ ^i{., B)/CN. Since the harmonic
measure of a boundary set has fine limit 1 almost everywhere on the
set, 0 at almost all other boundary points, C must include almost
all of B, as was to be proved.

4. Relations between AQ, BQ, CQ.

THEOREM 4.1. — Let f be a function from a half-space to a compact
metric space. Then at almost every (Lebesgue measure) boundary point
Q, AQ c: CQ. In particular f has a normal limit at almost every
boundary point where f has a fine limit, and the limits are the same.

Note that no regularity hypotheses have been imposed on f. The
sets AQ and CQ are compact, for each Q. Hence to prove the theorem
it is sufficient to prove that there is an exceptional subset of the
half-space boundary, of measure 0, such that, if Q is not in this set,
CQ meets (that is, has a non-empty intersection with) every closed
ball which AQ meets. It is even sufficient to consider only a properly
chosen countable sequence of balls, and therefore even sufficient
to consider a single ball S, and prove that if B is the set of boundary
points Q for which AQ meets S, CQ meets S for almost all Q in B.
Let S^ be the concentric ball of radius larger than that of S by l/n.
Then/" ̂ SJ is a set in the half-space which has every point of B as a
normal cluster value. In view of Theorem 3.1 we conclude that
/"^SJ has almost every point of B as a fine cluster value. That is,
for almost every Q in B CQ meets S^. Hence for almost every Q in
B CQ meets S, as was to be proved.



120 J. L. DOOB

The known relations, besides that given by Theorem 4.1, between
AQ, BQ, CQ for a function from a half-space to a compact metric
space can be summarized as follows. (See [2] for proofs and refe-
rences.) It is trivial that A c= BQ. For almost all (Lebesgue measure)
Q, CQ c: BQ. Moreover if the function/is positive and harmonic or
the quotient of two such functions, BQ c: CQ for all Q, so that,
under these special hypotheses on the function, BQ = CQ for all Q,
so that, under these special hypotheses on the function, BQ = CQ
for almost all Q.

5. A new generalization of Fatou's theorem.

A positive harmonic function on a half-space has a nontangential
limit at almost every (Lebesgue measure) boundary point. A positive
superharmonic function on a half-space need not have a non-
tangential limit at almost every boundary point, but does have a
normal limit at almost every boundary point It is one of the beauties
of the fine topology that using it as the approach topology no
modification is needed in going from a Fatou-type boundary limit
theorem for positive harmonic functions to one for positive super-
harmonic functions. In the following theorem the fine topology limit
theorem is used to derive the normal one, and in fact a new normal
one.

By a Stolz domain for a boundary point Q of a half-space we
mean as usual the intersection with a ball of center Q of the interior
of a right circular cone whose closure lies in the half-space except for
its vertex Q.

THEOREM 5.1. —Let h be superharmonic and positive on the half-
space R. Suppose that u is defined and superharmonic on an open
subset of R containing a variable Stolz domain \vhose vertex runs
through a boundary set B. Suppose that on each of these Stolz domains
u/h is bounded from belo\v. Then u/h has a finite fine limit and equal
normal limit at all points ofB except for the union of a set of Lebesgue
measure 0 and one of measure 0 for the measure associated twith the
harmonic component of h in its Poisson integral representation.

Note that the half-angle of the Stolz domain and the orientation
of its axis may vary with the vertex. In view of Theorem 4.1, it
is sufficient to prove that u/h has a finite limit at all points of B
except for a set of the type described, and this is precisely the first
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part of the proof of Theorem 10 in [2]. Furthermore, if u and h are
harmonic the limit in Theorem 5.1 is even a non-tangential limit
according to [2].

If h is a Green potential the theorem is vacuous. If h = 1 and
if u is a Green potential on R, the theorem becomes the Littlewood-
Privalov theorem that a Green potential on R has normal limit at
almost every (Lebesgue measure) boundary point. Conversely the
latter theorem can be used to derive the key Theorem 3.1.

Lebesgue measure is involved in Theorem 5.1 because of the use
of Stolz domains. If instead it is supposed that u/h is bounded below
in a deleted fine neighborhood of each point of B the conclusion
becomes that u/h has a finite fine limit and equal normal limit at
almost every boundary point for the measure associated with the
Poisson integral representation of the harmonic component of h.

6. Cluster sets of superharmonic, harmonic, and meromorphic functions
at the boundary of a half-space.

We consider functions / from a Green space into a compact
metric space, specializing later. The Green space topology is the
usual one unless « fine » is prefixed to a concept under discussion,
when the fine topology is used. In every case the function / will
be fine-continuous. In particular the results will be applicable to
superharmonic functions, for which the range space is the extended
compactified line, and to meromorphic functions, for which the range
space is the extended compactified plane.

The continuity condition on / implies that the function is Borel
measurable. In fact the continuity condition is equivalent to the
combined condition that/be Borel measurable and that its restriction
to a Brownian path from a point of the space be a continuous
function of the path parameter for almost all paths from the point.
The restriction of the function to a conditional Brownian path from
the point to another point, either of the space or on the Martin
boundary and minimal is then a continuous function of the path
parameter for almost all these paths.

It follows from these facts, applied to subdomains of the Green
space, that the image under an admissible function / of any open
connected subset of the Green space is arcwise connected. In par-
ticular if the Green space is an N-dimensional half-space, the
nontangential cluster set BQ is connected. The fine cluster set CQ



122 J. L. DOOB

is also connected; in fact even if the domain is a general Green space
the set of the fine cluster values of/at a minimal boundary point Q is
connected. Indeed this cluster set is the cluster set at Q of the
restriction of/to each conditional Brownian path from a point Qo
of the Green space to Q, except for a set of paths of zero probability.
If the Green space is an N-dimensional half-space and if/is extended
real-valued, BQ and CQ must be sub-intervals of [—00,00]. The
connectedness results can of course also be obtained without
probability, although the probability approach shows better why
they are true.

[If the function / is not necessarily fine continuous but at least
if for every a > 0 the restriction of / to some closed set whose
complement has capacity <e is continuous, that is i f / is fine-con-
tinuous except at the points of a set of zero capacity,/need no longer
be Borel measurable. It remains true, however, that the restriction of
/ to a Brownian path from a point of the space is a continuous
function of the path parameter, excluding the parameter value 0,
for almost all paths from the point. Then Cp (even in the general
context in which Q is a minimal boundary point of a Green space)
is still connected, but AQ and BQ need not be.]

The following theorem is a slight reorganization of the results
we have obtained, in particular of Theorem 5.1 with h = 1, stated for
comparison with Theorem 6.2 which refines Plessner's classical
cluster value theorem for meromorphic functions.

THEOREM 6 .1 .— I f f i s a superharmonic function on a half-space
one of the following situations holds at almost every (Lebesgue measure)
boundary point Q.

(a) - oo e CQ n BQ, CQ c: BQ.
(b) f does not have a nontangential limit at Q but has a finite fine

limit and an equal normal limit there.
(c) f has a finite nontangential limit and an equal fine limit at Q.

According to Theorem 5.1, / has a finite fine limit at almost
every (Lebesgue measure) point Q for which —oo is not in BQ.
Moreover as was noted in Section 4, CQ c: BQ for almost all Q. Thus
Case (a) holds for almost all Q with — oo €CQ. Moreover / has a
finite fine limit, according to [6] at almost every Q for which —oo
is not in CQ. According to Theorem 4. I/also has a normal limit, equal
to its fine limit, at almost every such point. Thus (b) or (c) is true
almost everywhere where (a) is false.
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It is not known whether in (a) CQ can be a proper subinterval
of BQ for a Q set of strictly positive measure. If N = 2 a fine neigh-
borhood of a point Q necessarily contains circles of center Q and
arbitrarily small radii, and linear segments with endpoint Q making
angles arbitrarily near n/2 and —n/2 with the normal through
Q. It then follows from the minimum principle for superharmonic
functions, applied to the region bounded by two such segments and
two such sufficiently small circles, that (b) can be strengthened to

(b)^=2 f does not have a nontangential limit at Q but has a finite
fine limit and an equal normal limit there, namely the left endpoint of

Ît is not known whether or not this strengthening is possible when
N > 2. Since the Green potential of a positive measure has normal
and fine limit 0, but not necessarily a nontangential limit, at almost
every boundary point Q, Case (fc) actually can occur.

If/is harmonic, the three cases become:
(^)harm.BQ = CQ == [ - 00, 00 ].

(^)harm.BQ = [—oo, oo ] but there is a finite fine limit and an equal
normal limit at Q.

(c)harm. There is a finite nontangential limit and an equal fine limit
at Q.

This specialization is proved by applying Theorem 6.1 to/and
—/, taking into account the fact [2] that a harmonic function on a
half-space has a finite fine limit at almost every point Q where BQ
does not contain both -hoo and —oo. Case (fc)harm. can be omitted
when N = 2 but it is not known whether it can arise when N > 2.

The version of Theorem 6.1 for meromorphic functions is an
extension ofPlessner's classical theorem. It was proved independently
by Doob [7] and by Constantinescu and Cornea [4] aside from a
further extension involving normal limits which follows from
Theorem 4.1. With the extension the theorem becomes.

THEOREM 6.2. — If f is meromorphic on a half-plane, one of the
following situations holds at almost every point Q of the boundary.

(a) BQ = CQ = extended plane.
{b) BQ = extended plane, but there is a finite fine limit and an

equal normal limit at Q.
(c) There is a finite nontangential limit and equal fine limit at Q.
Constantinescu and Cornea have shown by an example that (b)

cannot be omitted, in general. If / omits a single value, however, (b)


