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ON $ BOUNDED HARMONIC FUNCTIONS

by MITSURU NAKAI

1. Throughout this paper, we denote by ^(t) a non-negative real-
valued function defined on the half real line [0, oo) = ( t ; 0 ̂  t < oo).
A harmonic function u on a Riemann surface R is called ^-bounded
if the composite function <? ([ u \) admits a harmonic majorant on R, i. e.
there exists a harmonic function h such that 0 (] u \) ̂  h on R. We
denote by

H $ = H <& (R)

the totality of 0-bounded harmonic functions on a Riemann surface R
and by On* the class of all Riemann surfaces on which every ^-bounded
harmonic function reduces to a constant. In our study, the following two
quantities will play an important role:

d (<&) = lim sup 4> (f)/t
t-> 00

d (<D)== lim inf<I>^)A
t-^ 00

The properties of H4>-functions on Riemann surfaces and the class
On* are first investigated by Parreau [3] for the special <& (t) which is
increasing and convex (1). In the present paper we shall investigate the
same problem for general $ (0. Our conclusion is, roughly speaking, that
Parreau's result about Ow holds essentially for general 0(0 and his
result about properties of H0-functions can be derived by assuming
d (<!>) > 0 instead of increasingness and convexity which is, in a sense,
the weakest condition.

2. As for the class On*, Parreau [3] showed that the class On* for

(1) For such a function, it is well-known that ^(0)=^(0)>0.
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increasing and convex $ (t) coincides with Onp or OHB (2) according to
J(0) < oo or d(^) == oo, respectively. Now we ask what can be said
about On* for general 0 (0. The answer is given by

THEOREM 1. — If d(0) < oo (resp. ~d(^) =00), then OH*C:OHP
(resp. On* D OHB).

This was proved implicitly in our former paper [2] by using Wiener's
compactification of Riemann surfaces. We shall again give an alternating
elementary proof in § 1. In this theorem, we cannot replace the inclusion
relation by the equality in general. But the function <1> (t), by which the
equality does not hold in the above theorem, is very singular and trivial
one from the view point of H^-functions as the following shows :

THEOREM 2. — (i) // <& (t) is bounded on [0, oo), then On* consists
of all closed Riemann surfaces;

(ii) // 0 (t) is completely unbounded (3) on [0, oo), then On* consists
of all open Riemann surfaces;

(iii) If ^ (t) is not bounded and not completely unbounded, then
On* == OHP or OHB according to d(^) < oo or d(^) == oo, respectively.

This was proved in [2] and determines the class On* completely
for any possible 0 (0. This is easily proved by using Theorem 1. We will
do this also in § 1.

Observing Theorem 2, we are tempted to conclude that pro-property
is closely related to positiveness or boundedness properties except trivial
0's as in (i) or (ii). Next we consider this problem. To state the problem
formally, let us recall three notions for harmonic functions : essentially
positive, quasi-bounded and singular.

3. A harmonic function M on a Riemann surface R is called essen-
tially positive if u can be represented as a difference of two HP-functions
on R, or equivalently, if u admits a harmonic majorant on R. We denote
the totality of essentially positive harmonic functions on R by

HP' = HP' (R).

(2) As usual, HP (R) (resp. HB (R)) denotes the totality of non-negative (resp.
bounded) harmonic functions on R. The meaning of OHP and OHB is similar to
that of On*.

(3) We say that $ (f) is completely unbounded on [0, oo) if $ (t) is not
bounded at any neighbourhood of any point in [0, oo).
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Clearly HP' (R) D HP (R). For two functions u and v in HP' (R), there
always exists the least harmonic majorant (resp. the greatest harmonic
minorant) of u and v, which we denote by u V v (resp. u A v). Then
HP' (R) forms a vector lattice with lattice operations V and A- For
u in HP' (R), we denote by Mu the function u V 0 + (— u) V 0, which
is the least harmonic majorant of j u j. Next first for u in HP (R), we
denote by Bu the HP-function defined by sup (y (p)\ u ̂  v 6 HB (R)) on
R. Clearly B is order-preserving, linear and B2 = B on HP (R) (see
Ahlfors-Sario [I], p. 210). Next for u in HP' (R), we put Bu = B^i—B^,
where u == Mi — Us and Mi and u^ are in HP (R). Here, by the linearity
of B on HP (R), Bu does not depend on the special decomposition of u
into HP-functions. Again the operator B is order-preserving, linear and
B2 == B on HP' (R) and moreover B commutes with M, V» and A. This
is clear on HP (R) by definitions of B, V, A and M. For the general case,
we have only to show that B (u V 0) = (Bu) V 0. Since

Bu=B(u\y 0)—B((—u) VO)

and

B ( M V O ) A B ( ( — M ) V O ) = B ( ( M V O ) A ( ( — ^ ) V 0))
= BO == 0,

B (u V 0) is the positive part of the Jordan decomposition of Bu.

An HP'-function u is called quasi-bounded (resp. singular) if Bu = u
(resp. Bu = 0). These notions were introduced by Parreau [3]. We denote
the totality of quasi-bounded harmonic functions on R by

HB' == HB' (R).

Clearly HB'DHB. Since B commutes with M, V and A» we see that
Bu = u is equivalent to BMu = Mu. Hence we can also define

HB' (R) = (u € HP' (R) ; BMu = Mu).

4. Parreau [3] showed that, for increasing and convex function
0 (0, H<t> c HP' and if moreover J(0) == oo, then W C HB'. Our next
problem is to investigate whether such relations hold or not for general
<& (t). The answer is negative in general: we shall single out in § 4
an increasing continuous unbounded function 0 (t) with 3 (0) < oo and
d (<!>) == 0 and an H^-function in the open unit disc which is not an
HP'-function there (Example 2). This shows the invalidity of W C HP'
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in general. Only for this aim, we may take bounded <E> (0. But we are
interested in unbounded <1> (t). We shall also construct in § 3 an increasing
continuous function <I> (0 with d (<!>)== oo and d (0) = 0 and an H<I>-
function in the open unit disc which is not an HP'-function there (Example
7). This shows the invalidity of the relation H0 c HP' and so of the
relation HO c HB' even if 3(^) = oo.

Then there arises the question when can we conclude the relation
H0 c HP' or HB'. Both examples above show that unboundedness, not
completely unboundedness, increasingness, continuity or all of them cannot
give the condition. In both examples above, d (<E>) = 0. This suggests us
that the required condition may be d (0) > 0. This is really the case.
Firstly the answer for H0cHP' is given completely by the following
which includes Parreau's case :

THEOREM 3. — In order that H$ (R) C HP' (R) for any Riemann
surface R, it is necessary and sufficient that d ($) > 0 (no matter -whether
d(Q>) is finite or infinite).

The proof of this will be given in § 5. Similarly we ask about the
condition which assures the relation H<I> c HB'. In this case, even in the
Parreau's case, we must assume that d (<!>) = oo as the following simple
example shows : 0 (f) = t, R = (z ; 0 < [z[ < 1) and u (z) = — log [z|.
The best possible general conclusion is as follows :

THEOREM 4. — // J($)= oo, then H0 (R) n HP'(R) c HB'(R).

Here we cannot drop HP' (R) in the above relation as Example 1
shows. The above theorem will be proved in § 6. Now assume that
d (0) > 0, then by Theorems 3 and 4, H^> (R) c HB' (R). Conversely if
H 0 (R) c HB' (R) for any R, then H0 (R) c HP' (R) for any R and by
Theorem 3, d (0) > 0. Thus we get the following which includes Parreau's
case:

THEOREM 5. — Assume that d (0) = oo. In order H<E>(R)cHB'(R)
for any Riemann surface R, it is necessary and sufficient that d (<!>) > 0.

1. Proofs of Theorems 1 and 2.

1. Proof of Theorem 1. — I. The case d (<!>)= oo : Assume that
there exists a non-constant HO-function u on R. By the definition of
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0-boundedness, there exists an HP-function h such that $ (| u [) ̂  h
on R. We have to show that R ̂  OHB . Contrary to the assertion, assume
that R € OHB. Since d (0) == oo, we can find a strictly increasing
sequence (r^)5Li of positive numbers rn such that lim r n = o o ,
^ On) > 0, Gn == (p £ R ; | u (p) | < rn) ̂  0 and Urn On == 0, where

n-> 00

^==^/$(rn). Then clearly

GiCGzC-.CGnC..., R= U Gn.
n=l

First we show that Gn ̂  SOna for some n on (4). If this is not the case,
then Gn € SOna for all M'S. Then since anh — \u is superharmonic and
bounded from below on Gn and

dnh —— | U j ̂  On 0 ([ U j) —— [ U [ = Ctn <& (r^ —— rn = 0

on <9Gn, we can conclude that dnh — \ u | ̂  0 on Gn. Since dn \ 0, we
must have u = 0 on R, which is clearly a contradiction. Hence we may
assume that Gn^SOna (w == 1, 2, 3,...) by choosing a suitable subse-
quence of (/n), if necessary.

Next we assert that Gn — Gi e SOna (n == 1, 2, 3,...). For, if there
exists a Gn with Gn — Gi ̂  SOnB, then there would exist two disjoint
non-empty open sets Gi and Gn — Gi not belonging to SOna • By the
so called "two domains criterion", we must have that R^OHB (see
Ahlfors-Sario [I], p. 213). But this contradicts our assumption R £ OHB.

Now consider the function Wn == dnh + ri — [ u -\ on Gn, which^is
superharmonic and bounded from below on Gn and so on Gn—Gi.
By the similar manner as before, we see that Wn ̂  a^h — \u ==0
on <9Gn. Clearly Wn ̂  ri — \u\ = 0 on <9Gi. Hence Wn^O on <9(Gn—Gi).
Since Gn — Gi £ SOna, we can conclude that Wn ̂  0 on Gn or

u ^Onh + ri on Gn. Hence by the fact that dn \ 0, we get that
u ^ ri on R. This contradicts our assumption that R e OHB . Thus we

must have RQ^OHB.

II. The case d ($) ̂  oo : Assume that there exists a non-constant
HP-function u on R. By ?($) < oo, we can find a point s in [0, oo) such
that there exists a finite positive constant C with 0 (t) ̂  Ct (s ̂  t < oo).
Let v == s 4- u. Clearly v is a non-constant HP-function on R with

(4) An open subset G of a Riemann surface R with smooth relative boundary
W is said to belong to SOns if every HB-function on G with continuous boundary
value zero at 3G reduces to a constant zero.
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v ̂  s on R. Hence 0 ([ v |) == 0 (v) ̂  Cv on R. Thus v is a non-constant
H<I>-function on R and so R (f. On*.

2. Proof of Theorem 2. — Ad (i): If $ (t) is bounded, then every
non-constant harmonic function is an H<I>-function. Thus On* consists
of all Riemann surfaces carrying no non-constant harmonic function,
which are closed Riemann surfaces.

Ad (li): For any non-constant harmonic function u on R, since u
is open map of R into [0, oo) by the maximum principle, 0 (' u |) is
completely unbounded on R along with ̂  (t) and so u is not H<t>-function.
Thus there exists no non-constant H0-function on any Riemann surface
and On* consists of all Riemann surfaces.

Ad (lii): Assume that J(0) = oo and that there exists a non-
constant HB-function u on R. As 4> (0 is not completely unbounded, so
there exists an interval (a, b) in which 0 (t) < c = const. Let

v = (a + b)/2 4- ((6 — a)/2) (sup [ u |)-1 M.
R

Then v is a non-constant HB-function and <1> ([ v [) = 0 (v) < c on R.
Thus On* C OHB. This with Theorem 1 gives On* = Ons.

Next assume that J(0) < oo. By Theorem 1, OurDOii*.
Contrary to the assertion; assume that there exists an R in Onp — On*.
Let u be a non-constant H^-function on R. Then <I> (| u |) ̂  c = constant
on R. Since 0 (r) is unbounded and ] u \ (R) is connected in [0, oo) and
contains 0, u must be bounded on R. Then sup | u \ + u is a non-constant

R
HP-function on R, which contradicts the assumption that R € Onp.
Hence On* == Onp.

2. Preparations for Examples,

Let U = (z; |z| < 1) and A be an arc in <9U = (z; | z ] = 1). We
denote by w(z; A) m^ harmonic measure of A calculated at z in U with
respect to U. It is well known that

(1) w(z;A)=(2j3—a)/27r,

where a is the length of A and j8 is the angle seeing the arc A from z.
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We denote by LA the line segment connecting both end points of A. Then
from (1), we easily see that
(2) w(0;A)=a;

(3) w (z; A) = 1 — a/27r on LA.

Next let Ay be the arc in <9U = (z; [ z | == 1) with end points 1 and
e^Q == 1, 2) such that 0 < ai < as, ai < 7r/2, c^ < 'Tr/2. We denote by
Ay (resp. A;) the arc with end points 1 and e-^s (resp. A; == Ay u Ay).
For simplicity, we set La = LA^, i.e. La is the line segment connecting
two end points of As. Then we get the following inequality which plays an
important role in our forth-coming examples : there exists a universal
constant SQ (^ 4-17r4) such that

(4) | w(z ; Ai) — w(z ; Ai) | ̂  SQ at /(ai — a? )2 on La.

proof. — We denote the points ^i, e-^, (^i + e-^/l, 1,
(^a + e-^/l and z on La with Im(z) ̂  0 by D, E, F, G, H and P
respectively. We set DF == FE == d, FH = k, DP == ^, PF == fc and
PE=c. By (1), w(z;Ai)—w(z;Ai)==(^:DPG—^GPE)/7r. Let
^ DPF ==0i and ^ FPE == 62. Then clearly ^ DPG ̂  0i and
^ GPE ̂  02. Hence we have 0 ̂  w (z ;Ai) — w (z ;Ai) ̂  (0i — ftOAr.
Applying the cosine theorem to triangles ADPF and AFPE and then
Pappos' identity to the triangle ADPE, we have

sin 2-1 (0i — 02) = (c — a) (8 abc sin 2-1 (0i + 02))-1 (4rf2 — (a — c)2).

Here we have

ac sin 2-1 (0i 4- 0s) ̂  ^c sin 2~1 (0i + 02) cos 2-1 (0i + 02)
== 2-1 ac sin ̂  DPE == ADPE
== ADHE == dk.

By the triangle inequality applied for ADPE, c — a^2d. Thus by noti-
cing b ̂  k, we have sin 2-1 (0i — 62) ̂  ri2 ̂ -2. As

sin 0 ̂  (2/7T) 0 (0 ̂  0 ̂  2-1 TT),

so 0i — 02 ̂  TT d2 Jfc-2. Now we have d == sin ai ̂  ai and
^ == cos ai — cos 02

== 2 sin-1 (ai 4- 02) sin 2-1 (^2 — ai) ̂  2 7r-2 (a| — af).

Hence
0 ̂  w (z ;Ai) — w (z ;Ai) ̂  4-1 -7T4 a? /(aS — a? )2. Q.E.D.
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We shall use (4) in the particular case where 0 < ai < a^/V^. In
this case, by using universal constant s (^ w4), we get

(5) | w(z;Ai) —w(z;Ai) | ̂  sW / ^ ) on 1.2.

3. Example 1.

We are now able to construct an example of a function <& which is
continuous, increasing, d(^) == oo and d(^) = 0; and an H ̂ -function u
in then open unit disc U == (z; |z] < 1) which is not an HP'-function.

EXAMPLE 1. Let p be a constant such that 0 < p < min (1/4, 1/4^),
where s is the constant in (5) in § 2, and (pn)n=i be a sequence defined
by pn = (p^^ for n = 2- -h fi (y = 0, 1, 2,...; ^=1,2,3, .... 2v).
Let An and An be arcs on the unit circumference such that

and
An=^Q;0^0^2pn/I^/n)

An = (e^ ,—2pn^/n<^9^ 0).

Let (r,,)?^i and (bvff=i be two sequences of positive numbers defined by
Tv = 2/(p41'"1)21' and fc„=2v/2•r„. Define the function 0(0 on [0, oo] by

0(0=

0, ^ € [0,ri];
bi(t—r^ t € [ri,ri + 1];
by, t $ [rv + 1, rp+i] (^ == 1, 2,...);
^ + (bv+i — by) (t — rv+i), t € [ry+i, r^+i + 1] (y =: 1, 2,...)

and ̂  function u (z) in U by

U (Z) = S (W(Z ; An) —— W(Z ; An))/Pn.
n==l

TA^n ^^ following hold :

(a) <&(0 is continuous, increasing, d(^) == oo and d(0) == 0;

(b) M (z) y w^H defined in U and harmonic there;

(c) K(z)eH<E>(U);

(d) M(Z) $ HP'ftJ).

Proo/ 0^ (a). — Is immediate by the definition of 0 (0.



ON O-BOUNDED HARMONIC FUNCTIONS 153

Proof of (b). — For each n = 1,2,..., set

V»(z)=w(z;An)——w(z;An), M»(Z)== $ Vfc(z)/Pt.
fc=l

Then v, and K» are harmonic in U, positive in the upper half of U and
v»(—z)=—v,(z) and M,(—z)=—M»(z) in U. Hence to show that
the series defining u(z) is convergent in U and defines a harmonic function
there, we have only to prove that (Und/2))^ is convergent. By (5) in § 2
we have that '

0 < Vn 0-/2) ̂  s (2 p» 7^/?02/0r/2)4 < s ' p,2,
where s' is a constant independent of n ̂  1. Thus

0 < Un+^i/2) — un(i/2) ̂ m v^i/2)/p^ ̂  ̂  "S"1 ̂  < ̂  p»/(l — p).
fc==n+l ^=n+l

This shows that (Un(i/2))^ is convergent.

Pwo/ of (c). — For each ^=1,2,..., we denote by L. the line
segment L^y, i.e. the line segment connecting two end points of A'a. =
Ay U A2.. Since | Vfc(z) [ < 1 in U, we have

(Vfcfe)/^ | ̂  1/pfc < l/^4'-1)^5 (1 ̂  k ̂  2^)

on U and so on L.. Next for k = 2v + ^ (^ = 1, 2,...) and z 6 L., by
(5) in § 2, we have that

Vfcfe)/^ ̂  s(2pj, 7^/^)2/(2p2^/2v)4 pfc
=^24747^2^2)[^/^]

< J(24747^2 A;2) [(p4')^/^?41'-1)21')4]
= ̂ (2^/4-Tr2 ̂ 2) p4^ ̂  p4.'(n-i)

Hence for z in Ly, we get that

I ̂ ) I ̂  S |^te)/pfc| + s |v.(z)/^|
f c = l fc^2*'+l

9 v

^ 2 l/Cp41"1^ + sp4^^-!)fc==i n=i
^^/(p4-1)2^^

Since ^(z) is quasi-bounded in the upper half of U and in the lower half
of U respectively, we have, for e^ in U — A^, that

|^)|= $ jvn^9))^ s 1/p,
^ == i fe = i
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= 5 l/O^")"6 ̂  r..
fc= 1

Hence by the maximum principle, 0 ̂  M(z) ̂  rv in the intersection of
the upper half of U and the left side of Lv in U. Hence | M(z) | ̂  rv in the
left side of L^ in U. By (3) in § 2, we see that w(z;A2.) ̂  1 —p2^/2•v

on Lv and so on the right side of Lv in U. Hence if z lies between Lv and
L^+i in U, ^w(z;A2*')^&.—2-v /2+2^a)( |M(z)[)—2-v /2+2 , or
<l>(|M(z)|)0.w(z;A20 + 2-v/2+2, since 0(0^^ if r^r.+i. On
the other hand,

27r by w(0; Ay = ^(4py w^) = STT 2-v/2.

Hence if we set w(z) = ^ (fc^w(z; A2.) + 2-v/2+2), then w(0) ===
v=l

8. ^ 2-^2 < oo and so w(z) eHP (U). Thus

<D(|^(z)j)^^w(z;A'2.) + 2-v/2+2^w(z)

between L^ and Lp+i in U. As v is arbitrary, so 0(| ̂ (z) [) ̂  w(z) in U (5).
This shows that u £ H 0(U).

Proof of (d). — Contrary to the assertion, assume that u e HP'(U).
Then j«(z) j has a harmonic majorant A(z) on U. As u(z), Un(^) and
Vn(z) are positive in the upper half of U and antisymmetric with respect
to the real line (i.e. «(z) =—u(— z) etc.), so h(z) ̂  \u(z)\ ̂  \Un(z)\

in U. Clearly [ Un(z) \ = S | w(z; A^) — w(z; Afc) |/pfc and the least har-
k=l

u
monic majorant of the subharmonic function \Un(^)\ is $ w(z;Ajk)/pfc,

^ fc==i
where A& == Ajc U A^ as before. Hence

S w(z;A,)/^ ^A(z)
A;==l

oo

on U for any n = 1, 2,.... Thus in particular, 3 w(0; A^ )/pfc < /i(0),
which gives the following contradiction:

fc==i

o o = 2 $ 1A= 1 S (4^7rA)/p^A(0).
fc==i 2'Tr A?=I

(5) Notice that if z. lies in the left of Li in U, then \u(z)\ < ri and so
0=<^(\u(z)\)^w(z) there.
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4. Example 2.

Consider functions

/ 0(0 = log+ t == max (log t, 0) on [0, oo);
| «(z) = r-1 cos 0 (z == r ^ie) on Uo = (z; 0 < [z| < 1).

Then 0(0 is unbounded, increasing, continuous and d(0) ==rf(0) == 0.
We can also easily see that u(z) is an H 0-f unction in Uo but not an HP'-
function in Uo. But this example deeply depends on the weakness of the
special boundary point 0 of Uo. However, without using such a special
boundary property, we can construct such an example in the open unit
disc U = Cz; |z| < 1) by the aid of Example 1.

EXAMPLE 2. Let 0(0 and u(z) be as in Example 1. Let

0a (0 = min (0 (0, at) (0 < a < oo).

Then the follomngs hold:

(a) Oo (t) is increasing, continuous, d (Oa) == a and d (Oo) == 0;
(b)M(z)eHOo(U);
(c) ^(z)^HP'(U).

5. Proof of Theorem 3.

First we prove that HO (R) C HP' (R) for any R if d (0) > 0. Let
u 6 HO (R) and d (0) == 2 c > 0. Then there exists a point to in [0, oo)
such that 0(0 > c^ (^ ro). Then for any t in [0, oo), 0(0 + c^o ̂  cr.
As 0 (| u |) possesses a harmonic majorant A on R, so

h + cto ̂  0 ([ M [) + cto > c u [

on R. Thus u possesses a harmonic majorant (h + cro)/c, i.e. M € HP' (R).

Conversely, if HO (R) c HP' (R) for any R, then Examples 1 and 2
show that d (0) > 0 no matter whether J(0) is finite or infinite.
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6. Proof of Theorem 4.

Let M £ HO (R) n HP' (R). We have to show that u £ HB' (R). As
u £ HO (R), so there exists an HP-function h such that <I> (| u |) ̂  h on
R. Since u £ HP' (R), we can consider Mu = u V 0 + (— u) A 0 ̂  | u \
and BM. To show that u £ HB' (R), we have to prove that BM == u or
equivalently, BMM == MM (see 3 in the introductory part of this paper).

By the assumption that rf(0)== oo, we can find an increasing
sequence (rn)nLi of positive numbers converging to oo such that 0 (rn) > 0
and Urn an = 0, On = rj^ (rn). Let Gn = (p £ R ; u(p)\ < rj (n == 1,

n -»• oo

2,...). Clearly

Gi c G2 C ... C Gn c ..., R = U Gn.
n=l

Let (Rm)£=i be an exhaustion of R and Wm be a harmonic function
on RW 0 Gn with the boundary value

H^
i mm (Mu — BMu, rn) on (<9RJ n Gn;
(0 on <9Gn.

Since min (Mu — BMu, rn) is superharmonic on R, w^ is subharmonic
on Rm if we define w^ = 0 in R^ — Gn, and w^ ̂  w^+i on R^. Let
Wm be harmonic in R^ with the boundary value

[ min (MM — BMu, rn) on (<9RJ n Gn;
W'n [0 on^R^—Gn.

Then clearly (w^)^=i is a bounded sequence and 0 ̂  w,n ̂  MM —BMM,
n== 1,2,.... If w' is any limiting harmonic function of a convergent
subsequence of (H>w)^==i, then 0 ̂  w'^ MM—BMM. By applying the
operator B, we get

0 ̂  Bw' ̂  B (MM — BMM) = BMM — BSMM = BMM — BMM = 0.
Since w' is bounded and positive, Bw' = w'. Hence w' = 0 on R. Thus
Urn w!n = 0 on R. As we have w^ ̂  w^ ̂  0 on R^, so we conclude that

Wl —> 00

lim Wm == 0 on R.
Wl-» oo

On (<9RJ n Gn, [ u [ ̂  rn and [ u [ ̂  MM = BMM + (MM — BMM)
or [ M [ — BMM < MM — BMM. Hence on (ORm) n Gn, [ M [ — BMM
^ min (MM — BMM, r^) or | M [ ̂  BMM + w^. On <9Gn, we have
[ M = rn == On 0 (j M |) ̂  a^h. Thus we conclude that ] M | < cinh+
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+ BMu + Wm on 9 (Rw H Gn). Since j u | is subharmonic and dnh+BMu
+ H^ is harmonic on Rm H Gn, we can conclude that

[ u [ ̂  OnA + BMu + w^ on R^ n Gn.

By letting w /< oo and then w /^ oo, we conclude that [ M | ̂  BMu
on R. By the definition of Mu, we must have Mu ̂  BM^ and hence
BMu == Mu.
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