MITSURU NAKAI
On ®-bounded harmonic functions

Annales de l'institut Fourier, tome 16, n°1 (1966), p. 145-157
<http://www.numdam.org/item?id=AIF_1966__16_1_145 0>

© Annales de I’institut Fourier, 1966, tous droits réservés.

L’acces aux archives de la revue « Annales de I’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique ’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

NuMDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=AIF_1966__16_1_145_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann, Inst. Fourier, Grenoble
16, 1 (1966), 145-157.

ON ©-BOUNDED HARMONIC FUNCTIONS

by Mitsuru NAKAI

1. Throughout this paper, we denote by ®(f) a non-negative real-
valued function defined on the half real line [0, ) = (#;0 <t < ).
A harmonic function u on a Riemann surface R is called ®-bounded
if the composite function ® (| u |) admits a harmonic majorant on R, i. e.
there exists a harmonic function 4 such that (I>(| u |) < h on R. We
denote by

H®=H®R)

the totality of ®-bounded harmonic functions on a Riemann surface R
and by Ox. the class of all Riemann surfaces on which every ®-bounded
harmonic function reduces to a constant. In our study, the following two
quantities will play an important role :

d () = lim sup ® (2)/t
d (®) = lim inf ® () /¢
t> o

The properties of HO-functions on Riemann surfaces and the class
Onxs are first investigated by Parreau [3] for the special ® () which is
increasing and convex (). In the present paper we shall investigate the
same problem for general ® (#). Our conclusion is, roughly speaking, that
Parreau’s result about Og. holds essentially for general ® (f) and his
result about properties of H®-functions can be derived by assuming
d (®) > 0 instead of increasingness and convexity which is, in a sense,
the weakest condition.

2. As for the class Ogo, Parreau [3] showed that the class Ogs for

(1) For such a function, it is well-known that ad) = d(®) > 0.
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chreasing and convex ® (¢) coincides with Ogp or Ogg () according to
d (®) < o or d(P) = «, respectively. Now we ask what can be said
about Og, for general ® (¢). The answer is given by

THEOREM 1. — If d(®) < » (resp. d (®) = »), then Oge C One
(resp. Oxne D Ogs). v

This was proved implicitly in our former paper [2] by using Wiener’s
compactification of Riemann surfaces. We shall again give an alternating
elementary proof in § 1. In this theorem, we cannot replace the inclusion
relation by the equality in general. But the function @ (¢), by which the
equality does not hold in the above theorem, is very singular and trivial
one from the view point of H®-functions as the following shows :

THEOREM 2. — (i) If ® (¢) is bounded on [0, «), then Ous consists
of all closed Riemann surfaces;

(ii) If ® (¢) is completely unbounded (®) on [0, «), then Oxs consists
of all open Riemann surfaces;

(iii) If ® (¢) is not bounded_and not comp_letely unbounded, then
Ogo = Oxr 0or Ous according to d (P) < « or d (P) = «, respectively.

This was proved in [2] and determines the class Oze completely
for any possible ® (7). This is easily proved by using Theorem 1. We will
do this also in § 1.

Observing Theorem 2, we are tempted to conclude that H®-property
is closely related to positiveness or boundedness properties except trivial
®’s as in (i) or (ii). Next we consider this problem. To state the problem
formally, let us recall three notions for harmonic functions : essentially
positive, quasi-bounded and singular.

3. A harmonic function ¥ on a Riemann surface R is called essen-
tially positive if u can be represented as a difference of two HP-functions
on R, or equivalently, if # admits a harmonic majorant on R. We denote
the totality of essentially positive harmonic functions on R by

HP’ = HP’ (R).

(2) As usual, HP (R) (resp. HB (R)) denotes the totality of non-negative (resp.
bounded) harmonic functions on R. The meaning of Orer and Ogms is similar to
that of Ore.

(3) We say that ® () is completely unbounded on [0, ) if ® () is not
bounded at any neighbourhood of any point in [0, ).
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Clearly HP’ (R) D HP (R). For two functions # and v in HP’ (R), there
always exists the least harmonic majorant (resp. the greatest harmonic
minorant) of ¥ and v, which we denote by u \/ v (resp. u A v). Then
HP’ (R) forms a vector lattice with lattice operations \/ and A. For
u in HP’ (R), we denote by Mu the function u \/ 0 + (— u) V 0, which
is the least harmonic majorant of | u# |. Next first for # in HP (R), we
denote by Bu the HP-function defined by sup (v (p); ¥ == v € HB (R)) on
R. Clearly B is order-preserving, lincar and B2 =B on HP (R) (see
Ahlfors-Sario [1], p. 210). Next for 4 in HP’ (R), we put Bu = Bu;—Bu;,
where ¥ = u; — u, and u; and u, are in HP (R). Here, by the linearity
of B on HP (R), Bu does not depend on the special decomposition of u
into HP-functions. Again the operator B is order-preserving, linear and
B? = B on HP’ (R) and moreover B commutes with M, \/, and A. This
is clear on HP (R) by definitions of B, \/, A and M. For the general case,
we have only to show that B (v \/ 0) = (Bu) Vv 0. Since

Bu=BuvVvV0)—B({(—u V0
and
BuVOAB(—uwV0O=B({@uVOA(—uV O
=B0=0,

B (u Vv 0) is the positive part of the Jordan decomposition of Bu.

An HP'-function u is called quasi-bounded (resp. singular) if Bu = u
(resp. Bu = 0). These notions were introduced by Parreau [3]. We denote
the totality of quasi-bounded harmonic functions on R by

HB’ = HB’ (R).

Clearly HB’ D HB. Since B commutes with M, \/ and A, we see that
Bu = u is equivalent to BMu — Mu. Hence we can also define

HB’ R) = (u € HP’ (R) ; BMu = Mu).

4. Parreau [3] showed that, for increasing and convex function
® (f), H® C HP’ and if moreover d (®) = «, then H® c HB’. Our next
problem is to investigate whether such relations hold or not for general
® (r). The answer is negative in general : we shall single out in § 4
an increasing continuous unbounded function ® (z) with d (®) < « and
d (®) =0 and an H®-function in the open unit disc which is not an
HP’-function there (Example 2). This shows the invalidity of H® C HP”
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in general. Only for this aim, we may take bounded ® (f). But we are
interested in unbounded @ (). We shall also construct in § 3 an increasing
continuous function ® (/) with d (®) = « and d (P) =0 and an HP-
function in the open unit disc which is not an HP’-function there (Example
1). This shows the invalidity of the relation H® C HP’ and so of the
relation H® ¢ HB’ even if d () = .

Then there arises the question when can we conclude the relation
H® c HP’ or HB'. Both examples above show that unboundedness, not
completely unboundedness, increasingness, continuity or all of them cannot
give the condition. In both examples above, d (®) = 0. This suggests us
that the required condition may be d (®) > 0. This is really the case.

Firstly the answer for H® C HP’ is given completely by the following
which includes Parreau’s case :

THEOREM 3. — In order that HO® (R) C HP’ (R) for any Riemann
surface R, it is necessary and sufficient that d (®) > 0 (no matter whether
d (D) is finite or infinite).

The proof of this will be given in § 5. Similarly we ask about the
condition which assures the relation H® C HB'. In this case, even in the
Parreau’s case, we must assume that d () = o as the following simple
example shows: ® () =¢t, R=(z;0< |z| < 1) and u(z) = —1log |z|
The best possible general conclusion is as follows :

THEOREM 4. — If d(®) = «, then H® (R) N HP' (R) C HB'(R).

Here we cannot drop HP’ (R) in the above relation as Example 1
shows. The above theorem will be proved in § 6. Now assume that
d (®) > 0, then by Theorems 3 and 4, H® (R) C HB’ (R). Conversely if
H ® (R) C HB’ (R) for any R, then H® (R) C HP’ (R) for any R and by
Theorem 3, d (&) > 0. Thus we get the following which includes Parreau’s
case :

THEOREM 5. — Assume that d (&) = «. In order HO(R)CHB'(R)
for any Riemann surface R, it is necessary and sufficient that d (®) > 0.
1. Proofs of Theorems 1 and 2.

1. Proof of Theorem 1. — 1. The case d (d) = « : Assume that
there exists a non-constant H®-function ¥ on R. By the definition of
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®-boundedness, there exists an HP-function 4 such that <I>(| u I) <h
on R. We have to show that R & Ogg. Contrary to the assertion, assume
that R € Ogs. Since d(®) = o, we can find a strictly increasing
sequence (ry)p-: of positive numbers r, such that lim r,= oo,

n—> o

Q@) >0, Ga=@ER;|u@)|<r) #Oand lim a, =0, where

an = r,/® (r,). Then clearly

G1CG2C...CG"C..., R = gl G.,.

First we show that G, & SOgs for some n on (%). If this is not the case,
then G, € SOgs for all »’s. Then since a,h — I u l is superharmonic and
bounded from below on G, and

a”h—|u|>a,.(l>(|u|)—|u{=a,,<I>(r,,)——r,,=0

on dG,, we can conclude that a,h— | u | = 0 on G,. Since a, \| 0, we
must have u =0 on R, which is clearly a contradiction. Hence we may
assume that G, ¢ SOgg (n =1, 2, 3,...) by choosing a suitable subse-
quence of (r,), if necessary.

Next we assert that G, — G, € SOgs (n = 1, 2, 3, ...). For, if there
exists a G, with G, — G; & SOgg, then there would exist two disjoint
non-empty open sets G, and G, — G; not belonging to SOgg. By the
so called “two domains criterion”, we must have that R & Ogg (see
Ahlfors-Sario [1], p. 213). But this contradicts our assumption R € Ogs.

Now consider the function w, = a,h + r; — | u-| on G,, which is
superharmonic and bounded from below on G, and so on G,—G;.
By the similar manner as before, we see that w, = dsh— | u|=0
on 4G,. Clearly Wy =11 — lu] = 0 on dG;. Hence w,=0 on 0(G,—G,).
Since G, — G; € SOgp, we can conclude that w,=0 on G, or

u|<ah+r on G,. Hence by the fact that a, \, 0, we get that
u | < ryon R, This contradicts our assumption that R € Ogg. Thus we
must have R & Ogs.

II. The case d (D) < o : Assume that there exists a non-constant
HP-function u on R. By d (§) < «, we can find a point s in [0, «) such
that there exists a finite positive constant C with @ () < Ct (s <t < «).
Let v=us + u. Clearly v is a non-constant HP-function on R with

(#) An open subset G of a Riemann surface R with smooth relative boundary
9G is said to belong to SOxe if every HB-function on G with continuous boundary
value zero at oG reduces to a constant zero.
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v >sonR. Hence @ (| v |) = ® (v) < Cv on R. Thus v is a non-constant
H®-function on R and so R €& Oxs..

2. Proof of Theorem 2. — Ad (i) : If ® (¢) is bounded, then every
non-constant harmonic function is an H®-function. Thus Oge consists

of all Riemann surfaces carrying no non-constant harmonic function,
which are closed Riemann surfaces.

Ad (i) : For any non-constant harmonic function u on R, since u
is open map of R into [0, ) by the maximum principle, @ (' u |) is
completely unbounded on R along with ® () and so u is not H®-function.
Thus there exists no non-constant H®-function on any Riemann surface
and Og. consists of all Riemann surfaces.

Ad (iii) : Assume that d (®) = « and that there exists a non-
constant HB-function u on R. As ® (7) is not completely unbounded, so
there exists an interval (a, b) in which ® (f) < ¢ = const. Let

v=_(a+ b)/2 + (b—a)/2) (sup | u|)~'u.
R

Then v is a non-constant HB-function and ® (|v|) =® (v) < ¢ on R.
Thus Oge C Ogge. This with Theorem 1 gives Oxs = Oxs.

Next assume that d (§) < . By Theorem 1, Ogr D Oxe.
Contrary to the assertion; assume that there exists an R in  Oup — Oga.
Let u be a non-constant H®-function on R. Then ® (| # |) < ¢ = constant
on R. Since @ (f) is unbounded and | u | (R) is connected in [0, ») and
contains 0, # must be bounded on R. Then sup | u | + u is a non-constant

R

HP-function on R, which contradicts the assumption that R € Ogp.
Hence Oge = Oge.

2. Preparations for Examples.

Let U= (z; |zL< 1) and A be an arc in U = (z; [z| =1). We
denote by w(z; A) the harmonic measure of A calculated at z in U with
respect to U. It is well known that

@M w(z;A) = Q2B —a)/2m,

where « is the length of A and B is the angle seeing the arc A from z.
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We denote by L, the line segment connecting both end points of A. Then
from (1), we easily see that

) w(0;A) =a;
3) wiz;A)=1—a/27 on La.

Next let A; be the arc in dU = (z; |z| = 1) with end points 1 and
e‘“,(] =1,2)such that 0 < a3 < a0, oy < 7/2, ay < w/2. We denote by
A, (resp. Aj) the arc with end points 1 and e—*%; (resp. A/ = A; UA,)
For simplicity, we set Ly = L,,, i.e. L, is the line segment connecting
two end points of Az. Then we get the following inequality which plays an

important role in our forth-coming examples : there exists a universal
constant s (< 4~ %) such that

) | wiz; A) —w(z;A) | <soaf /(af —af)?* on L.

Proof. — We denote the points e', e—in, (el + e—i%)/2, 1,
(e% + e—'3)/2 ‘and z on L, with Im(z) =0 by D, E, F, G, H and P
respectively. We set DF =FE =d, FH=k, DP=a, PF =0 and
PE =c. By (1), w(z;A;) —w(z;A,) = (« DPG — <GPE)/7. Let
< DPF=6, and < FPE =0, Then clearly < DPG<6; and
< GPE = 6,. Hence we have 0 < w (2;A;) —w (2;A)) < (61— 62) /7.
Applying the cosine theorem to triangles ADPF and AFPE and then
Pappos’ identity to the triangle ADPE, we have
sin 2—1(6; — 62) = (c — a) (8abc sin 2—1(6; + 62))~1(4d%> — (a— ©)?).
Here we have

acsin2-1(6, + 0;) = acsin2-1 (0; + 03) cos 21 (6, + 02)

= 2-1gc sin « DPE = ADPE

= ADHE = dk.
By the triangle inequality applied for ADPE, ¢ — a < 2d. Thus by noti-
cing b = k, we have sin 2—1 (0; — 62) < d?k—2. As

sin 0 = (2/7) 6 o<e21#),
$0 0; — 0 < wd? k—2 Now we have d =sin oy < a; and
k = cos a; — cos az
=2sin~1(a; + ap)sin2-1 (@ — o)) =2 72 (a3 — af).

Hence
0Sw@ZA)—w (@A) 4t af /(g —af ). Q.ED.
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We shall use (4) in the particular case where 0 < oy < az/\/2. In
this case, by using universal constant s (< 7%), we get

®) | w@;A) —w@A) | < s(@f /ai) on L.

3. Example 1,

We are now able to construct an example of a function ® which is
continuous, increasing, d(®) = « and d(®) = 0; and an H ®-function u
in then open unit disc U = (z; |z| < 1) which is not an HP’-function.

EXAMPLE 1. Let p be a constant such that 0 < p < min (1/4, 1/4s),
where s is the constant in (5) in § 2, and (p,)s=1 be a sequence defined
by pp=@*")?+* for n=2+ p(@=0,1,2,..; pn=1,2,3,...,2Y.
Let A, and A, be arcs on the unit circumference such that

An=(e?;0<0<2p.7/n)
and

A,=(e®;—2p,m/n<O<LO0).
Let (r,)5—1 and (b,)5—, be two sequences of positive numbers defined by
r=2/@*%? and b, = 2V/2-r,. Define the function ®(t) on [0, «] by

0, t-€ [0, n];
_Yoi(t—r), t€r,rn + 1]
W= {, teln+ Lrale=12.)

by + (byvg1—b)(t—rvyr), t€Erp, e +11(w=1,2,..)
and the function u (z) in U by
u@= 3 00 A)—w; A))/pn

Then the following hold :

(a) ©(2) is continuous, increasing, d(®) =  and d(®) = 0;

() u(2) is well defined in U and harmonic there;

(©) u(z) € HP);

@ u() ¢ HP'(U).

Proof of (a). — Is immediate by the definition of @ (¢).
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Proof of (b). — For each n =1, 2, ..., set
(D) =wEz;A) —w(z; A, (D)= kél Vi(2)/Px.

Then v, and u, are harmonic in U, positive in the upper half of U and
Vp(—2) = —v,(2) and u,(— z2) = — u,(2) in U. Hence to show that
the series defining u(z) is convergent in U and defines a harmonic function
there, we have only to prove that (u,(i/2))7~; is convergent. By (5) in § 2,
we have that

0< v (/2 <sQpum/n)?/(m/2)* < 8 p2,
where & is a constant independent of n > 1. Thus

+m n+m
0< thpym(i/2) — un(t/Z) 2 vi@/2)/pe <8 3 p <8 p/(1—Dp).

k=n+1 k=n+1

This shows that (u,(i/2))s-1 is convergent.

Proof of (c¢). — For each v =1,2, ..., we denote by L, the line
segment L,,,, i.e. the line segment connecting two end points of Ay =
Ag U Ay Since |vk(z)| < 1 in U, we have

v @/pe| S UB< 1/ A <k<2Y)
on U and so on L,. Next for k =2+ pu(p=1,2,..) and z € L,, by
(5) in § 2, we have that
Vi(2)/pr < s(2Px ﬂ/ k)?/(2 pav/2%)* pr
=5(2*/47* k*) [pv/p% ]
< s2¥/4m2 k2) [(p*)/ (0¥ 7)*)*]
=s2¥/47? k?) p** < pt* (-1,
Hence for z in L,, we get that

4@ < 3 [W@/pl +3 @/
< 3 U@U o+ 5 pr e
k=1 u=1

< 2/ =r.

Since u(z) is quasi-bounded in the upper half of U and in the lower half
of U respectively, we have, for e in U — A, that

v 2V
@) = S v | < 3 1/pe
k=1 k=1
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ov
= ké 11 /@ .

Hence by the maximum principle, 0 < u(z) < r, in the intersection of
the upper half of U and the left side of L, in U. Hence l u(2) | < rvin the
left side of L, in U. By (3) in § 2, we see that w(z; A%s) = 1 — pay/2
on L, and so on the right side of L, in U. Hence if z lies between L, and
Liys in U, byw(z; A%) = b, —2-v2+2> @ (|u(z) I) —2-v/2+2 or
(1) (Iu(z) ]) < by w(z; Apy) + 2—v2+2) since OO < by if t<ry1. On
the other hand,

27 by w(0; Ap) = by(4pp 7/2Y) = 8o 2—V/2,
Hence if we set w(z) = E (byw(z; Azr) + 2—v/2+2) then w(0) =
v=1

8- S 2-v2 < o and so w(z) € HP (U). Thus
v=1
(D([u(z) ’) < byw(z; A%) + 2—v2+2 L w(2)

between L, and L, ;. in U. As v is arbitrary, so (I)(I u(2) |) < w(2) in U ().
This shows that u € H ®(U).

Proof of (d). — Contrary to the assertion, assume that ¥ € HP’(U).
Then lu(z)l has a harmonic majorant A(z) on U. As u(z), u.(z) and
v, (2) are positive in the upper half of U and antisymmetric with respect
to the real line (i.e. u(z) = — u(— z) etc.), so h(z) = ]u(z)| = ]u,.(z)]

in U. Clearly |u,(2)| = § |w(z; A —w(z; Ay |/px and the least har-
k=1

n
monic majorant of the subharmonic function |u,(2)| is 3 w(z; A)/pr,
k=1

where A, = A, U Kk as before. Hence

3 W AL /o <hQ)

on U for any n =1, 2, ... . Thus in particular, 3 w(0; A} )/pr < h(0),
k=1
which gives the following contradiction :

0=23% 1/k=on 3 (pum/k)/pr <h(0).
2 k=1

k=1

(®) Notice that if z lies in the left of L, in U, then |u(z)| <~ and so
0=0(Ju(z)|) < w(2) there.
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4. Example 2.

Consider functions

®(t) =log* t = max (log?,0) on [0, );
u(zx) =r—tcos 6 (z =red on Uo=(Z;0<]Z|<1)-

Then ®(z) is unbounded, increasing, continuous and d(®) = d(®) = 0.
We can also easily see that u(z) is an H ®-function in U, but not an HP’-
function in U,. But this example deeply depends on the weakness of the
special boundary point 0 of U,. However, without using such a special
boundary property, we can construct such an example in the open unit
disc U = (z; ‘z[ < 1) by the aid of Example 1.

EXAMPLE 2. Let ®(¢) and u(z) be as in Example 1. Let
D, () =min (P (¢),at) (0<a< ).

Then the followings hold :

(@) ®, (¢) is increasing, continuous, d (P,) = a and d (®,) = 0;
(®) u(z) € H?, (U);
(©) u(z) ¢ HP ().

5. Proof of Theorem 3.

First we prove that H® (R) ¢ HP’ (R) for any R if d(®) > 0. Let
u € H® (R) and d (®) = 2 ¢ > 0. Then there exists a point #, in [0, «)
such that ® (¢) > ct (¢t = t,). Then for any ¢ in [0, »), ®(?) + cto = ct.
As @ (‘ u ‘) possesses a harmonic majorant & on R, so

h + cto>d)([u{) +ct.o>clu{
on R. Thus u possesses a harmonic majorant (k + ct,)/c, i.e. u € HP’ (R).

Conversely, if H® (R) ¢ HP’ (R) for_any R, then Examples 1 and 2
show that d (®) > 0 no matter whether d (®) is finite or infinite.
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6. Proof of Theorem 4.

Let u € H® (R) n HP’ (R). We have to show that u € HB’ (R). As
u € H® (R), so there exists an HP-function A such that ® ([ u I) < hon
R. Since u € HP’ (R), we can considler Mu =u vV 0 + (—u) A0 = I u |
and Bu. To show that u € HB’ (R), we have to prove that Bu — u or
equivalently, BMu — Mu (see 3 in the introductory part of this paper).

By the assumption that d (®) = «, we can find an increasing
sequence (r,)n—1 of positive numbers converging to o such that ® (r,) > 0
and lim a, =0, ay=ra/® (r). Let Go =@ € R; ju(p)| <ra) (n=1,

n - o

2,...). Clearly

G.cGc..cG,.C... R= O G,.

n=1
Let (Ry)m—1 be an exhaustion of R and w,, be a harmonic function
on R,, N G, with the boundary value

o — min Mu — BMu, r,) on (0R,,) N Gy;
"= % 0 on 0G,.

Since min (Mu — BMu, r,) is superharmonic on R, w, is subharmonic

on R, if we define w,, =0 in R,, — G,, and w,, > w,,,; on R,. Let
Wy, be harmonic in R,, with the boundary value

W — i min Mu — BMu, r,) on (6R,) N Gy;

0 on dR,, — G,.
Then clearly (W),)m—1 is a bounded sequence and 0 < w,, < Mu — BMuy,
n=1,2,.... If w is any limiting harmonic function of a convergent

subsequence of (Wpm)m—1, then 0 < w’ < Mu — BMu. By applying the
operator B, we get

0 < Bw < B (Mu — BMu) = BMu — B2Mu — BMu — BMu = 0.
Since w’ is bounded and positive, Bw’ =— w’. Hence w’ =0 on R. Thus
lim w, = 0 on R. As we have w,, = w,, > 0 on R,,, so we conclude that

m—> o

lim w, =0 on R.

m-—> o

On (0R,,) N G, | u l <r, and |u ] < Mu = BMu + (Mu — BMu)
or |u | — BMu < Mu — BMu. Hence on (dR,,) N Gy, l u | — BMu
< min Mu — BMuy, r,) or I u | < BMu + w,. On 4G,, we have
, u l =rn=a,® (| u ') < a,h. Thus we conclude that | u | < anh +
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+ BMu + w,, on d R, N G,). Since l u [ is subharmonic and a, 4+ BMu
+ w,, is harmonic on R,, N G,, we can conclude that

]u[<a,,h+BMu+wm on R,,NG,.

By letting m /' « and then n / «, we conclude that | u l < BMu
on R. By the definition of Mu, we must have Mu < BMu and hence
BMu = Mu.
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