Eberhard Gerlach

On the analyticity of generalized eigenfunctions (case of real variables)

Annales de l’institut Fourier, tome 18, no 2 (1968), p. 11-16

<http://www.numdam.org/item?id=AIF_1968__18_2_11_0>
ON THE ANALYTICITY
OF GENERALIZED EIGENFUNCTIONS
(CASE OF REAL VARIABLES)

by Eberhard GERLACH

The present note is a direct continuation of Chapter III in our paper [1]; its purpose is to extend the results on analyticity of the generalized eigenfunctions to the case of proper functional Hilbert spaces consisting of functions which are (real-) analytic in a domain in Euclidean space. We continue to use the notation and numbering from Chap. III in [1].

Our basic tool will be the following.

Proposition 4. — Let G be a domain in Euclidean space \mathbb{R}^n, and \mathcal{B} a class of functions defined everywhere in G and analytic there, and suppose that these form a proper functional Banach space $\{\mathcal{B}, G\}$. Then there exists a common domain \tilde{G} in complex space \mathbb{C}^n, containing G, to which all $f \in \mathcal{B}$ can be extended analytically.

Proof. — Since $\{\mathcal{B}, G\}$ is a p.f. Banach space, to every $x \in G$ there is an $L(x) \in \mathcal{B}'$ (\mathcal{B}' is the continuous dual of \mathcal{B}) such that $f(x) = \langle f, L(x) \rangle$. This defines a function L from G into \mathcal{B}' which is weakly-* real-analytic. It is well-known that Banachspace-valued functions defined on a complex domain which are weakly or weakly-* analytic are complex-analytic also in the strong topology. We shall show that L is strongly (real-) analytic; then it can be extended to a strongly analytic function \tilde{L} (still into \mathcal{B}') in some complex domain \tilde{G} containing G. Finally each $f \in \mathcal{B}$ will be extended to an analytic function \tilde{f} on \tilde{G} by setting $f(z) = \langle f, \tilde{L}(z) \rangle$ for $z \in \tilde{G}$.
Recall (cf. for instance [2]) that for any function \(g \) which is analytic in the fixed domain \(D \subset \mathbb{C}^1 \) and for any compact \(K \subset D \), there exists a finite number \(M(g; K) \) such that for any choice of \(\zeta, \zeta + \alpha, \zeta + \beta \) in \(K \):

\[
(6) \quad \left| \frac{1}{\alpha - \beta} \left\{ \frac{1}{\alpha} [g(\zeta + \alpha) - g(\zeta)] - \frac{1}{\beta} [g(\zeta + \beta) - g(\zeta)] \right\} \right| \leq M(g; K).
\]

The same is true if instead of \(D \) one has a fixed open interval \(I \subset \mathbb{R}^1 \).

We shall establish existence of the strong derivatives \(\frac{\partial}{\partial x_i} L(x) \) in \(\mathcal{B}' \). These derivatives exist in the weak-* topology since for each \(f \in \mathcal{B} \)

\[
\frac{\partial}{\partial x_i} f(x) = \lim_{h \to 0} \frac{1}{h} \left(f(x + \varepsilon_i h) - f(x) \right)
= \lim_{h \to 0} \frac{1}{h} \langle f, L(x + \varepsilon_i h) - L(x) \rangle.
\]

Let \(N \) be a compact neighborhood of \(x \); then there are numbers \(M(f; N) \) so that for all sufficiently small \(h \) and \(k \)

\[
\left| \langle f, \left\{ \frac{1}{h - k} \left[L(x + \varepsilon_i h) - L(x) \right] - \frac{1}{k} L(x + \varepsilon_i k) - L(x) \right\} \rangle \right| \leq M(f; N).
\]

Then by the uniform boundedness theorem, there is a constant \(M(N) \) such that \(\left\| \frac{1}{h - k} \{ \ldots \} \right\| \leq M(N) \). Letting \(h \) and \(k \) tend to zero, one now obtains existence of the strong derivative \(\frac{\partial}{\partial x_i} L(x) \). Since all derivatives of the \(f \in \mathcal{B} \) are analytic, the preceding procedure can be repeated; thus \(L \) possesses strong derivatives of all orders. It is easy to check that \(L \) and all its derivatives are strongly continuous.

The Taylor series for \(L \) will converge strongly to the values of \(L \) if \(\| (x!)^{-1} D_x L(x) \| \frac{1}{x} \) is uniformly bounded on compacts \(K \subset G \), with a bound independent of \(x \). (Here the \(x_i \) are non-negative integers, \(x = (x_1, x_2, \ldots, x_n) \),...
\[|\alpha| = \sum \alpha_i, \quad D_\alpha = \partial^{\alpha}/\partial x_1^{\alpha_1} \ldots \partial x_n^{\alpha_n}, \quad \alpha! = \alpha_1! \ldots \alpha_n! \). Since all \(f \in \mathcal{B} \) are analytic,

\[
| (\alpha!)^{-1} D_\alpha f(x) | \frac{1}{|\alpha|} = | \langle f, (\alpha!)^{-1} D_\alpha L(x) \rangle | \frac{1}{|\alpha|}
\]

(for fixed \(f \)) is uniformly bounded on compacts \(K \subset G \), independent of \(\alpha \). But for variable \(f \), this expression is a sub-additive continuous functional on \(\mathcal{B} \). By the uniform boundedness theorem then

\[
\sup_{|\alpha| \leq 1} | \langle f, (\alpha!)^{-1} D_\alpha L(x) \rangle \frac{1}{|\alpha|} = \left(\sup_{|\alpha| = 1} | \langle \ldots \rangle | \right) \frac{1}{|\alpha|}
\]

\[
= | (\alpha!)^{-1} D_\alpha L(x) | \frac{1}{|\alpha|}
\]

is uniformly bounded on compacts \(K \subset G \), independent of \(\alpha \). Thus \(L \) has a strongly convergent power series expansion in some neighborhood of any point \(x \in G \).

For each \(x \in G \), let \(S(x) \) be the largest open ball in \(C^n \), centered at \(x \), in which the Taylor series for \(L \) about \(x \) converges and set

\[
\hat{G} = \bigcup_{x \in G} S(x).
\]

Then the series expansions yield an analytic continuation \(\tilde{L} \) of \(L \) from \(G \) to \(\hat{G} \). Finally, for \(f \in \mathcal{B} \), define

\[
\tilde{f}(\zeta) = \langle f, \tilde{L}(\zeta) \rangle \quad \text{for} \quad \zeta \in \hat{G} \quad \text{and} \quad |\tilde{f}| = |f|;
\]

this gives us a p.f. Banach space \(\{\mathcal{B}, \hat{G}\} \) which is isometrically isomorphic to \(\{\mathcal{B}, G\} \). The proof of Proposition 4 is complete.

From now on, \(\{\mathcal{F}, G\} \) will denote a p.f. Hilbert space consisting of analytic functions on a domain \(G \subset \mathbb{R}^n \). Our aim is to extend the results of Corollary 2. III and Theorem 3. III in [1] to such spaces.

The anti-space \(\mathcal{F}' \) of the Hilbert space \(\mathcal{F} \) is identified with the dual \(\mathcal{F}' \), and \(\mathcal{F} \) itself with its continuous anti-dual \(\mathcal{F}^* \)

\[(= \mathcal{F}' = \mathcal{F}' \) \] by means of the canonical mappings \(J \) and \(\theta : \mathcal{F}' = J\mathcal{F} \) where \(J \) is the anti-isomorphism \(f \to Jf = (., f) \)

\[(1) \] For these notations, cf. L. Schwartz [3].
and
\[T^* = \varphi T \] where \(\varphi \) is the isomorphism \(f \rightarrow \varphi f = (f, \cdot) \).
If \(K \) is the reproducing kernel of \(T \) then for \(f \in F \)
\[f(x) = (f, K(\cdot, x)) = (f, L(x)) \] for every \(x \in G \)
where \((\cdot, \cdot) \) denotes the pairing of \(T \) and \(T' \). Thus
\[L(x) = JK_x \] and
\[K(x, y) = (K_y, K_x) = (K_y, JK_x) = (J^{-1}L(y), L(x)). \]
By Proposition 4, \(L \) and \(F \) extend analytically to a complex domain \(\tilde{G} \); we obtain the p.f. Hilbert space \(\{ \tilde{T}, \tilde{G} \} \) with r.k. \(\tilde{K} \):
\[\tilde{f}(z) = (f, \tilde{L}(z)) = (f, J^{-1}\tilde{L}(z)) \]
and
\[\tilde{K}(z, \omega) = (J^{-1}\tilde{L}(\omega), \tilde{L}(z)) = (\tilde{K}_z, \tilde{K}_\omega). \]
Since the function \(\tilde{L} \) is strongly analytic from \(\tilde{G} \) into \(\tilde{T} \) and \(\tilde{K}_z = J^{-1}\tilde{L}(z) \), we note that \(\tilde{K}(\cdot, z) \) is strongly anti-analytic for \(z \in \tilde{G} \) (i.e. the function \(\bar{z} \rightarrow \tilde{K}(\cdot, z) \) is strongly analytic from \(\tilde{G} = \{z|z \in \tilde{G}\} \) into \(\tilde{T}'\)). Let \(U \) denote the extension isomorphism \(U : T \rightarrow \tilde{T} \) constructed by Proposition 4. If \(\{g_k\} \) is a complete orthonormal system in \(\tilde{G} \), then so is \(\{g_k = Ug_k\} \) in \(\tilde{T} \) and \(\tilde{K}(z, \omega) = \sum_{k=1}^{\infty} \tilde{g}_k(z)\bar{\tilde{g}}_k(\omega) \) for \(z, \omega \in \tilde{G} \), i.e., \(\tilde{K} \) is also a « direct » continuation of \(K \).

Corollary 2'. — Let \(G \) be an arbitrary domain in \(\mathbb{R}^n \) and \(\{T, G\} \) any p.f. Hilbert space of functions (real-) analytic in \(G \). Then \(\{T, G\} \) is Hilbert-Schmidt expansible.

Proof. — By Corollary 2, there is an H.S. operator \(T \) in \(T \) such that \(K_\zeta \in T \tilde{T} \) for all \(\zeta \in \tilde{G} \). Now \(S = U^{-1}TU \) is H.S. in \(T \), and \(K_\zeta \in S \tilde{T} \) for all \(\zeta \in G \).

Now let \(\tilde{A} \) be a selfadjoint operator in \(\tilde{T} \) with resolution of identity \(E(.) \) and spectral measure \(\mu \). Then \((f, g) = (Uf, Ug) \) for all \(f, g \in T \). The operator \(\tilde{A} = UAU^{-1} \) is selfadjoint in \(\tilde{T} \) and unitarily equivalent to \(A \); its resolution of identity is \(\tilde{E}(.) = UE(.)U^{-1} \), and \(\mu \) is also a spectral measure for \(\tilde{A} \).
Both \mathcal{F} and $\tilde{\mathcal{F}}$ are H.S.-expansible. Let $\tilde{\Lambda}_0$ denote the complement in \mathbb{R}^1 of the set of all λ for which
\[
\frac{d}{d\mu(\lambda)} \left(\frac{1}{d\mu(\lambda)} \right) = K(z, \omega; \lambda) \text{ exists and is finite for all } z, \omega \in \tilde{G}
\]
(similar definition for Λ_0, without tildas). Then $\tilde{\Lambda}_0 \supset \Lambda_0$ and $\mu(\tilde{\Lambda}_0) = 0$. Let $\mathcal{F}_0^{(0)} (\tilde{\mathcal{F}}_0^{(0)})$ be the p.f. Hilbert space on $\tilde{G}(G)$ defined by the r.k. $K(., .; \lambda)$ ($K(., .; \lambda)$). For $f \in \mathcal{F}$, let $\tilde{\Lambda}_{f, (\tilde{G})}$ be the smallest set containing $\tilde{\Lambda}_0$ such that for all $\lambda \in \tilde{\Lambda}_{f, (\tilde{G})}$:
\[
\begin{align*}
\frac{d}{d\mu(\lambda)} \left(\frac{1}{d\mu(\lambda)} \right) &= f(z; \lambda) \text{ exists, is finite} \\
\text{and } \mu(\tilde{\Lambda}_0) &= 0 \text{ whenever } K(z, z; \lambda) = 0, \text{ for all } z \in \tilde{G}
\end{align*}
\]
and
\[
\tilde{f}(., \lambda) \in \mathcal{F}_0^{(0)}, \quad \frac{d\|E(\lambda)f\|^2}{d\mu(\lambda)} \text{ exists and equals } \|f(., \lambda)\|_{\mathcal{F}_0^{(0)}}^2
\]
(similar definition for $\Lambda_{f, (G)}$, without tildas). The correspondence $f \mapsto \tilde{f}(., \lambda)$ defines $\tilde{\mathcal{F}}_0^{(0)}$ with domain $\tilde{\mathcal{F}}_0^{(0)} = \{f \lambda \in \tilde{\Lambda}_{f, (\tilde{G})}\}$. For $f \in \mathcal{F}_0^{(0)}$, $f(., \lambda)$ is just the restriction of $\tilde{f}(., \lambda)$ to the domain \tilde{G}.

Theorem 3'. — Let A be an arbitrary selfadjoint operator in $\{\mathcal{F}, G\}$ with spectral measure μ. Then there is a set Λ on the real line, $\mu(\Lambda) = 0$, which is determined by Theorem 3 (and also Corollary 2, Theorem 11. I, and the above considerations) such that the generalized eigenfunctions
\[
\frac{dE(\lambda)f(x)}{d\mu(\lambda)} = f(x; \lambda) \in \mathcal{F}_0^{(0)} \text{ for } \lambda \in \Lambda \text{ and } f \in \mathcal{F}_0^{(0)}
\]
are real-analytic in the whole domain G.

Proof. — According to the preceding preparations, set $Uf = \tilde{f}$. If $\lambda \in \Lambda$ and $\tilde{f} \in \mathcal{F}_0^{(0)}$ then $\tilde{f}(., \lambda)$ is analytic in \tilde{G} by Theorem 3, and consequently its restriction $f(., \lambda)$ is (real-) analytic in G.

ON THE ANALYTICITY OF GENERALIZED EIGENFUNCTIONS 15
BIBLIOGRAPHY

Manuscrit reçu le 31 octobre 1967

Eberhard Gerlach,
Department of Mathematics,
University of British Columbia,
Vancouver 8, B. C., Canada.