GIOVANNI VIDOSSICH

Characterization of separability for LF-spaces

Annales de l’institut Fourier, tome 18, no 2 (1968), p. 87-90

<http://www.numdam.org/item?id=AIF_1968__18_2_87_0>
CHARACTERIZATION
OF SEPARABILITY FOR LF-SPACES
by Giovanni VIDOSSICH

This note characterizes the separability of LF-spaces by five equivalent conditions, one being that all members of a given defining sequence (=suite de définition according to [2]) are separable. These conditions imply that the dual space must be hereditarily separable and Lindelöf for the weak* topology (= topology σ(X', X) of [2]).

Concerning uniform spaces, we shall employ the terminology (and results) of the first two chapters of [4]. We shall denote by

\[F \]
the scalar field, which is \(\mathbb{R} \) or \(\mathbb{C} \); and we shall say

weak topology induced by \(H \subseteq F(X, Y) \)

the less fine topology on \(X \) making continuous all members of \(H \) (caution that this is a purely topological definition). Finally, an \(\aleph_0 \)-space is — according to [5] — a regular space \(X \) where there exists a countable pseudobase \(\mathcal{P} \), i.e. a countable \(\mathcal{P} \subseteq \mathcal{P}(X) \) such that for every compact \(K \subseteq X \) and every open \(U \subseteq X \) which contains \(K \) it follows \(K \subseteq P \subseteq U \) for a suitable \(P \in \mathcal{P} \).

Theorem. — Let \(X \) be an LF-space and \((E_n)_{n=1}^\infty \) a defining sequence of \(X \). The following statements are pairwise equivalent:

1. \(X \) is separable.
2. \(X \) is weakly separable.
3. Every weakly* compact subset of \(X' \) is weakly* metrizable.
Every equicontinuous subset of X' has a countable base for the weak* topology.

(5) Every E_n is separable.

(6) X is an \aleph_0-space.

Proof. — (1) \rightarrow (2) : Clear.

(2) \rightarrow (3) : Let $e : X \rightarrow X''$ be the canonical map $x \mapsto (f(x))_{f \in X'}$ and K a weakly* compact subset of X'. Then $e' : x \mapsto e(x)|_K$ is a continuous map from X equipped with the weak topology into the topological subspace $e'(X)$ of $F_{p}(K, F)$ ($=$ product space of $\text{Card}(K)$ copies of F).

By (2), $e'(X)$ is separable: let H be a countable dense subset of it. The weak* topology of K is exactly the weak topology induced by $e'(X) \subseteq F(K, F)$: by [3, p. 175, Footnote], this topology equals the weak topology induced by $H \subseteq F(K, F)$ and therefore it is metrizable.

(3) \rightarrow (4) : Because the weak* closure of an equicontinuous set is weakly* compact by [2, Th. 3].

(4) \rightarrow (5) : By [2, Cor. to Th. 3], there is a linear homeomorphism e from X onto a subspace $e(X)$ of $L_{\mathfrak{g}}(X', F)$, \mathfrak{C} being a suitable cover of X' consisting of weakly* compact subsets of X' and $L_{\mathfrak{g}}(X', F)$ the space of weakly* continuous linear functionals on X' with the topology of uniform convergence on members of \mathfrak{C}. By [2, Th. 3], the members of \mathfrak{C} are equicontinuous and hence weakly* metrizable by (4). By a well known theorem contained in [5, (J) and (D)], $C_{u}(K, F)$ ($=$ uniform space made of all weakly* continuous maps $K \rightarrow F$ and the uniformity of uniform convergence) is separable for all $K \in \mathfrak{C}$ and therefore the uniformity of $C_{u}(K, F)$ has a basis of countable uniform coverings (as follows easily, if you want, from [4, ii. 33 and ii. 9]). Consequently the uniformity π of $\prod_{K \in \mathfrak{C}} C_{u}(K, F)$ — and hence the trace of π on every subset — has a basis of countable uniform covers as it follows directly from the definition of product uniformity [4, Exercise ii. 2] (alternatively, this result may be deduced from [1, Prop. 3] and [4, ii. 33 and ii. 9]). It is well known that there is a uniform embedding $e^* : L_{\mathfrak{g}}(X', F) \rightarrow \prod_{K \in \mathfrak{C}} C_{u}(K, F)$, the last space being equipped with the product uniformity π.

GIOVANNI VIDOSSICH
By what has been proved, the uniformity induced by \(\pi \) on \(e^\ast(e(X)) \) has a basis consisting of countable uniform coverings: consequently — because a linear homeomorphism is a uniform isomorphism for the (canonical) uniformities of linear topological spaces — the (canonical) uniformity of the linear topological space \(X \) has a basis of countable uniform covers, as well as its trace on every \(E_n \). But this trace coincides with the (canonical) uniformity of the linear topological space \(E_n(n \in \mathbb{Z}^+) \), hence it is metrizable and consequently separable (if \(\{ (U_{m,n})_{n=1}^\infty | n \in \mathbb{Z}^+ \} \) is a countable base of countable uniform covers for the uniformity of \(E_n \) and if \(x_{m,n} \) is an element of \(U_{m,n} \) whenever this set is not empty, then \(\{ x_{m,n} | m, n \in \mathbb{Z}^+ \} \) is dense in \(E_n \)).

(5) \(\rightarrow \) (6): By [2, Prop. 4], every compact subset of \(X \) is contained in some \(E_n \). This, together with the fact that \(X \) induces the original topology on each \(E_n \), implies that

\[
\bigcup_{n=1}^\infty \mathfrak{B}_n \text{ is a countable pseudobase for } X \text{ whenever } \mathfrak{B}_n \text{ is for } E_n(n \in \mathbb{Z}^+).
\]

(6) \(\rightarrow \) (1): By [5, (D) and (E)].

We remark that the idea of countable uniform covers may be used to show directly that every metrizable subgroup of a separable topological group must be separable.

The above theorem points out some important examples of non-metrizable \(\aleph_0 \)-spaces. [5, (J) and 10,4] imply some results on spaces of mappings between separable LF-spaces, of which we note only the following one.

Corollary.— *If an LF-space \(X \) is separable, then \(X' \) is weakly* hereditarily Lindelöf and separable.*

Proof.— By « (1) \(\longleftrightarrow \) (6) » of the above theorem and [5, (J) and (D), (E)].

BIBLIOGRAPHIE

Manuscrit reçu le 16 février 1968.

Giovanni Vidossich,
Vle XX Sett. 225,
54031 Avenza (Italie).