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Introduction,

The present part of the « Theory of Bessel Potentials ))
contains Chapter iv dealing with potentials on regular Rieman-
nian manifolds. The next (and last) part to be published,
Part IV, will contain Chapter v treating potentials on mani-
olds with singularities.

The classes of potentials P^ on a manifold 3)?, or rather
the classes H^ which are the classes P^ saturated relative
to the class of sets of measure zero, have been used extensively
in recent years (l). However, they were introduced essentially
for compact C00 manifolds or for compact bordered C00

manifolds. In these cases the Riemannian •metric on the mani-
fold is not so essential since for different Riemannian metrics
on such manifolds we obtain the same classes Ps^ with possibly
changed (but equivalent) norm. Not so anymore is the;case of
a non-compact manif old, when the class P^ as well as its
norm depend essentially on the metric. Therefore, the natural
setting for the theory of Bessel potentials on a general manif old
is the class of Riemannian manifolds, i.e., diffepentiable mani-
folds with fixed Riemannian metric. Our^aim hereis to develop
the theory of the classes P^ for regular (C00) ^Risemanman
manif olds (or bordered manifolds).

In Section 1 we consider for a manifold ISt the classes
PI^SR) which are easily defined and investigated by transfer
to local coordinate patches and use of the corresponding
classes in Euclidean domains as introduced in Chapter 11,
Part I.

{t] For .instancje, in -the questions. caniifictfid with' the.A.tiyah-Singer ind^x theo-
rem.
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In Section 2 we introduce the classes of potentials P^
on 93?. We take the natural and direct definition of P^ for
integral m and use quadratic interpolation to define Pj^
for m < OIL < m + 1. This kind of definition is not as direct
as would be desirable but from the theoretical point of view
it is the easiest to handle. Despite the fact that quadratic
interpolation was already introduced and used by several
authors (see for instance [2, 9]), in view of our specific needs
we found it necessary to describe this interpolation method
in Appendix I, especially as concerns interpolation between
functional spaces. We needed also in this section the notion of
equivalence of two different Riemannian metrics g and g
on the same manifold, which is a sufficient (and possibly
necessary) condition for equality of the two spaces P^q
and P^g- for all a ^ 0 when 3% is provided with the two
metrics. This notion of equivalent Riemannian metrics is
investigated in Appendix II. Among the several propositions
in this section we will mention Prop. 7 which allows us to
define more directly the classes P^ in cases when the manifold
can be covered by coordinate patches satisfying rather strong
restrictions. In Prop. 8, under much weaker assumptions
than in Prop. 7, we obtain the result that P "̂1"1 is dense
in P^ (in the norm of PSi). The problem is open if this
result holds for all manifolds (2).

Section 3 is concerned with /c-dimensional Riemannian
submanifolds % of the n-dimensional manifold 3% (3).
We consider restrictions u' to 9? of functions u e P^ and
also extensions of functions u' defined on 9?. If k = n
it is obvious that restriction from 3D? to 9t transforms P^
into P^ with bound ^ 1; we give sufficient conditions
on 91 that there exist a bounded linear extension mapping
from P^ into Pj^. For the case k < n, we give sufficient
conditions that the restriction map transform P^ boundedly
into P^""^2, a > ( n — A * ) / 2 , and sufficient conditions that
there exist a bounded linear extension map from P^-C"-^2

into P^, a > (n — ^)/2. Since we use in this section simul-

(2) The density of P§i?1 in P^ for m < a < m + 1 results from the definition
of quadratic interpolation.

(8) That is, C°° submanif olds regularly imbedded in 93^ with the metric induced
by the metric of SK.
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taneous extensions of functions in p^^-W^^ to functions
in P^R") for all a > (n — /c)/2, we describe these extension
mappings in Appendix III (4).

In Section 4 we investigate the classes of potentials on C°°
bordered manifolds. For a bordered manifold 9}? we define
the classes Pfoc(3D1?) and show that via the restriction map
Pfoc(93?) can be identified with a subspace of Pfoc^J?1) where
9311 is the inner part of 93?. For a Riemannian bordered
manifold 3D? we define the spaces Pj^ and show that the
restriction map establishes an isometric isomorphism of P^
onto P^f. Hence, in particular, each u <= P^i has « border
values » u e Pfo^2^^), where 093? is the border of 93?.
Also, in this section, for a C00 bordered Riemannian manifold
9%, we introduce the notion of the regular completion of
93? — in a sense the largest C°° bordered Riemannian manifold
containing 93? as a dense subset.

In Section 5 we give a few examples answering questions
connected with our considerations in the preceding sections.
The first two examples show that if a domain D in Euclidean
space is made into a Riemannian manifold by using the
Euclidean metric, then P£ is in general different as well from
P^D) as from P^D). Examples 3 and 4 show that, for a
general /c-dimensional submanifold 9? of the n-dimensional
manifold 9)?, the restriction of u e P^, a > (n — A")/2, need
not be in p^-("-/0/2 ^^ ^ function u belonging to
p^-0i-/0/2 need not have an extension u e P|̂ .

In the present part we did not put remarks concerning exten-
sions of our results to potentials connected with L^ classes as we
did in the preceding Part II. The treatment of the classes
PS'̂  ls quite analogous to the treatment in the present paper
of Pj^, which is the class P^2. However, the formulas are
much more complicated and the essential difference is that
instead of using quadratic interpolation we have to use another
method of interpolation (for instance the complex interpo-
lation [5, 10]).

In the text we will refer to preceding parts of the « Theory
of Bessel Potentials » without mentioning the number of the

(4) In Chapter 11, Part I, we gave such extension mappings which were simul-
taneous extension mappings not for all a > (n — /c)/2 but for a in a fixed interval.
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part, but only the number of the chapter, since in all parts
the chapters are numbered in succession. We remind the
reader that Part I [4] consists of Chapters i and n, Part II [1]
of Chapterm, and the present Part III of Chapter rv. Thus, 3),
§ 9, II means Proposition 3 from § 9, Chapter n (of Part I).



CHAPTER IV

POTENTIALS ON REGULAR MANIFOLDS

i. pfoc(a»).
Throughout this section S&i is an n-manifold with a C00

structure. All definitions are made using a particular C°° atlas
{(U(, hi)} for 9%. It is then shown that the concepts defined
are independent of the particular atlas used. For convenience
we use the notation V^ == ^(U;).

For each a ^ 0 we define Pi°oc(9%) to be the class of
functions u on 3% such that u o h]~1 belongs to Pfoc(V()
for each i. It follows from 3), § 9, II that Pfoc(3%) is well-
defined, i.e. does not depend on the atlas used in its definition.
Similarly, for each a ^ 0 we define Siga^) to be the class
of all subsets A of 3D? such that for each i, /i,(A n U)
belongs to Slaa? the class of subsets R71 with 2a-capacity zero.
3l2a(3TO) is well-defined, by virtue of 20), § 6, II and the fact
that a subset A of R" belongs to 8l2a iff each point of A
has a neighborhood whose intersection with A belongs
to Siga- The sets in 8l2a(3%) are called the subsets of 9J? with
2a-capacity zero. Stga^) is an exceptional class and Pfoc(S%)
is a saturated linear functional class rel. SttaaC^)- (For defi-
nitions of these terms see § 1, I.) Also we have the inclusion
relations : Pfoc(a») c Pfoc(a») and ^a(^) c 81 (̂3%) it (3 ^ a.
If a = 0, we will write Lfoc(^) for Pfoc(a») and « a.e. »
for « exc. ?l2a(9J?) ». Sets in 8lo(^) 1̂1 be called sets of
measure zero. By virtue of 2), § 2, II., we have the following
proposition.
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1) If two functions in Pfoc(9%) are equal a.(°., they are equal
exc. 8l2a(a»).

If D is an open set in R" and k is an integer ^ 0,
we say that y <= C^^D) iff ? e Ck{D) and every derivative
of order ^ k is locally Lipschitzian on D. For each integer
k ^ 0, we define C^c1^^) to be the class of all functions (p
on SR such that 9 o hr1 e C^^V^-) for each i. Also for
convenience we define C^1'1^^) to be the class of all func-
tions <p on $R such that, for each i, (p o hr1 is a locally
essentially bounded measurable function on V^. It is easily
seen that C^^SO1?) is well-defined. We sometimes write
Li^eW tor the class C^W- From 1), §9,11. and 6), §2,
II. we obtain :

2) If u e PL(^), a ^ 0, and y e CLTW, then yu e Pfoc(^).
{Here a* denotes the largest integer strictly less than a.)

The classes Lfoc(3%), 1 ^ p < + ̂  can be defined in the
same way as L^IR) and L^(a»). If ueL^(S»), we say
that a point P on SR belongs to the Lebesgue set of u
iff for some U^ containing P, the point ^'(P) belongs to the
Lebesgue set of u o h]~1' In case P is in the Lebesgue set
of u, the Lebesgue correction of u at P, written u^P),
is defined to be (u o /^(^(P))- F^m 5), § 0, III it follows
that the Lebesgue set of u and the Lebesgue correction of u
are well-defined. Also, by classical theorems concerning
Lebesgue corrections and by the results of § 0, III, we have
the following four propositions :

3) If ueL^c(3)?)? then the complement of the Lebesgue set
of u has measure zero and u^P) == u(P) a.e.

4) If u, ^e L^(m) and u(P) = ?(P) a.e., then u^ = ^L.

5) If ueP^(^), then ^ePf^) and u^P) = u(P)
exc. ^{m}.

6) If u is equal a.e. to a function in Pi°oc(S01?)? then
^PfoW

If 3%' is a C00 p-manifold contained in 9%, we say that a
coordinate patch U in 9J? agrees with 9J?' iff the points in
U n 3D?' are characterized by the equations xk = x^ k > p ,
for some constants x^ and U n 3)?' is a coordinate patch
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in 3%' with coordinates equal to the first p coordinates
in U. We say that 3D?' is a submanifold of 3D? iff it can be
covered by coordinate patches in 93? which agree with it (5).
If 9%' is a p-dimensional submanifold of 9%, then 23), § 6
and § 8, 9 in Ch. n, give us the following :

7) If A e SlaaO^) and 2a > n — p , then the set A' =A n 9%'
belongs to ^a-Oi-p)^').

8) If u <= Pi°oc(9.R) and 2a > n — p, then the restriction

u of u to W belongs to PilT^W.

We now suppose that 3)? has a positive definite Riemannian
metric of class C°°. If U is a coordinate patch in 9K with
coordinates {^,} we let {gij} denote the components of
the metric tensor on U with respect to these coordinates.
The Riemannian metric induces on 9% a structure of a mea-
sure space. A subset A of 9% is measurable iff h{A. n U)
is Lebesgue measurable for each coordinate patch (U, h).
Also, if A is a measurable subset of 9% which is contained
in U, then the induced measure [J. is given by :

v-W = f^s{y) dy,
where as usual g denotes the determinant of the matrix {g^}.
Since 9% now has a measure space structure, the concepts
Lfoc(9K), 1 ̂  p ^ + °°) ^d « set of measure zero » now have
a direct meaning. It is easily seen that the definitions of these
concepts in terms of the measure space structure agree with
the earlier definitions for manifolds not assumed to have a
Riemannian metric.

In order to have a direct definition of corrections for func-
tions on 9%, we use the concept of a normal coordinate
neighborhood. For every point P e 9% there is an open neigh-
borhood U such that (i) each point Q <= U can be joined to P
by a unique geodesic arc, and (ii) this arc is uniquely deter-
mined by its tangent vector at P. Hence, new coordinates
x^ . . ., x^ can be introduced in U such that the geodesic

(6) This definition is equivalent to the following: SOF is a submanifold of SDZ iff
9R' is contained in 9)1 and the injection map is of class C°° and has a non-singular
differential at every point.
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arc through P with unit tangent vector T has the equations

x, = t,s, i = 1, . . ., n,

where s is the arc length measured from P and the t, are
the components of T with respect to some fixed orthonormal
basis. Such a neighborhood U together with the coordinates
r^i, . . ., x^ is called a normal coordinate neighborhood of P.
When U is such a coordinate neighborhood we use the nota-

n
tion U(P, p) for the neighborhood of P defined by ^ x2 < p2.

We can now define the Lebesgue correction of a function
u e L^(3%) directly. We say that a point P e 9% is a Lebesgue
point of u iff there is a number u^P) such that

"["(W^-^'-^^^0
as p — 0. In this case u^P) is called the Lebesgue correction
of u at P. It is easily checked that this direct definition
of the Lebesgue correction agrees with the earlier definition
for manifolds without Riemannian metrics.

We can also define an analogue on 3D? of the correction
u^ (see § 0, Ch. in). However, we first define a more general
correction in Euclidean space which will be useful later (see
the proof of 4), § 4). Let D be an open subset of R\ For
fixed xeD and each p, 0 < p ^ po(;r), let ;yp(^, y) be a
measurable function of y defined for all y e R" and such that

(i) l?p(^ y}\ ^ M,p-71 for 0 < p ^ po(^), ye R»,
(ii) 9p(a;, y} = 0 for \y - x\ ^ C^p, 0 < p ^ po(^),

(ui) JR»?P(^ y) ̂  — 1 as p -^o.
If u e L^(D), we define

uW(x) = lim^9p(^, y)u{y) dy,

provided the limit exists and is finite. If x is a Lebesgue
point of u, then u^\x) is defined and equals u^{x). Hence,
in case <pp(^, y} is defined for all a; e D, u^ is an extension
of u^. Also, suppose that ^ is a bounded measurable func-
tion on R" vanishing outside a compact set and having
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^ , /^ __ y\
j^^ dx = 1; if we define <pp(^, y) == p"""^ ( ———" ) for each

o;eD, then u^ = u^. \ P /
We now define an analogous correction uW on 3)?. For

fixed Pe9% let U(P, po(P)) be a normal coordinate neigh-
borhood of P and for each p, 0 < p ^ po(P)» ^et ?p(P5 Q)
be a measurable function of Q defined for Q e 3% and such
that:

(i) |<pp(P, Q)| ^ Mpp-71 for 0 < p ^ po(P), Qegft.
(ii) 9p(P, Q) vanishes outside U(P, Cpp), for

0 < p ^ 1 po(P).
L.p

(iii) ^?p(P,Q)^(Q)->l as p->0.

If u e L^c(SO^)) we define

uW(P) = Hm^4yp(P, Q)u(Q) d(x(Q),

provided the limit exists and is finite.
9) If u e L^c(3K) and P is a Lebesgue point of u, then

u^\P) exists and equals u^P).

Proof. — This follows from the direct definition of u^
and the fact that

%^1 as -c-
where S(0, p) is the open ball in R" with center 0 and
radius p.

Thus, if 9p(P, Q) is defined for all P e 3%, uW is an exten-
sion of u^.

10) If u, ^eLLW and u(Q) = P(Q) a.6>., (Aen uW(P)
exists iff ^(P) exists, and in this case they are equal.

There are various ways to choose the correcting function
<pp(P, Q). One choice is :

<T)(P 0) = -^^p? (^-nr? v<; p.[U(P, p)]

where y,p(P, Q) is the characteristic function of U(P, p).
Another way to choose <pp(P, Q) is as follows : Let ^ be a

13
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bounded measurable function on R" vanishing outside a
compact set and having r^ ̂  dx = 1; for each P e S% let
(U(P, po(P)), hp) be a fixed normal coordinate patch at P
and define

^P,Q)-p-^(^Q)).

An important advantage of the correction u^ over the
Lebesgue correction u^ is that, while u^ corresponds
roughly to the average of u over spheres, for suitable choice
of 9p(P, Q), u^ can be the average of u over more general
sets.

If u is any sufficiently smooth function on 3)?, the Rieman-
nian metric on 3K enables us to define the tensor V^u of
the k^ order co variant derivatives of u. These are defined
inductively starting with V°u == u. If {A^ _,J are the
components of V^u, then the components of V^u are
given by:

A —^...^ \ J ) AAil-^- w ~MA7lt-"
^ / ^ A ^ ̂  A

~" W A i ^ ' " ^ ~ f t f ~ ̂  ^...^r

Here we use the usual summation convention; also, the

] ' [ are the Christoffel symbols defined by:
( ^ 7 \n=± ̂ (^ + ̂ -^v

(il\ 2 ° \^ ' ?)^ ^0:7

where {g^} is the inverse maxtrix to {gij}. By the results
of § 7, 9 in Ch. n, we have :

11) If u e= Pfoc(STO) and k ^ a, (Aen (^ components of
V^u w^/i respect to the coordinates in any particular coordinate
patch (U, A), considered as functions on V == A(U), belong to
Pf^V). In particular, the tensor V^ is defined exc. S^a^fcC^)-

The Riemannian metric defines a natural norm on the tensor
spaces associated with 9%. In the particular case of the tensor
^7ku the expression for the norm in terms of coordinates is :

IV^^A,,,^,.,^...^,
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where {A^ ^} are the components of V^u. It follows
from the preceding proposition that if us Pfo^SK) and
k ^ a, then [V^]2 belongs to L?oc(9K).

Remark. — Many of the notions discussed here extend to
the case where 3% has a C7" or C{^ structure, m ^ 0.
If m has a (y structure, we can define P^^) tor
0 ^ a ^ m + 1 and C^e1^) tor 0 ^ k ^ m. In order to
define 3l2<x(9%) tor any a ^ 0, we require only that 9%
have a C^ structure. Similarly, if 9% has a C^ struc-
ture, we can define the classes Lfoc(9%)? 1 ̂  p ^ oo, and the
Lebesgue correction of a function in L^c(9%). Provided 9)1
has sufficient structure so that the classes involved are defined,
propositions 1) through 6) remain true.

If W is a manifold contained in 9% and if 9% and W
both have C^ or C^c^ structure, then our definition of
submanifold still makes sense. Propositions 7) and 8) remain
true provided the classes involved are still defined.

For 9% to have a Riemannian metric, 9% must have at
least a C1 structure; also, if 9)? has a C7" structure, m ^ 1,
then a Riemannian metric on 9% is at best of class C7""1.
If 9J? has at least a C1 structure and a C° metric, then the
metric induces a measure space structure on 9% and the
spaces Lfoc(9%), 1 < p ^ + oo, are the same as those
defined without the use of a metric. If 9)? has at least a C3

structure and a C2 metric, then normal coordinate neigh-
borhoods exist and belong to the natural C1 structure on 9)?.
In this case the Lebesgue correction defined using normal
coordinate neighborhoods is the same as that defined earlier
without them, and propositions 9) and 10) hold.

If m has a C^ structure and a C^"1^ metric, m ^ 1,
then proposition 11) holds for a ^ m + 1.

2. The space P§i(P|U-

We shall assume that 9^ is a separable oriented Riemannian
manifold with a C00 metric g.

If m is an integer we definie P^ as the subspace of
PKc(^) on which the m-norm, |^|^^ (defined below), is
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finite; for non-integral a, P^ is defined by quadratic inter-
polation between P^ and P^4'1 where m = a*. If we have
two metrics g and g on the same manifold 3% we shall
add a suffix to prevent confusion, e.g. P^g or M^®^ (6).

For u e P^c(S^) we define the Dirichlet integral of order m
by:

(2.1) d^{u) = f^uW \Tg dx,

and the m-norm by :
m /m\

(2.2) W^= 5( / )d^{u),
l=Q\ i /

a hermitian quadratic norm.
If D c R/1 and e is the Euclidean metric then it is clear

from the definitions in § 2, III that PS,e = P^D) and that
the corresponding norms are equal.

1) If m is an integer then P^ is a complete functional
space relative S^m^) an^ lt l/s ̂  perfect functional completion
of C°°(aK) n PS,.

Proof. — Let U c 3% be open and such that its closure is a
compact subset of some coordinate patch (Uo, h) and set
V == A(U).

Now if {u^} is Cauchy in P^, it is clear from Theorems I
and II, App. II that ^ ° h-1^ is Cauchy in P^, = P^V)
and converges to a function in P^V). From this it follows
that P^ is complete.

Let {UJ be a covering of 9%, each U^ having the same
closure properties as U above. Then by considering uju^
and the remarks of the previous paragraph it is easy to see
that P^ is a functional space rel. Sl^m^)-

Suppose in addition that {U/J is locally finite. Let {yj
be a partition of unity with y^eCo^l^). Then by Prop. 6),
§ 2, III, (<pfcU) o h^1 e P^/i^Ufc)) for us P^ and has compact
support in /^(U^). Therefore there is a w^ e Co°(Afc(Ufc)) such
that | (9fcU)o/^i — wj^(u^ < ^^ W k 0 ^ extended by

(6) If SD^ is a domain in R» we shall always add the suffix to prevent confusion
with the standard a-norms, Cf. § 2, III.


