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Introduction.

The present part of the « Theory of Bessel Potentials »
contains Chapter 1v dealing with potentials on regular Rieman-
nian manifolds. The next (and last) part to be published,
Part 1V, will contain Chapter v treating potentials on mani-
olds with singularities.

The classes of potentials P§, on a manifold I, or rather
the classes H§; which are the classes Pg; saturated relative
to the class of sets of measure zero, have been used extensively
in recent years (). However, they were intreduced essentially
for compaet C* manifolds or for compact bordered C*
manifolds. In these cases the Riemannian metric on the mani-
fold 1s not so essential since for different Riemannian metrics
on such manifolds we obtain the same classes :Pg, with possibly
changed (but equivalent) norm. Net-so -anymore is the case of
a non-compact manifold, when the class P§ sas wellasits
norm depend essentially on the metric. Therefore, the natural

-setting for the theory of Bessel potentials on a general manifold
is'the class of ‘Riemannian manifolds, i.e., differentiable mani-
folds with fized Riemannian metric. Our aim here is to develop
the theory of the classes ‘P§ for regular (C*) Biemannian
manifolds (or bordered manifolds).

In Section 1 we consider for a manifold ‘3% the classes
Pic(M) which are-easily defined and investigated by transfer
to local coordinate patches and use of the corresponding
classes in Euclidean domains as introduced in Chapter 1,
Part I.

{}) -For .instance, in the questions.connected. with the..Atiyah-Singer index theo-
rem.
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282 R. D. ADAMS, N. ARONSZAJN AND M. S. HANNA

In Section 2 we introduce the classes of potentials Pj,
on IN. We take the natural and direct definition of P3, for
integral m and use quadratic interpolation to define P,
for m < « < m + 1. This kind of definition is not as direct
as would be desirable but from the theoretical point of view
it is the easiest to handle. Despite the fact that quadratic
interpolation was already introduced and used by several
authors (see for instance [2, 9]), in view of our specific needs
we found it necessary to describe this interpolation method
in Appendix I, especially as concerns interpolation between
functional spaces. We needed also in this section the notion of
equivalence of two different Riemannian metrics g and g
on the same manifold, which is a sufficient (and possibly
necessary) condition for equality of the two spaces P, ,
and P, , for all @ > 0 when I is provided with the two
metrics. This notion of equivalent Riemannian metrics is
investigated in Appendix [I. Among the several propositions
in this section we will mention Prop. 7 which allows us to
define more directly the classes P, in cases when the manifold
can be covered by coordinate patches satisfying rather strong
restrictions. In Prop. 8, under much weaker assumptions
than in Prop. 7, we obtain the result that P§' is dense
in P§, (in the norm of P§). The problem is open if this
result holds for all manifolds (2).

Section 3 1is concerned with k-dimensional Riemannian
submanifolds N of the n-dimensional manifold M (3).
We consider restrictions u' to N of functions ueP§ and
also extensions of functions u’' defined on N. If k=n
it is obvious that restriction from I to N transforms P,
into Pj with bound < 1; we give sufficient conditions
on N that there exist a bounded linear extension mapping
from P§ into P§,. For the case k < n, we give sufficient
conditions that the restriction map transform P§ boundedly
into P§®-92 o > (n — k)/2, and sufficient conditions that
there exist a bounded linear extension map from Pg*-bi2
into - P§, « > (n — k)/2. Since we use in this section simul-

(%) The density of Pg{* in P§y for m < « < m + 1 results from the definition

of quadratic interpolation.
(3) That is, C® submanifolds regularly imbedded in @ with the metric induced

by the metric of I%.



THEORY OF BESSEL POTENTIALS - 283

taneous extensions of functions in P*~"~®2(R*) to functions
in P%(R") forall « > (n — k)/2, we describe these extension
mappings in Appendix 1T (%).

In Section 4 we investigate the classes of potentials on C*
bordered manifolds. For a bordered manifold I we define
the classes P (M) and show that via the restriction map
Pitc(MR) can be identified with a subspace of Pi.(I) where
¢ is the inner part of . For a Riemannian bordered
manifold I we define the spaces P§ and show that the
restriction map establishes an isometric isomorphism of P§,
onto P§:. Hence, in particular, each weP§: has «border
values » u’ e P;12(d9), where IR is the border of IN.
Also, in this section, for a C* bordered Riemannian manifold
M, we introduce the notion of the regular completion of
M — in a sense the largest C* bordered Riemannian manifold
containing I as a dense subset.

In Section 5 we give a few examples answering questions
connected with our considerations in the preceding sections.
The first two examples show that if a domain D in Euclidean
space i1s made into a Riemannian manifold by using the
Euclidean metric, then P§ 1s in general different as well from
P%D) as from P%D). Examples 3 and 4 show that, for a
general k-dimensional submanifold RN of the n-dimensional
manifold IR, the restriction of we P§, a« > (n — k)/2, need
not be in PHFC-2 and a function u’ belonging to
P52 need not have an extension ue P§,.

In the present part we did not put remarks concerning exten-
sions of our results to potentials connected with L” classes as we
did in the preceding Part II. The treatment of the classes
P§? 1s quite analogous to the treatment in the present paper
of P, which i1s the class P2 However, the formulas are
much more complicated and the essential difference is that
instead of using quadratic interpolation we have to use another
method of interpolation (for instance the complex interpo-
lation [5, 10]).

In the text we will refer to preceding parts of the « Theory
of Bessel Potentials » without mentioning the number of the

(4) In Chapter 11, Part I, we gave such extension mappings which were simul-
taneous extension mappings not for all « > (n — k)/2 but for « in a fixed interval.
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part, but only the number of the chapter, since in all parts
the: chapters are numbered in succession. We remind the
reader that Part I [4] consists of Chapters 1 and 11, Part I1 [1]
of Chapter 111, and the present Part III of Chapter rv. Thus, 3),
§9; II means Proposition 3 from § 9, Chapter 11 (of Part I).



CHAPTER 1V

POTENTIALS ON REGULAR MANIFOLDS

1. Pic(IM).

Throughout this section I is an n-manifold with a- C”
structure. All definitions are made using a particular C* atlas
{(U;, b))} for M. It is then shown that the concepts defined
are independent of the particular atlas used. For convenience
we use the notation V; = h(U,).

For each a > 0 we define Pf,(IMM) to be the class of
functions u on IR such that wo 7' belongs to P (V;)
for each :i. It follows from 3), § 9, II that Pf,(IM) is well-
defined, i.e. does not depend on the atlas used in its definition.
Similarly, for each « > 0 we define A,,(IM) to be the class
of all subsets A of I such that for each i, h(AnU)
belongs to A,,, the class of subsets R* with 2a-capacity zero.
Aso(M) 1s well-defined, by virtue of 20), §6, II and the fact
that a subset A of R" belongs to A,, iff each point of A
has a neighborhood whose intersection with A belongs
to Wss. The sets in A,,(IM) are called the subsets of IM with
2a-capacity zero. ,,(IM) is an exceptional class and Plo(IMN)
1s a saturated linear functional class rel. A,,(M). (For defi-
nitions of these terms see § 1, I.) Also we have the inclusion
relations : Pi(IM) c Pﬁ;c(‘)ﬁ) and  Aye(M) € Anpg(M) if B < a.
If «a=0, we will write L{ (M) for P{ (M) and «a.e.»
for « exc. Wpa(M) ». Sets in Y (IM) will be called sets of
measure zero. By virtue of 2), § 2, II., we have the following
proposition.
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1) If two functions in Pi(I) are equal a.e., they are equal
exc. Uga(M).

If D is an open set in R* and k is an integer > 0,
we say that ¢eC{P(D) iff ¢eC¥D) and every derivative
of order < k is locally Lipschitzian on D. For each integer
k > 0, we define C{%V(IR) to be the class of all functions ¢
on M such that ¢ oAt eCEV(V,) for each i. Also for
convenience we define C{EIP(IM) to be the class of all func-
tions ¢ on M such that, for each i, ¢ o A7' is a locally
essentially bounded measurable function on V. It is easily
seen that C&P(M) 1s well-defined. We sometimes write
Li(M) for the class CHEY(M). From 1), §9, I. and 6), §2,

I1. we obtain:

2) If ue P{ (M), « >0, and ¢ e CiZV(IN), then gu e Pf (M).
(Here o denotes the largest integer strictly less than o.)

The classes L{ (M), 1 < p < + o, can be defined in the
same way as L (M) and L3 (OM). If well (M), we say
that a point P on I belongs to the Lebesgue set of u
iff for some U; containing P, the point &;(P) belongs to the
Lebesgue set of wo hi'. In case P 1s in the Lebesgue set
of u, the Lebesgue correction of w at P, written u"(P),
1s defined to be (u o A7')"(hy(P)). From b), § 0, III it follows
that the Lebesgue set of u and the Lebesgue correction of u
are well-defined. Also, by classical theorems concerning
Lebesgue corrections and by the results of § 0, III, we have
the following four propositions :

3) If uell (M), then the complement of the Lebesgue set
of u has measure zero and u“(P) = u(P) a.e.

4) If u,veL], (M) and u(P) = ¢(P) a.e., then u® = o"

5) If uePy (M), then u ePi M) and u“(P)= u(P)
exc. Wga(M).

6) If u is equal ae. to a function tn P{ (M), then
u e Pl (M).

If MM isa C* p-manifold contained in IR, we say that a
coordinate patch U in IR agrees with I’ iff the points in
UnIM' are characterized by the equations ¥ = 2k k > p,
for some constants zf and UnIMN’ is a coordinate patch
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in I’ with coordinates equal to the first p coordinates
in U. We say that IR’ is a submanifold of I iff it can be
covered by coordinate patches in I which agree with it (%).
If M’ is a p-dimensional submanifold of IN, then 23), § 6
and § 8, 9 in Ch. 1, give us the following :

7) If AeWUpu(M) and 2a > n — p, thentheset A'=A n I’
belongs to Wso—n—py(M’).

8) If uePi (M) and 2a > n— p, then the restriction
n—p

u' of u to M’ belongs to P::,:T(Zm')

We now suppose that I has a positive definite Riemannian
metric of class C®. If U is a coordinate patch in I with
coordinates {z;} we let {g;} denote the components of
the metric tensor on U with respect to these coordinates.
The Riemannian metric induces on 3N a structure of a mea-
sure space. A subset A of I is measurable iff A(A nU)
is Lebesgue measurable for each coordinate patch (U, h).
Also, if A 1is a measurable subset of ¢ which is contained
in U, then the induced measure u is given by :

w(A) = [ Vely) dy,

where as usual g denotes the determinant of the matrix {g;;}.
Since I now has a measure space structure, the concepts
Lf.(M),1 < p < + o, and « set of measure zero » now have
a direct meaning. It is easily seen that the definitions of these
concepts in terms of the measure space structure agree with
the earlier definitions for manifolds not assumed to have a
Riemannian metric.

In order to have a direct definition of corrections for func-
tions on M, we use the concept of a normal coordinate
neighborhood. For every point P e IR there is an open neigh-
borhood U such that (1) each point Q € U can be joined to P
by a unique geodesic arc, and (i) this arc is uniquely deter-
mined by its tangent vector at P. Hence, new coordinates
Zy, ..., Z, can be introduced in U such that the geodesic

(5) This definition is equivalent to the following: M’ is a submanifold of M iff
M’ is contained in M and the injection map is of class C® and has a non-singular
differential at every point.
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arc through P with unit tangent vector T has the equations

x,-ztis, lzl, vy NN,

where s 1s the arc length measured from P and the ¢ are
the components of T with respect to some fixed orthonormal
basis. Such a neighborhood U together with the coordinates
Zy, ..., &, 1s called a normal coordinate neighborhood of P.
When U is such a coordinate neighborhood we use the nota-

tion U(P,p) for the neighborhood of P defined by Z at < P2

\

We can now define the Lebesgue correction of a functlon
ue L} (M) directly. We say that a point P eI is a Lebesgue
point of wu iff there is a number u“(P) such that

1 . R
w[U(P, )] f( JHQ) = w(P) du(Q) >0

as p— 0. Inthis case u"(P) is called the Lebesgue correction
of u at P. It is easily checked that this direct definition
of the Lebesgue correction agrees with the earlier definition
for manifolds without Riemanman metrics.

We can also define an analogue on % of the correction
u? (see § 0, Ch. ). However, we first define a more general
correction in Euclidean space which will be useful later (see
the proof of 4), § 4). Let D be an open subset of R". For
fixed zeD and each p, 0 < p < po(2), let ¢y (z, y) be a
measurable function of y defined for all y € R* and such that

(l) l??(x? y)l < MIP_n fOI‘ 0 < no < Po(x>, yER",
(ii) ¢pl@, y) =0 for |y —a| > Cop, 0 < p < pol2),

(i) [ra®pla> ¥) dy —1 as p—0.
If uell (D), we define

u(z) = lim o ¢¢(2, y)uly) dy,

provided the limit exists and is finite. If 2 is a Lebesgue
point of u, then u®(z) is defined and equals u%(z). Hence,
in case ¢, (z, y) is defined for all xe D, u® is an extension

of u® Also, suppose that ¢ is a bounded measurable func-
tion on R" vanishing outside a compact set and having



THEORY OF BESSEL POTENTIALS 289

/};"a[/ de = 1; if we define ¢,(z, y) = p™ (:I:_:_g) for each
zeD, then u® = u?. e

We now define an analogous correction u® on N. For
fixed PeI let U(P, po(P)) be a normal coordinate neigh-
borhood of P and for each p, 0 < p < go(P), let 9, (P, Q)
be a measurable function of Q defined for QeI and such
that :

(1) 19e(P, QI < Mpp™ for 0 < p < po(P), Q=M.

(ii) 94(P, Q) vanishes outside U(P, Cpp), for

0<op< Cip oo(P).
(i) f5, %P, Q) d(Q) >1 as p—0.
If uel} (M), we define
wP(P) =lim [y, ¢(P, Qu(Q) dp(Q),

provided the limit exists and is finite.

9) If ueLL (M) and P is a Lebesgue point of u, then
u®(P) exists and equals u“(P).

Proof. — This follows from the direct definition of u*
and the fact that
U(P, p)
2 -1 as — G,
150, ¢ °

where S(0, p) 1s the open ball in R® with center 0 and
radius p.
Thus, if ¢,(P, Q) is defined for all P e IR, u® is an exten-

sion of u".

10) If w, veL}i, (M) and u(Q) = ¢(Q) a.e., then uP(P)
exists iff VD(P) exists, and in this case they are equal

There are various ways to choose the correcting function

¢e(P, Q). One choice is:

4olP, Q)
P Q= 0@, )]

where y.(P, Q) is the characteristic function of U(P, p).
Another way to choose ¢.(P, Q) is as follows: Let ¢ be a

13
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bounded measurable function on R" wvanishing outside a
compact set and having ﬁ,,&[; dx = 1; for each PeIN let

(U(P, po(P)), hp) be a fixed normal coordinate patch at P
and define

%P, Q) = p~4 (_UPQ_>>

An important advantage of the correction u® over the
Lebesgue correction u® 1is that, while u" corresponds
roughly to the average of w over spheres, for suitable choice
of ¢,(P, Q), u® can be the average of u over more general
sets.

If u is any sufficiently smooth function on IR, the Rieman-
nian metric on YN enables us to define the tensor V¢u of
the k" order covariant derivatives of u. These are defined
inductively starting with V0w =u. If {A; .} are the
components of V*u, then the components of V*y are
given by :

dA.: . ;
A, a= éé,’""—gl %Aﬁ,...ik

1,0
] 7
- %lglg Ai,j...ik — elklg Ail...i,,__,j-

Here we use the usual summation convention; also, the

% l:’l% are the Christoffel symbols defined by :

J) =L i (28n | d8m g\
3iz§ 5 8 <bx’+ba;‘ >0

where {g"} is the inverse maxtrix to {g;}. By the results
of § 7, 9 in Ch. 11, we have:

11) If uePy (M) and k < a, then the components of
Vku with respect to the coordinates in any particular coordinate
patch (U, h), considered as functions on V = h(U), belong to
Pik(V). In particular, the tensor V*u is defined exc. Ugq—gr(M).

The Riemannian metric defines a natural norm on the tensor
spaces associated with . In the particular case of the tensor
V*u the expression for the norm in terms of coordinates is :

Ivku|2 = Ai«-uikAfa-ujkgi‘j‘ A gikjk’
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where {A; )} are the components of V*u. It follows
from the preceding proposition that if wuwePf (M) and
k < «, then |V*u|?2 belongs to L. ().

Remark. — Many of the notions discussed here extond to
the case where I@ has a C™ or C{®Y structure, m > 0.
If M has a C®Y structure, we can define P (M) for
0<a<m+1 and CEPOR) for 0 < k < m. In order to
define Ayu(M) for any « > 0, we require only that I
have a C{% structure. Similarly, if 9 has a C{% struc-
ture, we can define the classes Lf,,(3N), 1 < p < oo, and the
Lebesgue correction of a function in L} (I). Provided IN
has sufficient structure so that the classes involved are defined,
propositions 1) through 6) remain true.

If M’ is a manifold contained in IM and if I and M’
both have C™ or C{:¥ structure, then our definition of
submanifold still makes sense. Propositions 7) and 8) remain
true provided the classes involved are still defined.

For I to have a Riemannian metric, %{ must have at
least a C! structure; also, if 9 has a C™ structure, m > 1,
then a Riemannian metric on IN is at best of class C™1.
If 9 has at least a C! structure and a C° metric, then the
metric induces a measure space structure on I and the
spaces L (M), 1 < p < + oo, are the same as those
defined without the use of a metric. If I has at least a C?
structure and a C? metric, then normal coordinate neigh-
borhoods exist and belong to the natural C!' structure on IN.
In this case the Lebesgue correction defined using normal
coordinate neighborhoods is the same as that defined earlier
without them, and propositions 9) and 10) hold.

If M hasa CZY structure and a CI Y metric, m > 1,
then proposition 11) holds for « < m + 1.

2. The space Pg(Pj, ).

We shall assume that I is a separable oriented Riemannian
manifold with a C*® metric g.

If m is an integer we definie PJ, as the subspace of
loo(M) on which the m-norm, |u|,q (defined below), is






