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UNIFORM APPROXIMATION
OF HARMONIC FUNCTIONS

by G. F. VINCENT-SMITH

Introduction.

Let ® be a bounded open set in Euclidian n-space (n > 1),
with closure ® and frontier ®*. Corollary 1 below gives a
necessary and sufficient condition that each continuous
real-valued function on @ harmonic in @, may be uniformly
approximated on @ by functions harmonic in a neighbourhood
of ®w. The purpose of this paper is to extend corollary 1 to
axiomatic potential theory.

Suppose a, is a sequence of points chosen one from each
domain in [:6. Let @2 be the elementary harmonic functions
relative to a, [10, § 1]. Then ®i» is a potential of support
ap, n=1, 2, ... If C(w) denotes the space of continuous
real-valued functions on @, then following Deny [9], [10, § 4]
and de La Pradelle [16], we consider the following linear
function spaces :

M = {feC(w): f is harmonic in ®};

L= {feC(w): f extends to a function harmonic in a
neighbourhood U, of w};

K = {feC(w): f extends to the difference of two potentials

with compact support contained in [:63};

J={fe(C(w): f extends to a function in the linear span of
the elementary harmonic functions ®gr}.
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Then JeKecLcM, and Deny [10, th. 5] proves the follo-

wing approximation theorem.

Taeorem 1. — J s uniformly dense in M if and only if the
sets [:w and [:6 are effilé (thin) at the same points.

The points at which [:m 1s not thin [7, ch. VII, § 1] are
precisely the regular points of ®* for the Dirichlet problem
[7, ch. VIII, § 6], while the points where [:6 is not thin are

precisely the stable points of * for the Dirichlet problem.

Suppose now that ® 1is a relatively compact open subset
of a harmonic space Q which satisfies Brelot’s axioms 1,
2 and 3, and on which there exists a strictly positive potential.
Suppose also that the topology of ( has a countable base of
completely determining open sets, that potentials with
the same one point support are proportional, and that
adjoint potentials with one point support are proportional.
De La Pradelle [16, th. 5] proves the following generalisation
of theorem 1.

Tueorem 1. — K s uniformly dense in M if and only if
the sets [:w and [:6 are thin at the same points.

Deny’s proof of theorem 1 consists of showing that the
same measures on annilhilate J and M, and the same method
is used to prove theorem 1’. In this paper the conditions on
are relaxed, and the following corollary to theorem 1 is gene-
ralised.

Cororrary 1. — L s uniformly dense in M if and only if
every regular point of ®* s stable.

The proof of corollary 1, using elementary harmonic func-
tions, does not adapt to axiomatic potential theory. In example
2 we give a proof which does generalise. This proof is rather
satisfying, since it uses Bauer’s characterisation of regular
points, and the following generalisation of the Stone-Weier-
strass theorem [13, th. 5].

Taeorem 2. — Suppose that X s a compact Hausdorff
space, that L is a linear subspace of C(X) which contains the
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constant functions, separates the points of X, and has the weak
Riesz separation property, and that L is contained in the
linear subspace M of C(X). Then L us uniformly dense in M
if and only if vy(X) = du(X).

L is said to have the weak Riesz separation property (R.s.p.)
if whenever {fi, fo, &, &} <L with f;Vf, < g&g/Ag, there
exists heL withfiVf, < h < gy /A g.. The Choquet boundary
of M is denoted dy(X) [15] and Bauer [1, th. 6] shows that
in the classical case dy(w) 1s precisely the set of regular
points of w*. Brelot [7, ch. vii1, § 1] remarks that this remains
true when ® 1s a relatively compact open subset of a harmonic
space satisfying Brelot’s axioms 1, 2 and 3’, and that in this
case dy(w) 1s precisely the set of stable points of w*. Using
Bauer’s results, corollary 1 is an immediate consequence of
Theorem 2, both in the classical case, and when ® is a relati-
vely compact open subset of a harmonic space satisfying
Brelot’s axioms 1, 2 and 3'.

If ® 1s a relatively compact open subset of one of the
harmonic spaces of Boboc and Cornea [4], which are more
general than those of Brelot, then the set of regular points
of ®* corresponds not to dy(w) but to w*ndw(®w), where
W cC(w) 1is the min-stable wedge of continuous functions
on @ superharmonicin . In this case we need a strengthened
form of theorem 2, which, together with this characterisation
of regular points, has corollary 1 as a direct consequence.
This we supply in theorem 4.

In order to strengthen theorem 2 we consider min-stable
wedges $<W in ((X), and a geometric simplex (X, ¥, L).
In theorem 4 we give a sufficient condition that L be uni-
formly dense in the space M of continuous W-affine functions
on X. This condition is given in terms of the Choquet
boundaries dw(X) and 3¢(X). Inlemma 5 a pair of condi-
tions equivalent to this is given. These are of a more analytic
nature. Theorem 4 is deduced from proposition 1, which
is a characterisation of geometric simplexes. This is proved

by repeated use of filtering arguments together with the folo-
wing form of Dini’s theorem.

Tueorem 3. — If {f;:ie 1} is an upward filtering family in
C(X) and g s an upper bounded upper semicontinuous
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function such that g < sup {f;: i1}, then g < f;, for some
o< L.

f>0(=0) will mean that f(z) > 0 (> 0) for all ze X.

A characterisation of geometric simplexes.

Let X be a compact Hausdorff space, and let $c< W be
min-stable wedges in C(X). If fAge W whenever f, ge W
then W is said to be min-stable. We shall assume that 9
contains a function p > 1 and a function ¢ < — 1. The
Choquet theory for min-stable wedges has been developed in
[11] [B] where proofs of the following results may be found.

The wedge W induces a partial order —<w on the positive
regular Borel measures on X given by the formula

e <w A, A(f) < w(f) whenever fe W.

A measure which is maximal for <w is said to be W-extremal.
A meausre p 1s W-extremal if and only if

(1) w(g) = inf {K(f): g < fe W}

whenever ge — W [5, Th. 1.2]. An extended real-valued
function g on X 1s w-concave 1if the upper integral

f gdp < g(xr) whenever ¢, <w . The function g is
W-aﬁ‘ine if both g and — g are W-concave. The min-stable
wedge of lower bounded extended real-valued lower semiconti-
nuous w-concave functions on X will be denoted W.

Lemma 1. — [11, Th. 1] [5, Cor. 1.4 d)]. Each feW is the
pointwise supremum of an upward filtering family in W.

A closed subset A of X is a W-face (W-absorbent set
[5, § 2], W-extreme set [11, § 2]) if for each ze A

#(XNA) = 0 whenever ¢, <w .

If A isa W-face and fe W then the function f3, equal to f
on A and to + o on X\A, belongsto W [11, § 2]. The
W-faces are ordered by inclusion, and each W-face contains
a minimal W-face. The measure ¢, is W-extremal if and only
if z Dbelongs to a minimal W-face. The Choquet boundary
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of W isthe union of all minimal W-faces of X, andis denoted
dw(X) [b, § 2]. Each ¥-face is a W-face, so that each minimal
Y-face contains at least one minimal W-face.

Lemma 2. — [2, Satz 2] [5, Cor. 2.1] A function feW is
positive if and only if it is positive on dw(X).

We say that W distinguishes the points z, y € X if there
exists f, ge W such that

f(@)gly) # f(y)g().

If W contains the constant functions, then W distinguishes z
and y if and onlyif W separates x and y. The subspace
(W—W)p={({f—28)p: f,ge W} is a sublattice of C(X)
containing the constant functions. (W — W)/p separates
points of X 1if and only if W distinguishes points of X.
By Stone’s theorem, W — W is uniformly dense in C(X) if
and only if W distinguishes points of X. The following lemma
is an immediate consequence of [5, Th. 2.1 ¢)].

Lemma 3. — W distinguishes z, y edw(X) if and only if
x and y belong to different minimal W-faces of X

Example 1. — Let X =10, 1] X [0, 1], and let

= {feCX): ywmf(z, y) 1s convex for each =z, and
zwe f(z, y) 1is affine with f(1, y) = 2f(0, y) for each y}.
Then the sets A = {(z, 0): ze [0, 1]} and B = {(z, 1):
ze [0, 1]} are minimal J-faces. J separates, yet does not
distinguish the points of A. The Choquet boundary

d¢(X) = AuB.

The J-affine functions are the fed which are affine in y for
each z.

Lemma 4. — If $<W are min-stable wedges in C(X),
and if 9 contains a positive function p and a negative
function gq, then the following conditions are equivalent :

(1) For each pair of (disjoint) minimal w-faces A,, A,,
there exists a pair of (disjoint) $-faces By, By, suchthat A, c B,
and A, cB,;

(11) Same statement as (1) but with B,, B, minimal 9-faces;
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(1) dw(X) cd¢g(X) and 9 distinguishes points of dw(X)
which are distinguished by W.

Proof. — (1) = (i1). Let A be a minimal W-face, and put
G=N{F: F 1s an Y-face and AcF}. Then G 1is an
Y-face, and contains a minimal Y-face H. Now H 1is a
W-face and contains a minimal W-face A’. If AnA'= g,
then there exist disjoint J-faces B, B’ such that AeB
and A’eB’. Then BnG is an J-face properly contained
in G, which contradicts the definition of G. Therefore
A = A’, sothat Ge H and G is a minimal $-face. It follows
immediately that if A,, A, are disjoint minimal W-faces,
then A, cG; and A;cG,, where G; and G, are disjoint
minimal Y-faces.

(1) = (1). dw(X)=U{A: A 1s a minimal W-face}
c U{B: B is a minimal $-face} = 29y(X). Suppose W dis-
tinguishes z; and 2, €?,(X), then by lemma 3 there are
disjoint minimal W-faces A, and A, with z,e€A; and
7, € A,. Therefore there are disjoint minimal $-faces B,, B,
with z,€A;cB; and 2,eA;cB;, and by lemma 3 ¢
distinguishes z; and ;.

(i) = (1) = (1). If A, and A, are disjoint minimal
W-faces, then the points 2, € A; and z, € A, are distinguished
by W. Therefore z; and x, are distinguished by J. Since
Ty, Tpedw(X)cdg(X) there are disjoint minimal J-faces
B,, B, with z,eB; and =z,eB,. Since A, is minimal
A, c A, nB,, so that A; cB,. Similarly A, cB,.

If L and M are linear subspaces of C(X), then we will
put
= {fin---Af.: fieL, 1=1...7r}
and

M= {fin---Af: f;eM, 1=1...r}

Then ¢ and M are min-stable wedges in C(X) and if the

functions in L are J-affine then 4c 9.

Suppose L is a linear subspace of continuous Y-affine
functions on X. The triple (X, 9, L) 1s a geometric simplex
if given fe—9 and ged with f < g, then there exists
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heL with f<h<g [5 § 4]. We have assumed that
p,ged with p >0 and ¢ < 0, so that ap < ¢ for some
a< 0. If (X,9,L) is a geometric simplex it follows that L
contains an element [ > 0.

ProrosiTion 1. — (X, 9, L) s a geometric simplex if and
only if L has the weak R.s.p., 29(X)cd¢(X) and <& distin-
guishes points of d9(X) which are distinguished by Y.

Proof. — Let (X, Y, L) be a geometric simplex and suppose
that {fi,fs 81, 8} <L with iVf, < gg/\g,. Since ggAgoed
there exists a family A = {h;jed: h; < g\ g, 11} filtering
up to g Ag. By Dini’s theorem there exists h, e A such
that fiVfa < hy < g1/\g. OSimilarly, there exists h;e — ¢
such that fiVfy, < h;, < h, < g1/\g. Since (X, 9, L) is a
geometric simplex there exists heL such that

AVE <k

o

and L has the weak R.s.p.
Suppose z;€d9(X), t=1, 2, and fie— % ;j=1, 2.
Then f;e — 9 and by (1)

fix) = inf {h(z;): f;, < hed},
(2) —inf {g(z): geL, f, < g < hed},

S h<h < g/\g

since (X, 9, L) 1s a geometric simplex. Therefore z; e d¢(X),
and ?9(X)cdg(X). If ¢ > 0 then by (2) there exists g,
g; € L such hat

]g.i(wi) - f]<x1>l < g i9 ]= 17 2.

If i and f, distinguish 2; and x,, and ¢ 1is small enough,
then g and g, distinguish 2, and z,, and the conditions
of the proposition are necessary.

Suppose that (X, 9, L) satisfies the given conditions, and
that fe — Y, ge¥ with f< g. If A is a minimal Y-face,
then by lemma 4 A is contained in a minimal -face B.
If « 1is the smallest real number such that al > f on B,
then

D= {zeB: (l — f)(z) =0} = {zeX: (al — f) § (2)=0}
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1s a Y-face [b, prop. 2.2]. D contains a minimal ¥-face A’,
and by lemma 4, A = A’. Similarly

Ac{zeB: (g— Bi)) =0},

where 3 is the greatest real number such that Bl < g on B.
Since ! is strictly positive, « < @, and if « < y < 3, then
f<yl < g on B. By lemma 1, the function (yl)§ is the
supremum of an increasing filtering family {fie¥: telI}.
Since f < (yl)g, it follows from Dini’s theorem that
f<f,(=mhAN---Ah,: h,eL, r=1, ..., n) for some i,el.
Therefore there exists heL with f<h on X and h < g
on B.

Suppose that f < hyAh, with h;, hyeL. Since L has
the weak R.s.p. and contains a positive function, the family

{keL: k < hy Ahy} filters up. Therefore
k=sup {k'e%: kK < hyA\hy} =sup {keL: k < hyAhy}.

Thus k is the supremum of a filtering family of continuous
¢-affine functions and is therefore Y-affine and lower semiconti-

nuous. Therefore ke . It follows from (1) that k = hy Ak,
on dg(x). Since dg(X)cdg(X), the function k — f is strictly
positive on dg(X). By lemma 2, k > f. By Dini’s theorem
there exists heL such that f < h < hyAh,, and the family
F=1{heL:f < h is filtering down.

Therefore the function h =inf {heL: f < h} 1is upper
semicontinuous Z-affine and Y-affine. If A 1s a minimal
9-face, then there exists heJF with h < g on A. Therefore
h < g on ?3¢(X), and by lemma 2, h < g. By Dini’s theorem
there exists heL such that f < h < g. Therefore (X, 9, L)
is a geometric simplex.

We may now extend the density theorem in [13].

Tueorem 4. — Suppose that § <« W are min-stable wedges in
C(X), and that 9 contains a positive function p and a nega-
tive function q. Let M = {feC(X): [ is W-affine} and let
L cC(X) be a linear subspace of 9-affine functions. If (X, 4, L)
i1s a geometric simplex and if dw(X)cd9(X) and if 9 distin-
guishes points of dw(X) which are distinguished by W, then L

is uniformly dense in M.
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Proof. — It follows from proposition 1 that dw(X) cd¢(X)
and that ¢ distinguishes points of dw(X) distinguished by W.
Therefore (X, W, L) 1s a geometric simplex. If feM and
e > 0, then by lemma 1 and by Dini’s theorem there exist
he — W, ke W such that

f+eq<h<k<f+ep

Since (X, w, L) 1s a geometric simplex, there exists geL
such that f4eg<h< g<k<f+ ep, and L 1is uniform-
ly dense in M.

Suppose that L <M are linear subspaces of C(X) contai-
ning the constant functions, and that L has the weak R.s.p.
Then ¢ and M are min-stable wedges, d¢(X) = 2.(X) the
Choquet boundary of L, and d,r(X) = dy(X), the Choquet
boundary of M [15], and (X, ¥, L) is a geometric simplex.
Since L contains the constant functions, points are distin-
guished by £ (resp. M) if and only if they are separated
by L (resp. M). We have therefore the following corollary to
theorem 4.

Cororrary 1. — [13, cor. to th. 5]. If dy(X) = ou(X) and
L separates the points of dy(X) which are separated by M,
then L s uniformly dense in M.

We may replace the conditions in proposition 1 and theorem
by a pair of conditions very similar to those used by D. A. Ed-
wards [12].

Suppose we are given wedges W, and 9, such that the
min-stable wedges {fiA---Af,: fiewy,, v=1, ..., r} and
{(iN---Nf.: fieYy, v =1, ..., r} are uniformly dense in W
and Y respectively. For example, in corollary 1 we could
take M =W, and L =Y, Since Y contains a positive
element it follows that ¥, contains a positive element which
we may take as p. We consider the following conditions :

(@) f zedw(X), e >0 and fi, foeY,, then there exists
ge — 9 such that g < fiAf, and fi\fa(z) < g(a) + =

(a’) Same as (a), but with ge — .

(b) f z, and =z, edw(X),e >0 and 0 < feW,, then
there exists ged, such that |f(z;) — g(z)] <& 1 =1, 2.

Suppose that Y, satisfies condition (a). Then there exists
{hy, ..., hy}c— Y, such that g< hnV---Vh, < fi\fs.
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Then h; < i Afy and fiAfi(z) < hy(z) + ¢ for some i with
1 < ¢ < n. Therefore (a) implies (a’) and since (a') implies (a),
the two conditions are equivalent.

Lemma 5. — dw(X)cdy(X) if and only if 9, satisfies
condition (a).

Proof. — It follows from (1) that zedg(X) if and only if
whenever fed there exists ge—J with g < f and
f(z) < g(z) + e. Therefore the condition is necessary.

If 9, satisfies condition (a) then it satisfies (a’). Consider
zedw(X),e >0 and fe9. If 6 > 0 choose {f,...,f.}cd.
such that |[f — fiA---Af,] < 3. Let

¢c=min {fi(z): 1=1, ..., n}.

By condition (a’) there exists ked, such that k(z) = — ¢
and {g, ..., g} — Yo such that

g < (fi + k)NO, g(z) > —e¢/n, 1=1, ...
Then

go=2{gi: =1, ..., n}
SEFRA A+ R =i Afy+

and  go(z) > —e. Therefore gy —k=he—9, and
h<fiN---ANfi<f+2¢6 with h(z) >c—¢e > flx) — & — .
Choosing 3 such that &(1 + p(x)) < ¢ and then putting
g=h — 8p it follows that g < f and g(z) > f(z) — 2¢. It
follows from (1) that zed¢(X) and that dw(X) cdg(X).

Lemma 6. — d3w(X) cdg(X) and 9 distinguishes points of
dw(X) which are distinguished by W if and only if 9, and W,
satisfy conditions (a) and (b).

Proof. — If W distinguishes the points 2z, and =z, of
dw(X), then there exists fe W such that

f(z1)p(ze) # f(z2)p(21)-

Since peW, we may assume that f > 0. If ¢, satisfies
condition (b) and e < 0, then there exists ge¥, such that
lg(z) — f(x)] <& t=1, 2. If e 1s small enough, then
g(x)p(x,) # glae)p(x), and ¢ distinguishes z; and a,.
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If J, also satisfies condition (a) then dw(X)cdg(X), by
lemma 4.

Conversely, suppose that =z, z,cdw(X), ¢ >0 and
0 < feW,. We consider the following cases:

(1) f(xy)p(zs) = f(zy)p(z;). Choose real ¢ such that
cp(z) = f(z;) and c¢p(x,) = f(x,). Then c¢p =ged, and
|flz) — glz) =0 < 1=1,2

1) f(z)p(xs) < flay)p(xy). If dw(X)cdg(X) and ¥ distin-
guishes points of dw(X) distinguished by W, then ¢ distin-
guishes z; and z,, and =, belongs to a minimal Y-face A.
Then the function 07 eJ. It follows from lemma 1 that
there exists ked such that k(z;) < 0 and k(x,) > 0. Since
9y 1s a wedge containing p, there exists hed, such that
h(z;) =0 and h(x;) > 0. Define ged, by the formula

f(%) f(xz)l’(“’l) — f(%)P(%)
p<xl> P ahle

Then |f(x; ) =0<¢e1=1,2, and W, and Y,
satisfy the condltlons (a) and (b).

g:

Application to axiomatic potential theory.

Let o be an open relatively compact MP subset [4, § 2]
of a harmonic space which satisfies one of the axiomatic
systems [4, H,, ..., Hy] [3, Ay, ..., Ag]. Let

W = {feC(w): f is superharmonic in o},

9= {feC(w): f extends to a function superharmonic in
an open neighbourhood U, of w},
and define L and M as in the introduction. Then < W are
min-stable wedges in C(w), M 1s the space of continuous
W-affine functions, and L 1is the space of conitnuous J-affine
functions on ®. We suppose that 9 contains a positive
function p and a negative function ¢, and distinguishes
points of w*.

Lemma 7. — If A isaminimal W-face of ®, then A n w* # g.

Proof. — The function O, belongs to W  and is therefore
hyperharmonic [4, § 1]. Suppose A nw* =g, then 0F — p
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is non-negative on ®\A, and for any point z,e "
lim inf {(0F — p)(z): 2 - z,} = . Since ® is an MP set,
02 — p > 0 and therefore A = ¢g. Therefore A no* # g.

We now recall the definitions and some properties of regular
and stable points of w*. If feC(w*) put Pp = {v: ¢ is
hyperharmonic in @ and

lim inf {¢(z): Tew, z—>2,} > f(z,), e 0"},

put HP =inf {¢: ve®P}, and put H} = — HP . Since
(9 — 9)| o+ 1is uniformly dense in C(w*) 1t may be shown as in
[7, ch. vir, § 3] [14] [3, Satz 24], that Hy = Hp = Hp
whenever fe C(w*). Moreover fww H, is a linear map from
C(w*) to the bounded continuous functions on ®, which is
continuous for the supremum norms. A point z,e0* is
regular if lim {H{z): zew, z — z,} = f(x,) whenever
feC(w*). Since (¥ — J)|,+ 1s dense in C(w*) and the map
fws Hf is continuous, z, 1is regular if and only if
lim {Hf(z): ze 0, x > z,} = f(x,) whenever fe — J|,..

If feC(w*) then put ¥p = {¢: ¢ is hyperharmonic in a
neighbourhood of ®w and

lim inf {¢(z): z e [:-03, x =3} = f(%0)},

put Kf =inf{¢: ve¥P} and put K¢=— K¢ . As in
[6, § 2] 1t may be shown that K% = K? = Kp, a continuous
function on ®, harmonic in o, whenever f e C(0*). The
map fw- K? is a linear map from C(o*) to C(w) conti-
nuous for the supremum norms. If f(z) = KP(z) whenever
feC(w*) then z is a stable point of w*. As with regular
points, z 1is stable if and only if f(z) = K(z) whenever
fe— 9o

Suppose that Fe — 9, and let F be a continuous sub-
harmonic function defined on an open neighbourhood Ug
of ®, which equals F on w. If w=N{w;: tel} the
intersection of a decreasing filtering family of open subsets
of Ug, then (by an abuse of language) {Hg': iel} is a
decreasing filtering family in L, and Ky = inf {Hg': i e I}
[6, § 2]. If =z, ew” is stable, then

F(z,) = inf {Hp{(z,): i« 1} > inf {h(z,): F < he¥},






