MANUEL VALDIVIA

A hereditary property in locally convex spaces

<http://www.numdam.org/item?id=AIF_1971__21_2_1_0>
A HEREDITARY PROPERTY
IN LOCALLY CONVEX SPACES (1)

by Manuel VALDIVIA

J. Dieudonné has given in [1] the two following theorems:
1) If F is a subspace, of finite codimension, of a barrelled space E, then F is a barrelled space.

2) If F is a subspace, of finite codimension, of a bornological space, then F is a bornological space.

In this paper we give a theorem analogous to the previous ones, but using infrabarrelled spaces instead of barrelled or bornological spaces. So we shall prove the following theorem:
If F is a subspace, of finite codimension, of an infrabarrelled space E, then F is an infrabarrelled space.

Let K be the field of real or complex numbers. Let E be a locally convex topological vector space over the field K. If \mathcal{B} is the family of all the absolutely convex, bounded and closed sets of E, we denote with $E_B, B \in \mathcal{B}$, the linear hull of E with the seminorm associated to B. Let \mathcal{T} be the topology on E, so that $E[\mathcal{T}]$ is the inductive limit of the family $\{E_B : B \in \mathcal{B}\}$.

Theorem. — Let F be a subspace of E, with finite codimension. If U is a closed, bornivorous and absolutely convex set of F, then there exists in E an U', closed, bornivorous and absolutely convex set, such that $U' \cap F = U$.

In particular, if E is an infrabarrelled space, then F is also an infrabarrelled space.

Proof. — Clearly, the \mathcal{T}-topology is finer than the initial one on E. On the other hand, for every bounded set A, there exists a set $B \in \mathcal{B}$, such that $A \subseteq B$. Hence A is a bounded

(1) Supported in part by the « Patronato para el Fomento de la Investigación en la Universidad ».
set of E_B, therefore A is a bounded set of $E[\mathcal{C}]$. That is, the bounded sets of E and those of $E[\mathcal{C}]$ are the same.

We denote with $F[\mathcal{C}]$ the subspace F, equipped with the topology induced by \mathcal{C}. Since $E[\mathcal{C}]$ is the inductive limit of seminormed spaces, it is a bornological space and, according to theorem 2), $F[\mathcal{C}]$ is a bornological space. Hence, U is a closed neighborhood of 0 in $F[\mathcal{C}]$.

Clearly, it is sufficient to prove the theorem in the case of F being a vector subspace of E, with codimension one. So that we suppose that F is so.

Two cases are possible:

1° $F[\mathcal{C}]$ being dense in $E[\mathcal{C}]$. Let \overline{U} and \overline{U}^* be the closures of U in E and $E[\mathcal{C}]$ respectively. Since U is a neighborhood of 0 in $F[\mathcal{C}]$, then \overline{U}^* is a neighborhood of 0 in $E[\mathcal{C}]$, hence \overline{U}^* is a bornivorous set in the same space.

Furthermore, $\overline{U} \supset \overline{U}^*$, then \overline{U} is a bornivorous set in E. We can take $U' = \overline{U}$, then U' is a closed, bornivorous and absolutely convex set of E, such that $U' \cap F = U$.

2° $F[\mathcal{C}]$ being closed in $E[\mathcal{C}]$. If $U = \overline{U}$, we take a vector x such that $x \in E$ and $x \in F$. Let C be the balanced hull of the set $\{x\}$, then $U + C$ is a closed set in E and $U + C$ is a neighborhood of 0 in $E[\mathcal{C}]$, therefore, $U + C$ is bornivorous in E. If we take $U' = U + C$ the theorem is satisfied.

If $U \neq \overline{U}$, U is absorbing in E, hence there exists an element $z \in \overline{U}$ such as $z \in F$. Let D be the balanced hull of $\{z\}$. $U + D$ is a neighbourhood of 0 in $E[\mathcal{C}]$, hence it is bornivorous in E. Furthermore $\overline{U} = U$ and $\overline{U} = D$, then $2\overline{U} = \overline{U} + D$, hence \overline{U} is bornivorous in E. If we take $\overline{U} = U'$ the theorem is satisfied.

BIBLIOGRAPHY

Manuscrit reçu le 15 juillet 1970.

Manuel Valdivia,
Facultad de Ciencias,
Paseo Valencia al Mar, 13,
Valencia (España).