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REAL ALGEBRAIC ACTIONS
ON PROJECTIVE SPACES — A SURVEY

by Ted PETRIE

0. Introduction.

Briefly the subject of this paper is the study of compact
subgroups of the group of diffeomorphisms of a smooth mani-
fold. My main objective is to provide an excursion through
some new ideas of a particular aspect of the subject. The two
main questions delt with here are :

(1) Does a given smooth manifold admit a smooth action
of a given compact Lie Group?

(2) If a given group does act on a smooth manifold, how
can we construct new actions on the manifold starting from
the given action?

The central question which must be answered for dealing
with these two questions is :

(3) What are the relations among the representations of
the group on the tangent spaces at the points fixed by the
group and the global invariants of the manifold eg its Pontrja-
gin classes and its cohomology?

Let me give two examples of the third question:

Example 1. — Global assumption: X is a smooth closed
manifold with H^X, Q) === H^S211, Q). Suppose that our
compact group G acts on X with just 2 fixed points p
and q and assume that the action is free outside p and q.
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Conclusion. — Atiyah-Bott [1]$ The two real representations
of G on the tangent space to X at p and q are equal. Thus
a cohomological assumption implies an equality of repre-
sentations at the tangent spaces at the fixed points.

Example 2. — Global Assumption: X is a closed mani-
fold having the same cohomology ring as complex projective
n space. Suppose S1 acts on X and the fixed point set consists
of isolated points. Then the collection of representations of S1

on the tangent space at the carious fixed points determine all
the Pontrjagin classes of X[4].

See § 3 for applications of this result to the study of Ques-
tion 1. In particular see the consequence Corollary 3.3.

For dealing with Question 2, we introduce a set Se(M)
associated to the G manifold M. Roughly Sc(M) consists
of those smooth G manifolds admitting a G map to M
which induces a homotopy equivalence from the underlying
manifold to the manifold underlying M but which itself
is not ,a G homotopy equivalence. Briefly SG(M) consists
of the distinct G homotopy types which resemble M.

The construction of non trivial elements in SM(M) is
also intimately related to Question 3. In Example 2.9 and in the
discussion of Theorem 4.6, we show how the representations
of G on the tangent spaces at the fixed points are related
to the construction of non trivial elements in So(M).

Section 2 is devoted to motivating the techniques of cons-
tructing elements of SG(M). Section 3 gives a summary
of properties of S1 and two actions on manifolds homotopy
equivalent to complex projective n-space. In particular we
give relations among the representations of S1 on the tan-
gent space at the various isolated fixed points in the spirit
oi Question 3. (see Theorem 3.4). In conclusion we present
the example of Theorem 4.6 which constructs an element
in Ss«(P(^)) and shows that the relations provided by
Theorem 3.4 can be realized.

I wish to thank our hosts especially Professors Godbillon
and Cerf for the splendid hpspitality and administration.
I found this conference extremely stimulating and expect
that much significant research will be generated by the partici-
pants because of this stimulation. .
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1. Statement of objective. :

Throughout this paper G will be a compact connected
Lie Group. We fix notation:

(1) D (resp. D°) denotes the catagory of smooth manifolds
and smooth maps (resp. compact smooth manifolds and
smooth maps). ,

(2) DG (resp. Do) is the catagory of smooth G manifolds
(resp. compact smooth G manifolds) and smooth G maps.
An object M 6 Do (resp. Do) consists of a smooth manifold
JM| e D (resp. I)0) together with a faithful representation

p : G->Diff ( |M|) - i.e. Ker p == identity

If x 6 |M|, g e G, we write

^ = 9{g)W

We require the map Gx[M| ~> |M| defined by (g, m) —> p(g)w
to be smooth and say that G acts on [M|.

A mapf: M - > N in DG is a map \f[: |MI -> |N | in
D such that

fg = gf for all g 6 G.

One of the most interesting questions in the subject is

QUESTION 1.1. — Suppose X e D6. Is there an M e Do
with |M| = = X ? ., . •

The question as it stands is much too general for study.
Experience indicates that the following is a fruitful modifi-
cation of Question 1.1: . .

QUESTION 1.2. —- Suppose X e D0, M e DG with |M| == X.
If X' e D6 is homotopy equivalent to X, written X' ^ X,
is there an M' in DG mth |M'| = X'?

There are two reasons for considering this question. First
the method of classification of smooth m^imfolds begins by
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fixing a particular manifold X 6 D^ and then describing
the manifolds X' e D6 which are homotopy equivalent to X.
In particular we have a good understanding of how manifolds
X' ^ X are obtained from X. (See § 2). Second if we are
given M e DG with | M| == X, we may be able to make
geometric constructions on M in Do yielding M' with
[M'| == X' or at least a new action of G on |M| i.e. M' ^ M
in DG but |M'| = |M|.

Having settled on Question 1.2 for study, we consider
the following setting.

DEFINITION 1.3. — Let Sc(M) for M e Do denote the
set of equivalence classes of pairs (M', f} where W and f
are in DG and

|/|=|M'1^|M|

is a homotopy equivalence. Two pairs (M;, f^ i = 0,1 are
equivalent if there is a map <p : Mo -> Mi in Do which is a
« G homotopy equivalence » such that /i ° <p is G homo-
topic to fe. The equivalence class of (M',/') will be denoted
by [M', f] e Sc(M). The element [M, Identity] e So(M)
is called the trivial element.

If we can describe the set Sc(M), we obtain information
about which manifolds homotopy equivalent to |M| admit
G actions as well as a description of new G actions on |M|.

Example 1.4. — If M e D^ and G acts freely on |M|
then Sc(M) has only one element. Any G map f: M'~> M
with \f\ = [M'j ->|M| a homotopy equivalence is a G
homotopy equivalence because the induced map on the
orbit spaces J : M'/G -> M/G is a homotopy equivalence.
Take a homotopy inverse for J and lift it to a G map from
M to M'. This will be a G homotopy inverse tor f.

On-the-other hand when G acts on |M[ with non trivial
isotropy groups, the set So(M) can be non trivial and quite
interesting. In fact when G == S1, M == P(Q) with

|P(ft)|=P(C^)

complex pro) active n-space, we produce non trivial elements
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in Ss<(P(Q)) which arise from real algebraic action of S1

on real algebraic varieties which are diffeomorphic to P^11"1"1)
(See § 4).

2. Motivation and discussion
of constructive techniques.

For the purpose of motivation, let me recall a relevant
situation in D6. If X' ^ X, then X' is obtained from X
as follows : there is a stable vector bundle S over X of
fiber dim k for some large integer k and a map ( from
the total space of S? E(S), to R* with these properties :

(1) ( is proper.
(2) t + 0 i.e. ( is transverse regular to 0 e R^.
(3) t restricted to each fibre of ^ has degree 1.
Moreover, X' = r^O) and the map of X' to X defined

by inclusion of X' in E($) followed by projection on X
is a homotopy equivalence.

In analogy with the above discussion, we might try to
construct elements [M', f] e So(M) for M e Do like this :
Let A be a real representation of G i.e. A is a real vector
space [A[ = R/ for some I together with a representation
of G in 0(Z) (orthogonal group.) We seek a stable G vec-
tor bundle Y) over M whose fiber dimension is I and a
map (: E(T)) -> A in DG such that

(1') \t\ is proper
(2') M + 0
(3') |([ has degree 1 on each fibres of T].
Under these conditions r-^O) == M' e Do and if we're

lucky, the map f defined as the composition M' <= E (•/)) —> M
has the property that \f\ is a homotopy equivalence. Then
[M', f] e SG(M).^

There are quite interesting difficulties involved in carrying
out this procedure. Sometimes it's possible and sometimes not.
The three hypothesis on the map ( e DG (I'), (2') and (3')
impose stringent relations among Y), A and the representa-
tions TMp of G on the tangent space of M at p for every
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fixed point p in M, Since it is easy to illustrate these rela-
tions, we do so. The appropriate tool to use is the functor
KG, equivariant complex K theory.

To simplify the discussion, we assume that T] is a complex
G vector bundle over M and A is a complex representa-
tion of G such that i

A°= { a e A | G a = a} = 0.

Then we have this commutative diagramm:

7),-^E(7])^A - 2.1
.̂  ^l? p ^

Here r^p is the fiber of Y] over p e M°, A is naturally H G
vector bundle over p, /p is the inclusion and ip and i^
are the zero sections of these G bundles over trivial G
space consisting of p.

Let us recall one of the basic facts of KG theory [3].
Let X be a compact G space and N a complex vector
bundle over X. Then there is an element XN e K^(N) which
generates K^(N) as a free module over K£(X). Moreover if
i is the zero section of N we have

i^ = X^(N) == S(- l^N).

Here ^(N) is the i th exterior power of N.
We can now exploit the hypothesis (1') and (2') for (.

Since tp == tjp is proper there is an induced homomorphism

^:K£(A)-^K£(^).

Using the above facts for the complex G vector bundles A
and 7)p, we have

<^A = ̂ Tip 2.2

for some a? e Kc(p) == R(G) (the complex representation
ring of G). Since i^ = il by 2.1, we have from 2.2,

x^(A) == ilXA == I^XA == ap\^p) 2.3
for every p e M0.
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Since G is a connected Lie Group, R(G) is an integral
domain [3]. Thus

a, = ̂ i(A)/X_i(^) e R(G). for p e M°. 2.4

•Note dp == X_i(A)/X_i(7)p) e R(G). Viewing R(G) as the
character ring of G, we can regard a? as a complex valued
function on G, say g —> Op{g) for g G G. In particular,
we can evaluate a? at 1 e G. Let E : KG —> K denote the
forgetful functor from equivariant K theory to ordinary
K theory. Then

ap(l)=E(a?).

On the other hand, a? is defined by the equation

^ X A = = O P . X ^ so applying E
i^^(A|=^(l).X^.

Here \^\ and \\^\ are generators for K*(|A|) and K(['y3p[)
over K*(p) == Z. Since |A| == \r^p\ == C^ it is an easy topo-
logical exercise to show that

l^r^lAj == degree |̂ | .X^

Hence ap(l) === degree \tp\ == 1.
We have

ap{l)=l=}irn^1^ 2.5
^lX^(Y)p)(g)

Here X_i(A)(g) denotes the value of the character X_i(A)
at g e G .

We record these facts in the

PROPOSITION 2.6. — Let M e Do, n a complex G sector
bundle over M of complex fiber dimension k. Let K be a
complex k dimensional representation of G with A° == 0.
Suppose there is a map t: E(v]) -> A in Do such that \t\
is proper and has degree 1 on each fiber of Y]. Then

^(A)/X^('7]p) == a? e R(G) for all p e M° (1)
ap(l)=l. (2)

We can also draw a useful conclusion from the hypothesis
that (e DQ and |(| +0.
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Let IM ; M -> E(-»)) denote the zero section and p e M°.
Then

TE(^=TMp®7]p
This is an equality as real representations. Since iw(p} e E^)®
and A° = 0,

ti^{p) =0.

Since |(| + 0, dri^(p) : TMp © T]? -> TAo === A is surjective
and this means that the real representation defined by A is
a real factor of TMp © Y]?. We state this as

PROPOSITION 2.7. — Let M e Do, n a complex G bundle
over M, A a complex representation of G with A® == 0.
Suppose there is a t: E(T]) -> A in Do ^uc/i that \t\ +0.
TTi^yi /or every p e M°, (Ae representation A 15 a reaZ factor
of 7]p © TMp.

Example 2.8. ~ Let G = S1 == {X e C||X| = 1}, M =a
point with trivial G action. Identify R(S1) with the ring
Z[(, C~1]. Let p, ^ be relatively prime integers and 7]o == ^ © (g,
A == (1 © (w denote the indicated complex two dimensional
representations of S1 i.e. S1 vector bundles over M. For
example, for T](), the point (== e19 e S1 acts on the point
with complex coordinates (zo, Zi) e \f^o\ vla the rule

^0^1) == (^.Zo^.Zi).

Let o> : 7]o -> A be the map defined by

,̂ ̂ i) == (zSzL zg + ̂ )
where a, & are positive integers with

— ap + bq = 1.

Then <o e Dg<, |<*)| is proper and degree |c»>| ==1. Moreover

a? = x^(A)/x_,(^p) = ̂  ̂  ̂ ^"l̂  e z^- rl]

^p(l) -1
Example 2.9. — Let S^ © (g) and S{t1 © ̂ ) denote the

S1 manifolds with [S^ © ^)| == S4 = |S((1 © t^ obtai-
ned by regarding S4 as the one point compactification of
C2. The representations (p © (y and t1 © t^ define smooth
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actions on the compactification and the resulting S1 mani-
folds are S(V © V) and S{t1 © t^).

The map <i> of example 2.8 defines a map in D|

&: S{V ® V) ->S((1 © ^)

and | co | is a homotopy equivalence being of degree 1. Thus

X == [S(^ © ^), <o] e Ss<(S((1 © (^)).

I claim that it's not the trivial element because the algebras
KUS{tP © (g)) and K^(( © ^)) are distinct.

Let oo denote the point at infinity in the one point compac-
tification. Note that

S(^ © ^)81 == 0 u oo = S((1 © t^)81

TS(^ © ^)o == IP © ^ == TS(^ © (^
TS(t © t^o = (1 © (^ == TS((1 © t^)^

The map (o was constructed from (o : Yjo -> A; 7]o == ^p © ^?
A == (1 © (^. So in a very precise sense the element
[S^ © t9), <S] is obtained by altering the representations
of S1 on TS(( © ̂  for x e S{t © ^)81.

This is a very brief glimpse at the importance of the role
played by the collection of representations {TMpjp 6 IMP}
when M e Do.

In this example we can't regard the construction as giving
anything new since the S1 action on S^ © (g) comes from
a representation of S1 and is among our list of well unders-
tood S1 manifolds. However, we shall see later that by
changing the representations {TMp|p e M°} we can some-
times produce from M in DG interesting new G mani-
folds.

3. The central example P(Q) — a survey.

We now come to the example which is the central point of
the study. Let P^""^) denote the space of complex lines in
C^1 i.e. complex projective n space. Let PGL(n + 1, C)
denote the projective linear group and observe that PGL(n+l,
C) is a subgroup of Diff (P^"4"1)); hence, any representa-
tion a: G -> PGL(n + 1, C) defines an action on P(C7l+l)
and gives a manifold P ( Q ) € D G with |P(^)| == P^^).
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We are interested in the set SG(P(^)). Since much can
be said about the more general situation where we have
M e DG with |M| ~ P(Cn1•l) without assuming some map
f: M -> P(Q) with 1 f[: |M| -> |P(Q)| = P(C^) a homo-
topy equivalence, we describe the results for this situation.

The fundamental fact is this.

THEOREM 3.1 [4]. —Suppose MeD|<; |M| - P^^1) and
M81 consists of isolated points, then the collection of real repre-
sentations {TMp|p e M°} determine the Pontrjagin classes
of |M|.^

This is a more striking illustration of the importance of
{TMpjp e M°} than provided in Example 2.9.

From Theorem 3.1 follows.

THEOREM 3.2 [6]. — Suppose M e D^n where T" is the
n torus and [M| ^ P^"4-1), Then for any homotopy equi-
valence

g : |M| ^P^+i).
we have

g*P(P(C^))=P(|M|)
P(|M|) is the total Pontry a gin class of |M[.

COROLLARY 3.3 [6]. —- At most a finite number of X e D6

with X ^ P(Crl+l) arfmit an action of T".
Having emphasized the importance of the representa-

tions {TMplpeM 8 1} when [M| - P^^1), we should
determine all relations among these representations. They
are by no means independent. The global restrictions

|M| - P^"^)
imposes stringent relations among the TMp p e M°.

Suppose M e D|i with |M| ^ P^"4-1) is given. From
homological considerations we can invent a representation

n : S1 -> PGL{n + 1, C)

which depends only on the S1 action on |M| i.e. on M and
we can compare M with P(^). (Note: If we had a map
f: M —>- P(tl) in Do with \f\ a homotopy equivalence,
we would have [M, f] e Ssi(P(ti)). We have don't assume
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f.). The point is that all the data of the iS-manifold

P(9)Eg.{TP(Q)^EP(a)81}

is easily determined from Q and is a function of the S1 mani-
fold M.

Let •us assume that M81 consists of isolated points. Then
we have these relations among the representations

{TMplpeM8 1}:

THEOREM 3.4. — There is a 1 — 1 correspondance

a: M^^PW

such that for every x e M81

(i) a, = ̂ (TP(Q)^)/X^(TM,) e R(SI),
(ii) Op(l) = ± 1. 7?6re ap(l) 15 ^e wZue o/ the character

Op at 1 e S1.
Actually to make sense of (i), one needs to choose a com-

plex representation of S1 whose underlying real representa-
tion is TMp. Then X_i(TMp) e R(S1), the complex represen-
tation ring of S1. This involves a choice; so a? is only well
defined up to multiplication by ± t^p for some integer N .

The unusual relations given by (i) and (ii) are extremely
difficult to achieve without a^= ± t^" for all x Eg. the
case M == P(t2). Let us discuss some invariants for distin-
guishing elements of SG(M) for M e D^. Denote by CQ
the catagory of R(G) algebras which are closed under the
exterior power operations { X ' j i ==0, 1, ...}. A morphism
is an algebra morphism compatible with the X1. To each
[M', f] e So(M) we can associate /•* : K£(M) -> K^(M') and
/** e CG. In short we have a function

F : SG(M) -^ Co

defined by F[M, f] = /•*.
The values of F are not arbitrary. If [M, f] e ^c(M),

then [/*[ is a homotopy equivalence. It follows from the
Atiyah-Segal Completion theorem [2] that the map induced
by /** on the completions

^: ^(M)-^(M')
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is an isomorphism. Here ft£ denotes the completion of KQ
at the augmentation ideal I of R(G).

In the case of Ss<(P(Q)) where Q is a representation
of S1, much more can be said. Suppose [M,/*] e Sg*(P(Q))
and let F = KS<(M)/T where T is the R(S1) torsion sub-
group of KS<(M). We agree to let f* denote the map
KS<(P(Q)) -^ Ki(M} -> r. Then if we set A === K^(P(Q))
and l-e-i == K^(M81), then f*: A -> F is a monomorphism
and the inclusion M84 —> M induces a monomorphism F ~> -o-.
This situation can be algebraically stated like this

A <= r <= ho-i
are R(S1) orders closed under the operations X1 in the
semisimple F(S1) (field of fractions of R(S1)) algebra

KH ® F(S1).
R(SQ

Let ^ denote the ideal of R(S1) generated by the m th
cyclotomic polynomial 0^(() e Z[(, t~1] = R(S1).

THEOREM 3.5 [4]. — Let [M,/']eSs<(P(Q)); then f
induces an isomorphism at all localizations A^ —> F^ where
m is a prime power.

Actually the theorem stated in [4] is much stronger. The
assumption of a map f: M —>- P(0) is irrelevant. One can
manufacture a map /**: A —>• F without assuming that it
arises geometrically.

< Remark. — The assumption that m be a prime power
is necessary. The fact that it is false tor composite m leads
to the existence of non trivial elements in Ss<(P(^)).

4. Realizing elements in Sgi(P(t2)).

Let us now use the geometric discussion of § 2 to construct
non trivial elements in Ss<(P(n)) and illustrate the pro-
perties of the preceeding section.

Let T] be the S1 bundle over P(t2) whose total space is
P(Q) X f\Q ('/)o is the representation ^ © ^ of §2). For
simplicity we assume P^D)81 consists of isolated points.
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Let A be the representation t1 ® t^ of § 2. We have
seen that the assumption that there exists a map (: E(^)) -> A
in Dg« with |t|+0 implies TP(Q)p e ^)o has A as a real
factor for every fixed point p e P^)81. Since A and 730
have no common irreducible factor, TP(Q)p has A as
a real factor for every such p. It is easy to determine the
representation TP(Q)p from Q and we find that this
condition that A be a real factor of TP(Q)p for all
p e P(t2)81, implies that Q must have the form

n ==X(A) ® R
c

as a complex representation of S1.
2

Here X(A) === S ^(A) is the total exterior algebra of A
(==•

and R is an arbitrary representation of S1 say of dimension
n. (Actually R can't be entirely arbitrary if we insist that
P^)®* consists of isolated points). In particular dime Q == 4n$
so dimc|P(Q)| = 4n — 1.

LEMMA 4.1.— A necessary condition for a t:JL(^)—>A.
in Ds< with |(|+0 is that

(1) Q == X(A) (x) R as a complex representation of S1,
(2) dimc|P(Q)| = = 4 n — l n === dime R (This is a conse-

quence of (1)).
It turns out that the condition is sufficient. Namely there

is a map g : P(Q) ~> A in Ds< such that the map

(: P(Q) X 7]o ~>A

defined by t(rc, z) == g(x) 4- a>(z) is in Ds<. Moreover |(|
is proper, has degree one on each fiber and [ (| ̂ 0. More is
true. If X^^-^O) then X(Q) e D|< and the map f
from X(Q) to P(Q) defined by the inclusion of X(Q) in
P(Q) X v]o followed by projection on P(tl) is in Di< and
(f| is a homotopy equivalence.

Thus
[X(n),/']6S8.(P(Q)) 4.2

This element is not the trivial element. The algebra KSi(X(Q))
is not isomorphic to KS<(P(Q)).[7].


