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PROBABILISTIC APPROACH
IN POTENTIAL THEORY

TO THE EQUILIBRIUM PROBLEM

by Kai Lai CHUNG (1)

The problem of equilibrium is the first problem for the ancient
period of potential theory recounted by Brelot in his recent histo-
rical article [1]. The existence of an equilibrium measure for the
Newtonian potential was affirmed by Gauss as the charge distribution
on the surface of a conductor which minimizes the electrostatic energy.
But it was Frostman who rigorously established the existence in his
noted thesis (1935), and extended it to the case ofM. Riesz potentials.
Somewhat earlier, F. Riesz had given his well-known decomposition
for a subharmonic function which is a closely related result. For
further history and references to the literature see Brelot's article.
From the viewpoint of probability theory, the equilibrium problem
in the Newtonian case takes the following from :

rCTe < °°} = [ u ( x , y ) ^dy). (1)
— ^8B

Here the underlying process is a Brownian motion {X^, t > 0} in
R3 ; y{' • -} denotes the probability (Wiener measure) when all paths
issue from the point x ; B is a compact set (the conductor body) ;
T^B = TB(a;) is the ^lug time of B by the path a; :

TB(CO) = inf{t > 0 | X^(co) E B> ;

3B is the boundary of B ; u(x , y ) is the associated potential density

1
u (x , y ) =

27r\x-y\

(1) Research supported by the Office of Scientific Research of the United
States Air Force, under AFOSR Contract F44620-67-C-0049.
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and finally /ig is the said equilibrium measure. Standard terminology
and notation from the modern theory of Markov processes are used
above. In the general setting to be considered here, the underlying
process is a temporally homogeneous Markov process taking values
in a topological space E which is locally compact and has a countable
base with its Borel field &. The transition semigroup will be assumed
to be Borelian. However, we need not suppose the process to be
a Hunt process ; in fact, strong Markov property will be used only
peripherally toward the end, and quasi left continuity not at all.
It is sufficient to assume that all paths are right continuous and
have left limits in the time interval [0 , °°). No overt duality assump-
tions are made in establishing the general formula (17) below.

A probabilistic proof of (1) is given in Ito-McKean [2, pp. 248ff.]
which leans heavily on special analytic properties of the Brownian
motion semigroup. In another paper, McKean [3] discussed a proba-
bilistic interpretation of the result in a more general case, bringing
in a number of things (capacity, Ueno's result, WeyFs lemma, etc.)
which seem to obscure the real issue and leave the upshot unclear.
For some reason the notion of a last exit time, which is manifestly
involved in the arguments, would not be dealt with openly and
directly. This may be partially due to the fact that such a time is
not an "optional" (or "stopping") time, does not belong to the
standard equipment, and so must be evaded at all costs. Actually
the notion has been introduced to great advantage in Markov chains
and the associated boundary theory, although it was only during
the last few years that it became formalized (with considerable loss
of intuition) under the name "co-optional". In the present approach
it turns out to be a tame thing and leads very quickly to the classical
results of Gauss-M. Riesz-Frostman, without any unnecessary compli-
cations. Moreover, pursuance of this simple idea yields a more complete
solution of the equilibrium problem for a broad class of Markov
processes. A historical note may be added here : a probabilistic solution
to Dirichlet's problem was obtained by Doob (1954) by considering
a first exit time ; here a similar solution to the so-called Robin's
problem will be obtained by considering a last exit time.
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Consider the general setting described in § 1. Call a Borel subset
B of E "transient" iff for almost every path a;, there is a finite time
^*(o;) such that X^(o;)^B for t > r*(c<;). Define

AB = {cj E ft | 3r > 0 : X,(co) G B} ;

sup {t > 0 | X^(o;) G B} if a; G Ag ;
7B(^) =

0 , if cj G ft - AB .

Then B is transient if and only if 7g < oo as. (almost surely). It is
easy to see that 7g is a random variable, called the last exit time
from B.

Let us begin by supposing all paths continuous. It then follows
that

X(7e)^3B a.s. (2)

From now on we fix B and write 7 for 7^.

It is well-known that a compact set is transient for Brownian
motion in R3 ; thus the setting above includes the Newton-Gauss
case described above. It also includes, e.g. the case of a Brownian
motion in R2, terminated after the path leaves an open ball. In
this case the state space E should be the open ball with a one-point
compactification 8, and we must assume that 8 ̂  B, the closure of B.

To study the distribution of the last exit position X(7), we put

L(x , A) = £"{7 > 0 ; X(7) e A} , x £ E , A E 8. (3)

We are going to determine this by calculating

/as L(x ' dy) f(y) = ̂ {7 > ° ; f^^ (4)

for every x and every /ec^ (the class of bounded continuous
functions on E), where E^ denotes the mathematical expectation
corresponding to V. This is done by a little device as follows. Take
any e > 0 and consider the "mixed approximation" :
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^X S^W ; r < 7 < ^ + e } ^

= ^ fo00^^ ^[° < ^ < £]} d t ' (5)

Setting

^)=-^[0<7<£]

we may rewrite (5) as
E'! ̂ oo(w (x^A t = r1 f ^(^dpx dt
— \ ̂ 0 ) Jo C ^7e(?,r+e) t7 =

= f. , 1 r /(X,)^^ -h /• 1- ^f^dtdy .
*/(-y>c] £ J -̂e * = ^(0<7<e] £ JQ =

The last-written integral is bounded by

t<,<e]1 "/"^<"^r<°<^^
which converges to 0 as £ ^ 0. On the other hand,

lim f /(X,) dt = /(X-) (7)
c ^ O "7—e

boundedly, by the continuity of t ->/(X^). Hence as £ ^ 0 the first
integral in the last member of (6) converges to f flX^)dPX which

J[7>0] 7 =

is just the number in (4).
Define the potential U by

V^p(x) = E^j r^(X,)dt\
— \ ^o )

where ^ is any positive measurable function. The result of calculations
in (6) is then as follows :

lim U(/^) (x) = f L(x , ̂ )/0.). (8)e ^ o Jag
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We now make the following assumptions on the potential kernel
U. There exists a o-finite measure ^ such that

i) U(x , A) = f^ u(x , y) $ (dy) where M(;C , y) > 0, for x E E,
A G g ;

ii) ^ -» ^(x , >Q~1 is finite continuous, for x G E ;

iii) M(x , y ) = + oo if and only if x = y .

The key formula (8) will now be recorded as follows :

V / e C ^ : l i m F u ( x , y ) ^ , { y ) f ( y ) ^ ( d y ) = f L(x , dy) f(y) (9)
e-K) -E ^8B

Set

M,(A) = f i//,(^) S(^) , A E 8. (10)
»/A

For any x G E and (^ G C^ (class of continuous functions on E with
compact supports), the function

y -^^(y) u(x ,y)~1

belongs to C^ by assumption ii) above. Substituting this for / in
(9), we have

lim F ^P(y) M,((fy) = f L ( x , d y ) u(x , y ) - l ^ (y ) .
e + 0 *' ^ »/dB

This being true for every <p G C^, we conclude first that the measures
M^ converge vaguely to a measure ^(= ^ig) as c >!. 0 ; and secondly
that this vague limit is identified as follows :

V x G E : ^(dy)= L ( x , d y ) u ( x ,^)-1. (11)

It follows from assumption ii) that ^ is a a-finite measure in &.
Since Ux , • ) is concentrated on 3B, so is ^. Since ^(;c,^)<oo
for x 1=- y by assumption iii), we have if x ^ 3B :

L(x ,rfj/) == M(JC ,̂ ?0. (12)

This means if x ^ 3B and A C 3B , A E g, we have

L(x,A)=f^ u ( x , y ) ^ d y ) . (13)
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Now it is clear that for a transient set B we have

{ 0 < TB <oo}= {0 < T B < °0}.

Thus if x ^ 3B, the Gauss-Riesz-Frostman formula (1) is just the
particular case of (13) for A = E. The measure ^ is called the
equilibrium measure for B, and its total mas /Xg(3B) the capacity
of B, up to a multiplicative constant.

We shall establish (13), and consequently (1), for all x G E.
Taking x = y in (1) and using assumption iii), we see that ^ is atom-
less, namely for every y E E :

^(W)=0.

Next we have again by iii) and ( l l ) , i f ; c=^ :

L(^ Ay}) = u ( x , y ) ^ ( { y } ) = 0. (14)

Finally,

L(x , A\{x}) = f^^ u (x , y) ^L(dy) == ̂  u (x , y) ̂ dy\

by the usual convention oo • 0 = 0 when the integrand takes the
value + oo at a point while the corresponding mass at the point
is 0. Thus (13) will hold true if and only if

Vx E E : L0c,{;c}) = 0. (15)

A point x in E is called a holding point iff almost every path
starting at x must remain at x for some strictly positive time. We
show that if x is nota holding point, namely if for each § > 0 we
have

y{X(t) == x for ^ G [ 0 , 5 ] } = 0 , (16)

then (15) is true. The following proof requires only that the process
be separable. To simplify notation we may then suppose that the

„ \
dyadic numbers -^ ; m > 0, n > 0 are a separability set. For

each n we define

„ . ( m (m \
S» = mm j -^ | X (̂ ) ^ x
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with the convention that S^ = + oo when the set on the right side
is empty. If x is not a holding point, then

P^{S^ ^ 0} = 1

by separability. We have, therefore, using only ordinary Markov pro-
perty because S^ is countably-valued :

^{7 > S^ ; X(7) = x} < g^P^"^ > 0 ; X(7) = x]} = 0

by (14), since X(S^) =^ x. Letting n -^ o° we obtain (15).

On the other hand, if x is a holding point, then

V ( x , { x y ) = u ( x ^ x ) ^ { x } ) > 0 ,

hence $({x}) > 0 and so \J(x ,{x}) = °o by assumption iii) above. [I
owe this observation to Hans Follmer, which enabled me to deal with
a holding point.] This implies that the singleton {x} constitutes a
"recurrent set" in the sense that starting from x almost every path
will hit {x} after an arbitrarily large t. A familiar argument then
shows that almost no path can lead from x to the transient set B.
Thus by definition

Ux^x})^PX{^^<^}== 0

and so (15) is also true for a holding point x.
We have therefore established the fundamental result (13) for

every x and every A under the hypotheses specified.
Note that the existence of the measure ̂  for the representation

given in (1) has been established for every transient set B, without
any regularity condition whatever on 3B. However, the hitting pro-
bability on the left side of (1) need not be equal to one for allx E B,
as required by the classical definition of equilibrium potential. Herein
lies the necessity of a condition like Poincare's to ensure that every
x on 8B is regular for B, or the exception of a set of points on 9B
which are irregular for B.

Finally, formula (11) gives an explicit solution to Robin's pro-
blem of determining the equilibrium measure. Indeed, by a suitable
choice of the arbitrary point x there, the probabilistic expression
may even yield a deterministic one. A trivial case in point is when
B is a ball and x its center.
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The method of proof will now be extended to the case where
the paths are right continuous with left limits. Here are the necessary
changes. Relation (2) is replaced by

X(TB-) ^ B,

where B is the closure of B. The last exit distribution in (3) is
redefined by using the left limit X(7 —) instead of X(7). Both
L(x , • ) and fi are now concentrated on B instead of 3B. If we
replace X(7) by XCy—) and 3B by B in the obvious places, all the
steps go through as before. The final result is, for each Borel Set
A C B, and each x G E :

P^X(TB-) ^ A} = L(x , A) = f u(x , y ) ^ ( d y ) ; (17)
— JA

in particular

J^{TB < °°} ̂  Ux , B) = jT u(x , y) ̂ (dy).

In this form the result covers the M. Riesz-Frostman potentials where
u(x , y ) = c / \ x — y ^ , a real > 0, c = constant. As is known, the
corresponding Markov process is a stable process whose paths may
be assumed to be right continuous and have left limits.

The assumption ii) is expedient for our method and remains
to be analysed. Next, we examine some possibilities of relaxing the
assumption iii) to illustrate the relationship between the poles of
u and the polar-like sets of the process. We shall shun the standard
duality assumptions but lead up to them. Let us put

N^ = {y C E | u (x , y ) == + 00},

Vy = {x G E I u (x , y) = + 00} .

Thus our previous assumption iii) amounts to the simplest of its
kind :

N^ = N^ = {x}.

We will not assume this, but confine ourselves to a Hunt process
below in order to avail ourselves of standard arguments and results
of the theory.
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0) If for every x, N^ = 0, then (17) is true by (11).
I) Suppose that for each y G B, N y ^ = 0. Then in order that

(17) be true as asserted, it is necessary that ^g is atomless ; and it
is necessary and sufficient that

Vx EB" : L(x , N^ H B ) = 0. (18)

Proof. - Take y E B, x E N^, A = <y} in (17) :

L(x,M) = u ( x , y ) ^ ( { y } ) ,

hence_jLig({^}) = 0. On the other hand, if (18) holds, then for every
A C B :

L(x , A) = L(x , A\(N^ H B)) = f^ ^ u(x , y ) ^(dy)

= f u(x , y) iJi(dy),
JA

where the second equation is true by (11), the third because ^i(N^) = 0
from

l > L ( x , N ^ ) = ^ (+^?0.

The necessity of (18) is shown in the same way.
II) Suppose for each y e B, Ny 1=- 0 and E — Ny is finely dense

(in particular if N^, is of null U-potential), then for each x, L(x , • ) is
atomless. If in addition, the set N^ 0 B is countable for each x G B,
then (17) is true as asserted.

Proof. - It follows as before that if x f N^, then L(x , {y!) = 0.
This is then true for every x by an argument similar to that given
after (16), based on the fact that x is regular for E — Ny. When
N^ H B is countable, (18) follows.

Ill) Suppose that for each x , y -> u(x , y) is an excessive function,
and E — N^ is finely dense. Then (17) is true as asserted.

Proof. — For each y ^ N^, the process {u(x , X^) , t > 0] is a
supermartingale under P^. Hence by a well known result of Doob's :

P ^ { 3 ^ > 0 : X, G N ^ } = 0 ;
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this is then also true if we replace X^ by X^_, by a result of Hunt's.
Furthermore, the result is true for every y , since E — N^ is finely
dense. It follows that L(x , N^) = ^{7 > 0 ; X(7-) E N^} = 0 for
every x.

Of course the assumption y -> u(x , y ) is "wrong", since gene-
rally it is x -> u(x , y) that should be excessive, whereas y -> u(x , y)
should be co-excessive. However, if u(x , y ) is symmetric in (x , ̂ )
this makes sense. Let us also remark that if y -> u(x , y ) is locally
integrable with respect to the reference measure {, then $(N ) = 0.
Consequently, N^ is of null potential and so E — N^ is indeed finely
dense as assumed.

REFERENCES

[1] M. BRELOT, Les etapes et les aspects multiples de la theorie du
potentiel, L'Enseignement mathematique, 58 (1972), 1-36.

[2] K. ITO and H.P. MCKEAN, Diffusion Processes and Their Sample
Paths, Springer-Verlag, 1965.

[3] H.P. MCKEAN, A probabilistic interpretation of equilibrium charge
distribution, /. Math. Kyoto Univ., 4 (1965), 617-623.

Manuscrit re^u Ie 26 septembre 1972
Accepte par M. Brelot

K.L. CHUNG
Department of Mathematics

Stanford University
Stanford, California 94305 (USA)


