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HARMONIC SYNTHESIS FOR SUBGROUPS Q

by Carl HERZ

0. Introduction.

Let G be a locally compact group and Lp(G) the complex
Lebesgue space with respect to the left invariant Haar measure. The
bounded linear operators on Lp (G) which commute with right trans-
lation form a Banach algebra CONVp(G) in the operator norm III |||p.
We denote by PM?(G) the smallest ultraweakly closed subspace on
CONVp(G) containing the left translations. We have

PMp(G) = CONVp(G)

whenever p = 2 or G is amenable ; in any case it will be more conve-
nient to work with PMp.nient to work with PMp.

Let H be a closed subgroup of G. It is not too hard to prove

THEOREM A. — There is a canonical isometric inclusion of Banach
algebra PMp(H) -^ PMp(G).

There is an obvious notion of "support" for a convolution
operator. In terms of this we have

THEOREM B. — // H is amenable or normal then the image of the
canonical inclusion PM (H) ̂  PM (G) consists of all elements of
PMp(G) with support in H.

The conclusion of Theorem B amounts to the statement that H
is a set of spectral synthesis in G.

(*) The research for this article was sponsored by the National Research Council
of Canada.
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Theorems A and B are immediate corollaries of statements about
certain spaces Ap(G) of continuous functions vanishing at oo on G
whose conjugate Banach spaces may be identified with PM (G). The
first of these is

THEOREM 1. —Restriction of functions gives an extremal epi-
morphism of Banach spaces Ap(G) -> A (H).

There are really two assertions in Theorem 1, and it is worth-
while distinguishing them.

THEOREM la. — Restriction of functions gives a morphism (linear
contraction) of Banach spaces Ap(G) -^ Ap(H).

THEOREM Ib.- Given h G Ap (H) and e > 0 there exists g € Ap (G)
with \\g\\ < || A || + e such that g restricted to H is h. (In case p = 2
one may take \\g\\ = ||A||).

The point is that Theorem Ib is purely existential ; in general,
given h we know very little about g. In particular we are led to
formulate

CONDITION (C) on G, H, and p : In the formulation of Theorem Ib,
if h has compact support then g may be chosen to have compact
support.

We have previously [9] outlined the proof of Theorem 1. We
repeat the proof here by way of getting to

PROPOSITION 1. - Condition (C) holds in each of the following
situations

i) H is an amenable group ;
ii) H is a normal subgroup or, more generally, the normalizer

of H is open in G.
iii) There exists a closed subgroup N of G such that
a) HN is open in G,
b) H is contained in the normaliser of N,
c) H U N = { 1 } ,
d) N contains an ^-invariant compact subset of positive measure

with respect to the Haar measure of N.
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The class of amenable groups includes the compact groups and
the solvable groups. Thus situation i) covers many cases. In situation
in) there exists a fixed <^e Ap(N) with ||̂ || = 1 = <^(1) such that
h -> g defined by

g ( x ) = 0 for x ^ H N

g(yn) = h (y) ̂ (n) for y E H , n E N ,

gives a Banach space retraction A (H) -^ A (G). Here we have much
more than is required for condition (C) ; nevertheless it is not clear
that hypothesis d) can be eliminated. Proposition 1 can be extended
somewhat at the expense of complicating the statement, but here
are three examples in which condition (C) remains in doubt.

Example 1. - H = SL^Z), G = SL^R)
Example 2. - H = SL^Z), G = HN with N = R2 and the usual

action of SL^ (Z) on R2.
Example 3, - H = SL^ (R), G = HN with N = R2 and the usual

action of SL^R) on R2.

We say that a closed subset E C G is a set of spectral synthesis
for Ap(G) if for each /E A^(G) which vanishes on E and each e> 0
there exists <^e Ap(G) such that supp ^ is a compact disjoint from E
and ||/~ < |̂| <£. We say that E is a set of local spectral synthesis if
the conditions in the definition of spectral synthesis obtain under
the additional assumption that / has compact support.

The spaces Ap (G) are actually Banach algebras under pointwise
multiplication of functions ; the Gelfand spectrum of these algebras
may be identified with G. Thus "spectral synthesis" has its ordinary
meaning for regular, commutative, semi-simple Banach algebras ; but
the algebra structure plays no role in the proof of the next.

THEOREM 2. — A closed subgroup H is a set of local spectral
synthesis for A^(G).

To say that the group G is amenable is equivalent to saying
that the algebra Ap (G) has approximate identities of compact support.
In this case it is immediate that local spectral synthesis implies spectral
synthesis. When G is not amenable this implication is doubtful. In
fact we have
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PROPOSITION 2. — The closed subgroup H is a set of spectral
synthesis for A^(G) iff condition (C) holds.

Theorem B is simply the dual version of Proposition 2 combined
with Proposition 1 i) and ii).

We had previously [10] proved Theorem 2 under the strong
extra hypothesis that H was normal. At the same time as the present
work was done Dunki and Ramirez [4] proved Theorem B for G
compact eliminating our normality hypothesis.

In case p = 2 it is known [5] that for h G A^ (H) one can choose
u, yei^(H) with h = v * u and ||A|| = \\u\\^ \\v\\^ If h is positive-
definite then one can take v = ~u ; in particular A( l ) = ||A|| which
is characteristic for positive-definite elements of A^. Thus the proof
of Theorem 1 gives

ADDENDUM TO THEOREM 1. — If h is a positive-dcfinite function
in A^H) then there exists a positive-definite function g € A^G) whose
restriction to H is h.

The above statement is known to be false in general, see [5 ;p. 204 ],
if the hypothesis h G A^ (H) is dropped, even if H is a commutative
normal subgroup.

The restriction to p = 2 yields no simplification in the proofs
of Theorems 1 and 2. Indeed, for Theorem 2 there is no advantage
in imposing any additional hypothesis.

After giving the basic definitions in § 1 we quickly dispose of
Theorem 2 in § 2. Next, in § 3, we prove that Ap(G) is a regular,
tauberian Banach algebra of functions on G, a statement which (by
Theorem 3 in § 3) includes the fact that G is the Gelfand space of
maximal ideals of Ap(G). This is a known result, — Eymard's proof
for the case p = 2 [5, Th. 3.34], carries over, — but the procedure
is simpler and, we think, pinpoints what has to be proved.

The discussion in § 3 of regular, tauberian algebras of functions
on locally compact Hausdorff spaces treats spectral synthesis in the
appropriate abstract context. The main concern is the passage from
local to global spectral synthesis, and Proposition 2 is proved in
this context. The passage can always be carried out in algebras with
bounded approximate identities, but this remains true if it is only
assumed that the quotient algebra of restrictions to the set in question
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has bounded approximate identities. This is the abstract version of
Proposition 1 i). (If one assumes that G is amenable the Proposition 1
is banal ; the point is that we only suppose the amenability of H).
In passing we prove an abstract result, Theorem 4, which shows
that for any amenable group G, given a compact subset K and £ > 0
there exists k G Ap (G) with k = 1 on K and || k \\ < 1 4- e. We believe(1)
that this is the first proof of that fact, even for G commutative and
p = = 2 , which does not use structure theory.

The rest of the paper is mainly concerned with the proof of
Proposition 1. In § 4 we deal with reduction steps ; we get open
subgroups and quotients by compact normal subgroups out of the
way, and this allows one to assume that G satisfies the second axiom
of countability. Case iii) of Proposition 1 is quite easy and we dispose
of it in § 5. We give a new proof of Theorem 1 in § 6 ; this is some-
what complicated but the difficulties seem unavoidable. The proof
of Theorem 1 yields a constructive proof of case i) of Proposition 1.
We do not repeat the technicalities in § 7 where case ii) is handled.

The basic facts about convolution operators are given in § 8.
In particular we show that a pseudomeasure, i.e. a linear functional
on A-, corresponds to a convolution operator on Lp in such a way
that the support, defined by duality with the algebra Ap, is equal
to the support of the convolution operator. Once one has this
Theorems A and B are immediate corollaries of what has been proved
previously.

Amenable groups are characterized by the property that their
Ap algebras have approximate identities of bound 1. This fact is
used throughout, but since we cannot find a convenient reference
we give an outline in § 9. The full proof that A (G) has bounded
approximate identities implies G amenable is very long. What we
need here is the converse, and the fact that Reiter's property (P )
implies that A has approximate identities of bound 1 is completely
proved here by a short argument.

(1) Added in proof. At the time of writing, [15] had not yet appeared ; it is
first, and the two proofs are substantially the same.
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1. Preliminaries.

Let G be a locally compact group. For 1 < p < oo we write
L (G) for the Lebesgue space with respect to the left-invariant Haar
measure on G. We denote by 3C(G) the vector space of continuous
complex-valued functions of compact support on G. One may view
L (G) as the completion of 3QG) for the norm

( r } l / p\\u iip =j j^ i^ocrAcj .
The completion of 3C(G) for the supremum norm || ||̂ , is denoted
Co(G). Left-translation by elements of G gives a Banach space auto-
morphism of each Lp(G) ; for a EG, \(a) : Lp(G) -^ Lp(G) is
defined by \p(a)u(x) = u^a^x). There are also automorphisms given
by right translations ; for a E G, pp (a) : Lp (G) -^ Lp (G) is defined
by Pp(°) u(x) = ^(Jca)Al/p(a) where A designates the modular function
of G. To simplify notation we shall suppress the index p when the
context is obvious.

If we form the Banach space tensor product L (G) ® L »(G)
where \ / p + 1/p' = 1, then for 1 <p < °° we have a Banach space
morphism Lp(G) ® Lp'(G) ^ Co(G) defined by u ® v ^ f where
f(a) = < \(a)u, v >. The coimage of this morphism is denoted by
P : Lp (G) ® L i (G) ̂  Ap (G); thus Ap (G) consists of certain continuous
functions vanishing at °° on G with the norm being the quotient
norm from the tensor product. If k, I G 9^(0 their convolution is
defined by k * l(p) =j k(x) l(x~lo)dx. Thus we may write

P(u ® v) = v * & where u(x) = u(x~1),

A tensor ^GLp(G) ® L »(G) can be expressed, non-uniquely, as
00

a sum t = ̂  M^ ® ̂  where {^^} C Lp(G),
n=l

{^}C L^(G), and S || ̂  ||p || ̂  ||̂  < oo ;

the tensor product norm is ||r|| = inf 2 11̂  lip 11^ lip' where the
infimum is taken over all possible representations. For the sake of
concreteness we remark that the tensor t is determined by the
corresponding locally summable function, i.e. for wE3C(G x G) the
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quantity f ^ dp.. = f w(x ,>Q r(x ,^) dx: dy can be well-defined
</ »/GxG

and the corresponding Radon measure ̂  is zero iff t is the zero-tensor.
The support of t is defined by supp t = supp^.

It follows from the above that given /EA (G) and £> 0 we
can write/as an absolutely and uniformly convergent sum / = 2 v^ * u^
where 2 ||^Jp ||yjp. < ||/|| + £, and we can take{^}, {^}C ^C(G)
if so desired. It is obvious that the elements of compact support
are dense in Ap(G) and that left and ri^ht translations give strongly
continuous automorphisms of A (G).

Without further ado the reader may proceed to the proof of
Theorem 2. In the matter of harmonic synthesis complications arise
in passing from local to global results. The space A^ (G) is the Fourier
Algebra which can be described conveniently by Fourier series when
G is a compact group or by the Banach algebra isomorphism with
the convolution algebra L^ (G) given by the Fourier transform when G
is commutative and G is the character group. Compact and commu-
tative groups belong to the more general class of amenable groups.
If G is amenable, then, as we shall indicate later, given /GA (G)
of compact support and £ > 0 there exists t G L (G) ^ L ' (G) of
compact support such that \\t\\ < \\f\\ 4- £ and Pt = /. This fact alone
suffices for the passage to global harmonic synthesis for amenable
subgroups. In general one can say that when the group is amenable
there are no real difficulties at infinity and otherwise there are.

A key idea in the study of A is to introduce the Lebesgue spaces
of Banach-valued functions Lp(G ; B). If B is a Banach space and
B' its dual then we get a morphism (linear contraction)

Lp(G ; B) « Iy(G ; B') -> L^(G) ® L^(G)

such that u a ^ v l S ^ ( a , p ) u^v where u E Lp (G) , v G Iy (G),
aEB, j3€B', precisely in the case that B is a p-space (see [11]).
In this article we shall only need the case in which B is another
L space ; there is then no difficulty in establishing the existence
of the required morphism provided one works abstractly and doesn't
get confused by irrelevant measure-theoretic issues which might appear
to arise if one writes everything in terms of point functions. Now as
long as B is a non-trivial p-space we can just as well define A (G)
by the extremal epimorphism P : L (G ; B) « L »(G ; B') -> \(G)
given b y u a ^ v f S ^ f where /(a) = < X (a) u , v > < a , j8 >.
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As a particular instance of the above suppose that B = L (G).
If g G Ap (G) has the form g = v * H and ^ G A (G) has the form
^ = l 8 * ( S then if we define UELp(G ; B), V e Lp*(G ; B') by
U(x) = ^(x) X(x-1) a, V(x) = y(x) X(x-1) j3, i.e. as "function" on
G x G we have U(x , $) = u(x) a(;c{), V(;c , S) = ^00 j8(x$) then for
/ = P (U ® V) we get / = ^?. More generally, if s G Lp (G) ® ly (G)
and r € B ® B' then for w e Lp (G ; B) «> Lp» (G ; B') defined by
w ( x , ^ ) = s(x , y ) (\(x~1) «» \^(y~1) t), where \ is left-translation
on B and X^ ls left-translation on B', we have Pw = (Ps) (ft). This
proves that Ap(G) is a Banach algebra ; it was given in [8, Th. 1]
for the case p = 2, but no change is required for other values of p .
The whole point is that contraction of tensors gives a morphism
Lp(G ; B) ® Lp'(G ; B') -> Lp(G) ® Iy(G) so that we can extend
P ; this may be false if B is not a p-space, e.g. if p = 2 and G is
a non-trivial group we must have B a Hilbert space. Actually the
proof gives a little more ; namely, ifs^Lp (G) o Ly (G) and <p G A (G)
then for t (x , y ) = (^ (yjc"1) 5(x , ̂ ) we have r € Lp (G) «> Iy (G) with
imi < MI IMI.

2. Proof of Theorem 2.

Let H be a given closed subset of G. Write J^ for the subset
of Ap(G) consisting of the elements whose supports are compacts
disjoint from H. Fix /G A (G) having compact support. We shall
describe a procedure for estimating the distance from / to J^.

For 0< £<||/IL Put W g = { ^ e G : ||p(x)/-/|| < £> ; each
We is a compact neighborhood of the identity. Let V be an open
set such that 1 G V C We. Put v = / on HV, v = 0 elsewhere. Suppose
u G L-^G), j u(x) dx = 1 and supp u C V. Consider the function
^ = (f — u) * u. Observe that ^ € Ap(G) since / — v G L^ (G) and
u € L (G). Now ^p(p) = f (/ ~ v) (ax) u(x) dx which is zero whenever
a supp u C HV ; it follows that supp ^ is a compact disjoint from H.
We have

/~<^= ( /~ / * ^ )+ (y *^ ) .
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Now I I / - /* u\\ < /11/-POO/H u(x) dx < £ since supp^CWg.
Also || y *z?|| < || u || IHL/? but the conditions on u entail the fact
that the greatest lower bound of the possible ||̂ ||- is exactly JVI"1^ .
Thus we have

dist(/,JH) < £ + IVI-17^ \f^ lAx)!^ dx\ l / p .

If H consists of a single point x then dist (/, Jpj) == |/(x)|, and
we have already proved spectral synthesis.

Henceforth we assume that / vanishes on H. For 0 < 6 < ||/||̂
put ^5 ={x E G : ||pOc)/-/IL < 8}. Suppose that HV C Hft^ ; it
then follows that | /[ < 5 on HV, and we get the new estimate

dist(/, JH) < e + SIVI-17^ IFyI17^

where Fy = {x GHV : f(x) ^ 0}.

The above estimate is useful when smoothness assumptions on/
are tied in with the nature of H. In one extreme, if G is an ^-dimen-
sional Lie group and p > n then we get dist(/, J^) = 0 for all H
on which / vanishes provided / satisfies a Lipschitz condition of
order n / p ' . The argument here is that for V a small cubical neigh-
borhood of the identity we shall have 6^ |V|~1 bounded while |Fy| "̂  0
as V -^ 1. The opposite extreme is the case in which no supplementary
hypotheses on / are imposed, but we take H to be a subgroup. We
need an elementary fact.

LEMMA 1. — Let H be a closed subgroup of G, K a compact
subset of H, and W a compact neighborhood of the identity in G.
Then there exists a constant c ^ c (K, W) such that for any neigh-
borhood Sl of the identity in G we can find an open set V such
that

i) 1 G V C W
ii) HV C HS2
iii) |KV| <c|V|

Given the Lemma, we finish the proof of Theorem 2 this way.
Put K == [(supp /) Wg-1] n H ; then Fy C KV for all V C Wg. Now
apply the Lemma with W = Wg and Sl = S2g . We get :
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d i s t ( / , JH)<£ + 6 c l ^ p ( e )

where c (e) is independent of 6. Thus dist (/, Jn) <c •

Proof of Lemma 7. - There exists an open neighborhood W
of the identity in G and a compact neighborhood U of the identity
in H such that UW' C W. Given the compact subset K of H, the
set KU is also compact ; so there exist y^ .. . , Yc E H such that

KU C U^ y.U. Given Sl an open subset of G containing the identity,
put V = QJW) H (Hi2). Then V is open, 1 € V C ft, and HV C Hi2.
Now

KV C (KUW') H (Hft) C (Uy, UW') H HS2 = U ̂ , V.

Thus KV is contained in c left-translates of V ; so |KV| < c |V|.

3. Regular tauberian algebras of functions.

The Banach algebra properties of Ap can conveniently be studied
in a more general context. Suppose G is an arbitrary locally compact
Hausdorff space. A Banach algebra of functions on G is a Banach
algebra A whose elements may be identified with complex-valued
continuous functions on G with the algebraic operations on A corres-
ponding to pointwise addition and multiplication of functions ; this
is equivalent to saying that there is a Banach algebra monomorphism
A -^ C (G) where C (G) is the algebra of bounded continuous functions
on G in the supremum norm.

DEFINITION. - The Banach algebra A is a regular tauberian algebra
of functions on G if three conditions hold

(R) Given a compact subset K C G and a closed subset F disjoint
from K there exists /€=A such that f= 1 on K and /= 0 on F.

(T) The elements of compact support are dense in A.
(G) // M is a continuous multiplicative linear functional on A

^hose support is a single point {x}CG then M = 6^, i.e. </ , M > =/(x)
for all f C A.
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If A is an algebra of functions satisfying the regularity condition
(R) then there exist partitions of unity in A over each compact in G.
We may define the support of a linear functional T G A' as the subset
of G characterized by : x ^ supp T iff there exists a neighborhood
U of x such that </ , T > = 0 for all /€ A with supp fC U. It follows
from the existence of suitable partitions of unity that supp T is the
smallest closed subset E C G such that T 1 Jg where Jg is the set
o f / G A whose support is a compact disjoint from E. The tauberian
condition (T) is equivalent to the statement supp T = 0 iff T = 0.

Condition (G) is not in general a consequence of (R) and (T),
although in many cases it is easily checked. For example, if G is
a C^-manifold and the infinitely differentiable functions of compact
support are dense in A then (G) is valid since the only distribution
whose support is a single point {x} and which is multiplicative is 6^.
The situation is even simpler when G is totally disconnected and the
elements of A which are locally constant form a dense subset.

When G is a locally compact group it is immediate from the
definition that the elements of compact support are dense in Ap(G).
Given a compact K and a closed set F disjoint from K there exists
a compact neighborhood U of the identity such that (KUU~1) 0 F = 0.
Define u = |U|""1 on U, u = 0 elsewhere and v = 1 on KU, v = 0
elsewhere ; then u E Lp(G), v € Iy(G), and k = v * S € Ap(G) with
k = 1 on K and k = 0 on F. Hence once one knowns that A (G)
is a Banach algebra it is clear that Ap(G) is a Banach algebra of
functions on G satisfying (R) and (T). The simplest way to verify
that condition (G) holds is to use Theorem 2 in the case H = {!}.
This amounts to the statement that if/EAp(G) has compact support
and / (x) = 0 then /E J^. From this it follows that any linear function-
al TGA.'(G) with supp T C {x} is necessarily of the form T = c8y
for some constant c. In summary we have

PROPOSITION 3. — For any locally compact group G, the algebras
Ap(G), 1 < p < °°, are regular, tauberian algebras of functions on G.

In the rest of this section we use only that A-(G) is a regular
tauberian algebra of functions on G. When A = Ap (G) and H is
a closed subgroup, then the A(H) introduced below coincides with
A^(H) ; this is the assertion of Theorem 1.
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Whenever A is a Banach algebra of functions on G which separates
the points of G there is a canonical homeomorphism of G into the
Gelfand spectrum of A.

THEOREM 3. — If A is a regular tauberian algebra of functions
on a locally compact Hausdorff space G then G may be identified
with the Gelfand space of regular maximal ideals of A.

Proof, — Since A is an algebra, the dual space A' is an A-module :
for A: € A and T G A' the element kT G A' is defined by

</,m = < A , T > .
When A is an algebra of functions on G satisfying (R) we have
supp (^T) C (supp k) H (supp T). Now suppose A also satisfies (T)
and let M E A' be a non-trivial multiplicative linear functional ; then
supp M ^ 0. Given x G supp M and an arbitrary open neighborhood
U of x there must exist /G A with compact support such that
< / , M > ¥= 0 and supp / C U. Choose k E A with k = 1 on supp /
and k = 0 outside U. Since M is multiplicative we have

< / , M > == (fk , M > = < / , M ) ( k , M > ;

so < k , M > = 1 and hence kM = M. Therefore supp M C U, but since
U was an arbitrary open set containing x it follows that supp M = {x}.
Condition (G) is now invoked to conclude that M = 6^.

Given a closed set E C G put ker^(E) for the closed ideal of A
consisting of the elements which vanish on E. Then ker^(E) is an
algebra of functions on G\E for which conditions (R) and (G)
obviously hold. If the tauberian condition (T) also holds then E
is said to be a set of spectral synthesis for A. Equivalently, to say
that E is a set of spectral synthesis for A is to say that given/G A
with / == 0 on E and given £ > 0 there exists (p G A such that supp rf?
is a compact disjoint from E and 11/~~<^11<£. The closed set E
is a set of local spectral synthesis if the previous condition holds
under the additional hypothesis that / has compact support.

We write A(E) for the Banach algebra A/ker^(E). It is obvious
that A(E) is a regular, tauberian algebra of functions on E. The
question of spectral synthesis for E is related to the behaviour of
extrapolations of elements of A(E) by elements of A. More precisely
we have
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PROPOSITION 4. — A closed subset E of G is a set of spectral
synthesis for A iff the following condition holds : given g E A with
compact support and c> 0 there exists h E A with compact support
such that h = g on a neighborhood of E and \\h\\ < \\g\\^ +£ where
\\g\\^ is the norm in A(E) of the restriction of g to E.

Proof of necessity. — Given g G A and e > 0 there exists \p E A
such that g — V/ = 0 on E and || V/|| < \\g\\^ + £/2. If E is of synthesis
then there exists ^ G A such that supp (p is a compact disjoint from E
and \\(g^~ ^) — <p|| < £/2. Put A = g — <^ ; then A = ^ on a neigh-
borhood of E and h has compact support if g has compact support.
For the norm we have ||A|| < \\g — \p — <p|| 4- I I V / l l < ll^lle + £.

A-oo/ o/ sufficiency. — We may weaken the condition to

\\h\\<c I^HE +£

where c is a constant depending only on A and E. Given /G A with
/ = 0 on E and £ > 0 choose g £ A with compact support such that
||/~^||<£/3c. Pick h with compact support equal to g on a
neighborhood of E such that ||/z|| < c \\g\\^ +£/3. We have

IÎ IE < 1 1 / - ^ 1 1

since / = 0 on E. Putting ^ = g ~ h we have that supp ̂  is a compact
disjoint from E and || / — (p || < £.

Let Res^ ^ A->" A(E) be the quotient morphism given by res-
triction of functions. We know that given h €A(E) and £ > 0 there
exists g^ A such that Res^ = A and ||g|[ < ||A|| 4- £. If we seek to
control supports we are led to formulate

CONDITION (C). — Given h G A(E) with compact support and £ > 0
there exists g G A with compact support such that Res^g = h and
\\g\\< \\h\\ + s.

The abstract version of Proposition 2 is

PROPOSITION 2*. — Z^r E be a set of local spectral synthesis for A.
Then E ^ a set of spectral synthesis iff condition (C) holds.

Proof of necessity. — Let h e A(E) have compact support. Given
£> 0 choose ^ G A such that Resg^ = A and ||̂ || < ||A|| + £/3.
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Pick ^ E A with compact support such that \\g^ ~g^\\<e/3. By
Proposition 4 there exists ^3 € A having compact support such that

Resg^ = Resg^i - ̂ ) = h - Res^

and II^H < ||̂  - g^ + £/3 < 2£/3.

Put g = g^ + ^3 ; then g has compact support, Resg^ = A, and
11^11 < \\h\\ + s.

Proof of sufficiency. - Suppose /€A and /= 0 on E. Given
£ > 0 choose g^ G A with compact support such that \\f — g^ \\ < £/4.
Then Resg^ has compact support and IIRes^ll = l l / - g i l lE< c/4.
By Condition (C) there exists g^ G A with compact support such
that Res^ = ^^^i and 11^2 I I < £/2- Now g^ — g^ vanishes on E
and has compact support ; since E is assumed to be of local synthesis
there exists ( ^ G A such that supp^? is a compact disjoint from E
and 11̂  -g^ -^\\ < c/4. It follows that ||/-<p|| < £.

When G is a discrete space, any algebra of functions satisfying
(R) and (T) necessarily satisfies (G), and moreover all subsets are
of local synthesis. Nevertheless, Mirkil [13] has shown that spectral
synthesis may fail for regular tauberian algebras of functions on a
discrete space. Thus Condition (C) need not hold in general.

We can make a hypothesis on A(E) which ensures that Condition
(C) holds without making reference to the original algebra A. For
our purpose it is convenient to bring in approximate identities.

A Banach algebra QL is said to have an approximate identity
of bound b if for each £ > 0 and each finite subset { /^ , . . . , A^}C QL
there exists u^QL with H M | | < & such that ||A, — uh{\\ < e for
i = 1,... , n. We recall

COHEN'S FACTORIZATION THEOREM [1]. Let OL be a Banach algebra
with approximate identities of bound b. Given h G QLand £ > 0 there
exists u€QL with \\u\\ < b and g^OLh, the closure ofQLh, such that
h = ug and \\h — g\\ <e.

A simple but valuable corollary is

THEOREM 4. — Let QL be a regular tauberian algebra of functions
on a locally compact Hausdorff space H, and suppose that OL has
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approximate identifies of bound b. Then for each compact K C H
and each £ > 0 there exists k^-QL with compact support such that
k = 1 on Kand \\k\\ < b + c.

Proof. - There exists / G QL such that / = 1 on K. Given 5 > 0,
apply Cohen's Factorization Theorem to get / = ul^ where \\u\\ < b
and ||/ — /oil < 5. Put k^ = u — u(l — l^) ; then k^ = 1 on K and
||A:ol| < b (1 + 6). Take k^ G QL with compact support such that
ll^o ~ ^ill <^ ^- Define k by the norm-convergent sum

k = k, S (k^k,r.
n=0

Then k has compact support and k == 1 on K ; further we have
\\k\\ < 6(1 4- 26) (1 - 5)-1 < b + £ for properly chosen 6.

For H a locally compact group and 1 < p < °° the algebras
Ap(H) have bounded approximate identities, in fact of bound 1,
iff the group H is amenable. Thus an abstract version of Propo-
sition 1 i) is

PROPOSITION I*. — Let A be a regular tauberian algebra of func-
tions on G and H a closed subset of G. If A(H) has bounded approxi-
mate identities then Condition (C) holds.

Proof. — Let h E A (H) with compact support and £ > 0 be given.
Suppose A(H) has approximate identities of bound b. Choose go € A
such that Res^o = ^ ^d ll^oll <^ 11^11 '*" £/^ ^ ^hen pick g^ A with
compact support such that ||̂ o ~^i l l <£/6&. Put v = h ~ Res^.
Then there exists u C A such that Res^u = v and \\u \\ < 2 \\v \\ < e/3b.
Now v has compact support, and the argument used to prove Theorem 4
shows that there exists k E A with compact support such that k = 1
on supp v and ||fe|| < 26. The function g = g^ + kv has the properties
required in Condition (C).

COUNTEREXAMPLE — Let G = (-- 1 , 1] and let® be the infinitely
differentiable functions on G. Given /G6D put M^(/) = sup 1/^x)!

for |x| < (n + I)-1, and put ||/|| = ^ ^(f)/n !. Let
n=0

5i)o ={/e® : 11/11 <°°};
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Leibnitz5 rule shows that if/, g Gfi^ then \\fg\\ < ||/|| ||̂ ||. It follows
that the completion of ®o ^or ^e norm gives a Banach algebra A of
functions on G. Condition (T) is trivially satisfied, and (R) is easily
verified. Now for any complex number z with \z\ < 1 we get an

element T^ GA' by putting </ ,T^ > = ^ f^W^ln !. It is easy
w=o

to check that T^ is a multiplicative linear functional with supp T^ = {0}.

4. Reduction steps.

The situation in which H is an open subgroup of G is especially
simple and deserves special mention.

PROPOSITION 5. — // H is an open subgroup of G then Ap(H)
may be identified with the subalgebra of Ap(G) consisting of the
functions "which vanish outside H. Moreover f ^ \f where x is the indi-
cator function of H gives a Banach algebra retraction Ap (G) -> Ap (H).

Proof. — Suppose u, v €3^C(G). Then we may write u = 2 p(a,)i^.,
v == 2 p(Of)Vi (finite sum) where supp ^,, supp y, C H and Ha, =^ Hay
if i =^7. We have \\u\\^ = 2 \\u^ and \\v\\^ = £ ||î . Now

X^^-S^^VH),

and the Holder inequality gives the A -norm estimate

||XO^)|| < 2 ||̂  \\v^<\\u\\^\\v\\^

Compact normal subgroups can be factored out with a very
simple effect on A .

PROPOSITION 6. — // K is a compact normal subgroup of G then
A^(G/K) may be identified with the subalgebra of A^(G) consisting
of the functions which a periodic with respect to K. Moreover
f-> MK/ where

MK/(^) = X ^(OK) dK

gives a Banach space retraction A^(G) -^ A-(G/K).
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Proof. - We may regard Lp(G/K) as the subspace of L (G)
consisting of the periodic functions, M^ again gives a retraction, and

M^(y*u)= (M^v)*(M^i) .

An invariant pseudometric on a group G is a function
a; : G -> [0 , oo) with the properties : i) o;(l) = 0, ii) a)(x) = o;(jc~1),
iii) co(xyX u}(x)-^ ^(y). The set c^-^O) is a subgroup ; we say
that a? is normal if ar^O) is a normal subgroup. Given a pair (a; , a;')
of invariant pseudometrics we say that a/ is stronger than a? if for
each c > 0 there exists 6 > 0 such that for all x E G, o/(;c) < §
implies o?(x) <£ .

LEMMA 2. — Z/^r G be a o-compact group. For each continuous
invariant pseudometric a? 072 G there exists a continuous invariant
pseudometric a/ which is normal and stronger than oj.

Proof. - Let {!€„} be a countable collection of compact subsets
of G such that U K^ = G. For each/z put ̂ (x) = sup ^ o}(yxy~1).
Then each ^ is a continuous invariant pseudometric. The function
o/ = 2 2-" c^(l + c^,)-1 fulfills the requirements.

We use Lemma 2 to reduce everything to the situation in which
the group G is separable and metrizable. To illustrate the application
we prove

LEMMA 3. — // Theorem 1 is valid when G is a separable, metriz-
able, locally compact group then it is valid for all locally compact
groups.

Proof (For Theorem la). - Suppose ^EAp(G) is a given non-
trivial element. Then g vanishes outside a a-compact open subgroup
Go of G. Let g^ be the restriction of g to GQ ; so g^ <E A^(Go) by
Proposition 5. Define ^ on G^ by o;(x) = \\\(x)g^ - g^ ; then
a? is a continuous invariant pseudometric. Let a/ be normal and
stronger than co. Put K = {x G GQ : a/(x) = 0} ; then K is a compact
normal subgroup of G^, - it is normal since a?' is normal and
compact since KCc^-^O) and g^ vanishes at oo which implies that
^ ^(x) exists and equals ||̂ |L. Put G^ = G^/K ; write TT : GQ -^ G^

for the projection. By Proposition 6 we have g^ = g^ o TT where
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g^ € Ap (G^). Now G^ is metrizable, (a?' induces a metric) and o-
compact. Theorem la applied to G^ and H^ where H^ = 7r(H H G^)
gives the fact that h^ G Ap(H^) and ||/^ || < ||̂  || < \\g\\ where Ai is
the restriction of g^ to H^. The function A defined on H by
h(y) = h^Try) for ^ G H H G o and /2(^) = 0 otherwise meets the
requirements.

Proof (For Theorem Ib). - Given h G Ap(H) let ^ ECo(G) be
an extension of A as a continuous function vanishing at o°. Assuming
that g ' is non-trivial, we form GQ, a;, and K as above but this time
in terms of g1. Let h^ be the restriction of h to H U G^ ; then ho
is periodic with respect to H H K, and so ho = h^ o TT where A i G A^ (H^)
and || M< I I A II. Etc.

5. Strong semi-direct products.

Consider the situation in which G = HN where H is a closed
subgroup, N is a closed normal subgroup, and H H N = { 1}. If in
addition N contains a compact set K of positive measure (with respect
to the Haar measure of N) which is invariant under conjugation by
elements of H we shall say that G is the strong semi-direct product
of H by N. The extra hypothesis rules out many semi-direct products
of interest in analysis, but it is essential for what follows here. We put

A^(N)={^eAp(N):^(y- 1^) =<^) f o r a l l ^ E H . ^ E N } .

If the semi-direct product is not strong then A^(N) = {0}. Otherwise,
if K is a compact, H-invariant set of positive measure and K its indi-
cator function then ^> = IKI-^ */<GA^(N), |M| = 1, and ((1) = 1,
also (p has compact support.

PROPOSITION 7. — Let G = HN be a strong semi-direct product.
Then h ^ ^ p - > g , where g(yn) = h(y) ^p(n), gives a Banach algebra
monomorphism Ap (H) «> A^(N) -> A^ (G).

Proof. — In the case of a semi-direct product we have a cano-
nical morphism Lp (H) ® Lp (N) -^ Lp (G) given by u «> v *-> U where
V(yn) = u{y) v(n). This induces a morphism
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(Lp(H) ^ Iy(H)) ^ (L^(N) ® Iy(N)) -^ Lp(G) ® L^(G)

which we write as s ® r »^ S = 5r. Now suppose ^ = P^S where
PG : Lp(G) ® Iy(G) -^ Ap(G) is the canonical morphism defining
Ap. Then g(a) =fs(a~lx,x)cix ; if a = w where r E H and i / E N
this becomes

g(rv)=f f s ( T ~ l y , y ) t ( y ~ l T V ~ l T ~ l y n , n ) d n d y ,

since the Haar measure on G is the product of the Haar measures
of H and N. The integration over N yields

g(rv) = f s(r~1 y , y) ^p(y-1 rvr-^y) dy ,
^H

where <^ = Pj^. If ^ is invariant under conjugation of its argument
by elements of H, Le. if ^ E A^(N), then we get

g(rv) = f^ s(r-1 y , y) dy ^p(v) = h (r) ^(v)

where h = P^ s.
Proposition 1, iii) is an immediate corollary of Proposition 7

and Proposition 5.

6. Proof of Theorem 1.

Let \Q denote left-translation in the G-variable on Lp (G x H)
and XH left-translation in the H-variable. We get two extremal epi-
morphisms

PG : Lp(G x H) ^ Lp.(G x H) ^ A^(G)

PH : Lp(G x H) ® Iy(G x H) -> Ap(H)

given by P^(M «> y) = g, P^(u ^ v) == h where

g(o) = < XeCa) ^ , v ) , A(r) = < \^r) u , y >.

Suppose there is an automorphism 9 : L ( G x H) -^ L (G x H)
such that Q\^(r) = X^r) @ for all r G H. Put
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0 : Iy(Gx H ) ^ I y ( G x H )

for the automorphism 6 = 0'~1, the transposed inverse. Then we
have

(\^(7)u,v) = (\G(T) @u, Qv) , all T E H .

It follows that Res^ ° PG ° (© ^ ®) = PH where Res^ is the restriction
of functions from G to H. Since PQ and P^ are extremal epimorphisms,
Theorem 1 is proved.

It remains only to exhibit a suitable automorphism ©. We do
this in the case that the locally compact group G is separable metric.
In this situation there is a Borel measurable map 6 : G -> H such that
6 (rx) == r 6(x) for all x £ G and rEH. (We shall say more about
6 in a moment). In terms of point functions we put

Qu(x , y) = u [y-1 (Ox)-^ , (Ox)y].

It is immediate that OX^) :== XG^O, 10ut some readers may not
feel comfortable with the change of variables required to show that
0 is an automorphism of L (G x H). To make matters more obvious
we write © == ©i o F where F and ©^ are the automorphisms des-
cribed below. There is always a canonical isomorphims

L?(Gx H)- L^(H ; Lp(G))

where the latter space may be viewed as the completion of
3C(H ; L (G)), the space of continuous functions of compact support
u : H -> Lp(G), with respect to the L -norm for the left-invariant
Haar measure on H. Since \Q operates continuously as an auto-
morphism of Lp(G) we have that F u(y) = X^O) u(y) defines an
element Fu e3<:(H ; Lp(G)) whenever u e3<:(H ; Lp(G)). The inverse
of F : 9C(H ; Lp (G)) ^3C(H ; Lp (G)) is given by

F^n/GO-X^"1)^).

Since F is obviously isometric in the L -norm it extends uniquely to
an automorphism of L (H ; L (G)).

To describe ©^ we start with the canonical isomorphism
Lp(G x H) ^ Lp(G ; Lp(H)) and view the right-hand side as the
completion of 3C(G ; L (H)). Given a continuous map <^ : G -^ H
we get an automorphism $ of 9^C(G ; L (H)) given by
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^U(X) = ̂ K^)"1!^)-

Up to now everything is just like what went on before, but at this
point we shall use the assumption that H is a metric space. Suppose
{<^} is a sequence of continuous maps which converge in measure
on supp u where u e3<:(G ; L (H)) ; then $^ also converges in
measure on supp u. The argument is that given e > 0 there exists
5 > 0 such that }\{y^) u(x) — XQ^) u(x)\ < £ for all x wherever
d(y^ , y ^ ) < 8 where | | is the norm in L (H) and d is the distance
on H. Thus \^u(x) — ^^u(x)\ <c for all x €E^ 0 supp u where
^mn == ^x : ^(^w^) ' ^yi^)) s> ^ ' ^e assumption is that

^(E^n suppu)^0

as m, n -> °° on G. Since \Q^u(x)\ < \u(x)\ everywhere, it follows
by dominated convergence that ^^u converges in the norm of
Lp(G ; L«(H)). What we have proved is that if {^} is a sequence of
continuous maps <?„ : G ->• H which converge in measure on each
compact to a map 6 : G-^ H then <&^ converges in the L -norm
for each u^9C(G , L (H)). The limit may be identified with Q^u
where @^u(x) = \^[(0x)~l]u(x). It is routine that ©^ extends to
an automorphism of Lp (G ; L (H)). Since G is a a-compact, locally
compact space and p. is a Radon measure, any Borel map from G
to a metric space is the limit in measure of a sequence of continuous
maps.

The existence of the map 6 : G -> H for arbitrary separable metric
groups G is obtained this way. Let F = H\G be the space of right
cosets and G ^ F the projection. According to [12, Lemma 1.1]
there exists a Borel set F in G such that G = HF , H H F = {1}, and,
moreover, (rr~1 TTK) H F is pre-compact in G whenever K is a compact
subset of G. In effect, this says there is a Borel cross section
V/ : r -> G such that TT o ^ == idp and V/ maps compacts into pro-
compacts. We define 0 by 6(x) = x[\^ o ^(x)]"1. It follows that in
addition to the properties already used, 6 maps compacts into sets
whose closure is compact. This implies that if u E L_(G x H) has
compact support then the same is true of Qu.

The preceding remarks raise some questions related to Condition
(C). There is an obvious notion of support for a tensor

r G L ^ ( G ) ® L p ( G ) ;
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the definition may be formulated by saying that supp t is the closed
of G x G characterized by the property that (x^ ,^0)^ supp t iff
there exists a neighborhood W of (x^ ,j^) such that

JGXG ^(x . y ) t ( x . y ) d x d y = 0

for all w E 9<XG x G) with supp w C W. One can show that i f / = P ^
then supp / is contained in the closure of the set

{z EG : z = yx~1 , (x , y ) ^ supp t } .

This prompts

DEFINITION. — An element / G A ( G ) is formally of compact
support if for each £ > 0 there exists rGLp(G) ® ly(G) ^c/z that
\\t\\ < 11/11 + £, supp t is compact, and f = P^

QUESTION. — For a given group G is it true that each /G Ap(G)
with compact support is formally of compact support ?

For amenable groups the answer to the Question is Yes. Given
any compact K C G, where G is amenable, and £ > 0 one can
construct k €E A (G) such that k == 1 on K and k = Ps where
s ^ - L ( G ) ® L '(G) has compact support with |M| < 1 +£ . This is
a strengthening of what we obtained from Theorem 4. Now if
/EAp(G) and supp / C K , - so / = fk, - then / = Pt where
t(x , y ) == f(yx"1) s(x , y). Clearly supp t C supp 5, and we know from
§ 1 that H ^ l l < H/l l M < ( ! + £ ) 11/11.

The point of the above is that if A G A p ( H ) is formally of
compact support then given c > 0 we can find ^EAp(G) with
Res^ = h and ||̂ || < ||A|| + e such that g is formally of compact
support. To do this fix some s G L (G) «> Lp (G) such that

IMI = 1 = f ^ s ( x , x ) d x

and supp s is compact. Choose ^€ELp(H) ^ L »(H) with compact
support such that h = Pr and |M| < 1 +c. Define

TGL^(G x H ) « Ly(G x H)
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by T = st ; we use the morphism Lp(G) ® Lp(H) -> Lp(G x H) to
get a morphism

[Lp(G) « ly (G)] « [Lp(H) ^ ly (H)] -> Lp(G x H) ^ ly (G x H)

which we designate by s ® t "> st. Then ||T|| < ||A|| -h e and supp /
is compact. Put S = (0 x 0) T ; then supp S is also compact. If
we put g = P^S all the requirements are met.

The above gives a constructive proof of Proposition 1 i) once
one has found for each compact K C H and e > 0 an element
k G Ap (H) which is formally of compact support such that k = 1
on K and \\k\\ < 1 4- £. One way to do this is to find a compact
set U C G such that |KU| < ( ! + £ ) |U| and put k = v * u where
u(y) = |U|~1 for y E K, = 0 for y ^ K, and v is the indicator function
of KU. Actually, the procedure of § 3 is simpler. We know from
Theorem 4 that for H amenable there exists k^ G A (H) with k^ = 1
on K and \\k^ || < 1 4- c/2. Take fc^ formally compact support such

00

that ||̂  - k^\\ <e/3 ; then k = k^ S (^i - k^T is formally of
w=o

compact support, ||A:|| < 1 + £, and k = 1 on K.

7. Normal subgroups.

We suppose here that G is a locally compact group satisfying
the second axiom of countability and that H is a closed subgroup
of G. Let r = G/H be the space of left cosets. If one forms Lebesgue
spaces with respect to the quasi-invariant measure on F he obtains
non-canonical isomorphisms of Lp(F ; L (H)) with L (G). These
yield morphism Lp(T) «» L (H) -^ L (G), and if one proceeds as
in § 5 he obtains non-canonical morphism

(Lp (D « ly (D) ® Ap (H) ^ Ap (G).

The morphisms depend on the choice ofBorel cross-section \p : F -^ G.
More explicitly, let TT : G -^ F be the projection homomorphism.
The action of G on F is defined by putting y == ^^(a~lx) where
a EG and x € G is any element such that 7r(x) = $. The quasi-
invariant measure on F satisfies
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f^ w(S;°)m(a^)df; = ̂  vv($) </$

for all w G a^r) where w : G x F -^ R'1' is a certain continuous
function whose exact nature does not concern us here. Given a
Borel mapping \1/ : F —> G such that TT o \p = /rfp, we define a Borel
mapping i? : G x T -> H by

<^(n= ^ ) i ? ( a , £ ) ; a E G , S e r .

Given s E Lp (F) «> Lp»(F) and h e Ap (G), the function

^(a) = ̂  s(S;° , ̂ ) w^ (a , f) A [i?(a , £)] dS

belongs to A (G) and \\g\\ < ||j'|| ||A|]. In general, there is no close
relation between Res^g and h.

When H is a normal subgroup considerable simplifications occur.
If G = FH is a semi-direct product we are reduced to a retracing
of §5. Here, however, the subgroup H is the normal subgroup,
and a different approach is needed for which the assumption that ^
is a homomorphism is irrelevant.

PROPOSITION 8. — Suppose that H is a normal subgroup of G.
Given an open subset ^l of G and £ > 0 then for each h E A (H)
with supp h a compact subset of S2 C\ H there exists g G Ap (G) with
\\g\\ < || h || such that supp g is a compact subset of Sl and

I I R e s H ^ - A I I <e.

Proof. — We first observe that G has a strongly continuous
representation as automorphisms of Ap(H) according to x ^ a(x)
where a(x) h(y) = h^x^yx). Hence there is a compact neighbor-
hood U of the identity in G such that U (supp h) U~1 C Sl and
\\a(x)h - h\\ < e for all x GU. Put K == TrU and let V/ : F -^ G
be a Borel cross-section such that ^ K C U. Take s e Lp (D « ly (F)
given by s = |K|~1 ^^p ^ ^p where ^ is the indicator function of
K. Then for the function ^defined on G by

g(o) -^ s(^ , H ) h [ ^ ( a , S ; ) ] d f ;

we have g € A p ( G ) and ||̂ || < ||A||. If
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^ G K . ^ E K , and t?(a , f) G supp A,

then a G U (supp /z)U~1 ; hence supp g C ^l. It remains only to observe
that for T £ H we get

g(r) = IK|-1^ a(V/0)) /z(r) ̂ .

Therefore || Res^— h\\ < £.
As an immediate consequence we get Proposition 1 ii) in a more

precise form.

PROPOSITION 1 ii). — Suppose that H is a normal subgroup of
G. Given an element of compact support h € A^ (H), £ > 0, and an
open subset S2 of G with supp hC f t n H, ^ere .̂x^ ^GAp(G)
with \\g\\ < \\h\\ + £ ^cA rtar Res^ = h and suppgcji.

Proof. — We define inductively sequences {/!„} and {g^} with

^GAp(H) , supp^C H U H , ^GAp(G) , 11^11 < ||/zj|,

and supp^C ^2 as follows : put h^ = h ; assuming that 7z^ has
been given choose ^according to Proposition 8 so that

IIResH^ -M <c2-n ;

put A^+i = /;„ — ResH^. Then ^ = 2^ meets the requirements.

8. Convolution operators.

Given a Banach space B, let END(B) designate the Banach algebra
of bounded linear operators on B. If B is reflexive then END(B) is
naturally isomorphic to the dual space of B •» B' under the pairing
< T, u ^ v } = < Tu, v >. If B is a module for the group G then the
dual space of B «'o B' is END°(B), the operators which commute
with the operators giving the G-module structure. As a particular
example, let G be a locally compact group, B = L (G), and take
the G-module structure on B as that coming from the right transla-
tions. We write CONVp(G) for END^L^G)) ; this is the algebra
of (left-) convolution operators.
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It is obvious that the canonical morphism

P : Lp(G)^Lp(G)^A?(G)

factors through Lp (G) ^ ^ (G) "> Ap (G)- This ^^ as we sha11

see, is an isomorphism for p = 2 for all G, and the same is true for
all p when G is amenable. It is immediate that we have an isometric
inclusion P' : Ap(G)-> END(Lp(G)), the image being exactly the
smallest ultraweakly closed subspace containing the left translations
\(o) , a G G. The ultraweak topology on END(B) is the weak topology
from the pairing with B «> B\ Thus Ap(G) can be identified with a
subspace of CONVp(G). We view the identification in this fashion.
Suppose 71 is a bounded complex Radon measure on G. Then
XOi)eCONVp(G) can be defined by Wu = f [\(a)u] d^a)
for u G Lp (G) where we have a Bochner integral with a ̂  \(a)u
regarded as an element of CQ (G ; Lp (G)). Another notation for
\(jji)u is IJL * u . In particular, if k , u^.3C(G) then

\(k)u =f[\(x)u] k(x)dx

coincides with the previously defined k * u. The measures are weak*-
dense in Ap(G) ; we call the elements of A-(G) pseudomeasures,
notation : Ap (G) = PMp (G), and we shall write PMp (G) ^ CONVp(G)
for the isometric inclusion. We shall write

T*u=\mu for T G P M p ( G ) , M € L p ( G ) ,

and |||T||lp will be used for norm of T G PMp (G) as well as for the norm
of TECONVp(G). The completion of Li(G) for the norm ||| |||p
gives the space PFp(G) of pseudofunctions.

The space PMp(G), being the dual of the Banach algebra A (G),
is canpnically an A^ (G)-module. In § 1 we showed that L (G) ̂  Lp (G)
was an A^ (G)-module, and, by duality, the same is true on CONV (G).
In fact X : PMp(G) -» CONVp(G) is a morphism of Banach Ap(G)-
modules.

Suppose k E L (G) and u € 3C(G). Then we can define

k ^ u E L p ( G ) by k ^ u = [ [pp(x)k] u^-1)^-1^) dx and be

consistent with previous notation. Since elements of CONV (G)
commute with right-translations we have
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T(k * u) = (T70 * 1^ for T € CONVp (G) , k € Lp (G) , u G y<:(G).

Now suppose f c G L i HLp(G) ; we see that (T:k) * u = TX(A:)^, and
this extends the definition of (Jk) * u to all M E L (G).

The support of an element u G Lp (G) is defined by saying
x ̂  supp u iff there exists a neighborhood V of x such that for all
v e 3C(G) with supp v C V we have < u , v > = 0. The support of a convo-
lution operator T€CONVp(G) is defined by saying that x f supp T
iff there exists a neighborhood U of the identity such that x ̂  supp (Tu)
for all u G 9<;(G) with supp u C U.

PROPOSITION 9. - Suppose TGCONVp(G) is a convolution oper-
ator with compact support. Then for each neighborhood Sl of supp T,
the operator T is in the ultrastrong closure of the set of operators
\(w) where weSK.(G), supp w C Sl, and |||w|||p <|||T||lp.

Proof — Let U be a neighborhood of the identity such that
(supp T) U C ft. Take k E3^(G) with supp k C U and f k(x) dx = 1.
Put w = Tk ; then supp w is a compact subset of ft and, since w e L ,
we also have w € L ^ . We have previously established that

TX(fe)^ = T(fc * u) = w * u = \(w)u

for all u € Lp (G). Since the identity operator is the ultrastrong limit
of operators of the form \(k) it follows that T is an ultrastrong limit
of the X(w). Here HMHp < Umilp \\k\\, < ||mi|p. We have constructed
w G I^(G), but it is easy to modify this to get w E9<:(G).

A basic question in harmonic analysis is whether the conclusion
of Proposition 9 persists when the convolution operator is no longer
assumed to have compact support. I gave the following at the Warwick
Summer Institute 1968 (see [6]) which generalizes earlier results of
Figa-Talamanca [7] for compact or commutative groups.

THEOREM 5. - Let Gbe an amenable group. Given T G CONVp (G)
and Sl any open set containing supp T, the operator T is in the
ultrastrong closure of the set of operators \(w) where wE^G),
supp w C ft, and HHlIp < IIITIIIp. In particular, X : PMp (G) ̂  CONVp (G)
is an isomorphism.



118 C. HERZ

Proof. - Let abe these tof /eAp(G) with ||/|| < 1 and supp/
compact. By Theorem 4, for each compact K C G and each £ > 0
there exists /€ (1 +£)(S£ with /= 1 on K ; hence for each
t G L (G) ® JL/ (G) with compact support we have t = ft for some
/G(l + e)OL. It follows that every rGLp(G) ® L^'(G) is in the
norm closure of QL' t, and therefore each TGEND(L (G)) is in the
ultrastrong closure of QL • T. When TECONVp(G) and f^QL then,
as will be seen in Proposition 10 below, supp (/• T) is a compact
subset of S2 while |||/ • TUIp < ||/|| |||T|llp < ll(T|Hp. The conclusion now
follows from Proposition 9.

It is not at all obvious that Theorem 5 remains valid for non-
amenable groups. For discrete groups G the conclusion of Theorem 5
implies that every subset E C G is a set of narrow spectral synthesis,
i.e. each TEPMp(E), the pseudomeasures with support in E, is the
weak*-limit of finite measures p. with supp/x C E and llljLiflL < |||T||lp.
When p = 2 a weaker statement is available.

THEOREM 5'. — For an arbitrary locally compact group G each
TG PM^G) is in the ultrastrong closure of the set of operators \(w)
where w E 3C(G) and IMÎ  < HITH^. In particular

\ : PM^G) -> CONV^G)

is an isomorphism.
Theorem 5' is well-known. The proof is this. What we call PF^ (G),

namely the norm closure of the X(w) with w G 3<XG) is the regular
C*-algebra of G. Its bicommutator in END (1.2 (G)) is CONVa (G) ;
see [2 ; Ch. I, § 5], but the proof works for any p. Where the Hilbert
space techniques first come in is that CONV^ (G), being the von
Neumann algebra generated by PF^G), is the ultrastrong closure of
PF^G), see (2 ; Ch. 1, § 3]. Now by the Kaplansky Density Theorem
(loc. cit.) the unit ball ofCONV^(G) is the ultrastrong closure of the
\(w) with wEff<:(G) and IIHI^ < 1.

It remains to give some more explicit information about the
support of a convolution operator.

PROPOSITION 10. - // / E Ap (G) and T G CONVp (G) then

{x G supp T : f(x) ̂  0} C supp (/ • T) C (supp/) n (supp T).
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Proof. - Suppose 1 ̂  supp (/• T) and/(I) ̂  0. Then there exists
a compact neighborhood U of 1 such that

<(/. T ) a , ^ > = < / • T , a ® j 3 > = 0

for all a , j3 G S^G) with supp a, supp j3 C U, and, at the same time,
I/I > 0 on UU~1. Since A-(G) is a regular Banach algebra with Gelfand
spectrum G (Theorem 2), there exists g G A (G) such that gf = 1
on UU~1. Now suppose u, v E9<;(G) with suppu, suppv C U. Then
< T M , v ) = < T , M <» v > = < / . T , ^ . (^ ® y ) > = 2 < / .T , a^ «> j3^>
where ^ • (u ® v) = 2o^ ® j8^ with

{^} , {^} C 3C(G) and 2 ||aJ^ ||ftj|p. < oo.

Since g (yx~1) u(x) v(y) == 2 a^(x)ft^(y) we can assume suppo^,
suppjS^ C U, and hence </• T, a^ « j3^ > = 0 for each AL Thus

< TM , y > = 0 and 1 ̂  supp T.

We have proved that i f / (I) ^= 0 and 1 € supp T then 1 G supp (/• T).
Conversely, suppose 1 € supp (/• T). If we take^GAp(G) with compact
support such that g(l) = 1 then 1 G supp (gf- T). If / were 0 on a
neighborhood U of 1 we could take supp g C U which would give
gf = 0, a contradiction. Hence we have 1 E supp /, and it remains
to prove that 1 e supp T. Suppose 1 ̂  supp T and let U be a neigh-
borhood of 1 such that U2!!"1 does not meet supp T. Take k, u,
v^9C(G) with supports in U. Now gf(Tk) = w€L^(G) and w = 0
on UU~1 ; hence (\(w)u,v)= 0, but if we take \(k) converging
strongly to the identity then gf • (T \(k)) = X(w) converges strongly
to gf' T which gives <(gf- T) u, v > = 0 for all u, v E3?C(G) which
supports in U, contradicting 1 G supp (gf- T).

COROLLARY - Given T G CONVp (G) we have x € supp T iff for all
/G Ap(G) we have : / • T = 0 implies f(x) = 0.

For a pseudomeasure S E PM (G) = A' (G) we have already de-
fined the support in § 3. If A is any regular tauberian algebra of
functions on G it is easy to see that for S E A' we have : x e supp S
iff for all /E A the statement/S = 0 implies the statement f(x) = 0.
Since X : PM (G) -^ CONV (G) is an A -module morphism we get



120 C. HERZ

COROLLARY. - // S € PMp (G) then supp S = supp X(S) where
supp S is defined in terms of the support of a linear functional on
a regular tauberian algebra of functions and supp X(S) is defined in
terms of the support of a convolution operator.

9. Amenability and bounded approximate identities in A .

The following is folklore

THEOREM 6. — // G is an amenable locally compact group then
Ap(G) has approximate identities of bound 1 for all p, 1 < p < °°.
Conversely, if A^(G) has bounded approximate identities for any
p, 1 < p < °°, then G is amenable.

I shall indicate the details in the proof.

LEMMA 4. — // A^(G) has bounded approximate identities then

\fk(x) dx\ <\\\k\\\pfor all k€L,(G).

Proof. - The convolution operator norm |||A:||̂  is equal to the
norm of the linear functional f-> ff(x) k(x) dx on Ap(G). If Ap(G)
has approximate identities of bound b then given and compact K C G
at e > 0 there exists /G Ap(G) with ||/|| < b such that |1 -/| < e
on K. From this it follows that | f fc(^)dxj < b \\\k\\\p. Applying the
estimate to the n-fo\d convolution of k with itself we get

\fk(x)dx n <b\\\k\\\; ,

and hence the assertion.
Now Lemma 4 for po implies the same assertion for po, and

thence by convexity for p = 2. The assertion of Lemma 4 in case
p = 2 is exactly the assertion that the identity representation of G
is weakly contained in the regular representation on L^ (G). This
last implies (see the step 0 =^ ii') of [3 ; Proposition 18.3.6]) that
the group G has the property

(P') The constant 1 can be approximated uniformly on compact
sets by functions of the form k * k* with k G£<:(G), where

k*(x) =I(;c-1).
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Reiter [14 ; Ch. 8 § 3] shows the equivalence of (P') with each
of the properties (P ), 1 < p < oo.

(Pp) Given a compact K C G and £> 0 there exists a€Lp(G)
with \\a\\p = 1 such that \\\(x)a - a\\p < e for all x EK.

The properties (Pp) are equivalent to amenability in the sense
of the existence of suitable invariant means. The details are given
by Reiter [14 ; Ch. 8 § § 3-5]. The convenient point of departure
for us is to view amenability in terms of the properties (P ).

LEMMA 5. - // G has property (Pp) then Ap (G) has approximate
identities of bound 1.

Proof. - Given a compact set K C G let F(K) be the convex
hull of the of functions of the form v * u where u E L (G), v € L ' (G),
\\u ||p < 1, \\v \\p < 1, and suppM,supp v C K. The union of the sets
F(K), as K ranges over the compact subsets of G, is dense in the unit
ball Ap(G). Hence it suffices to prove that for each compact K and
each 00 there exists ^ G Ap(G) with ||^||^ such that \W- f\\ < 2 £
for all /E F(K). For 1 < p < 2 let a€ L^(G) be the element corres-
ponding to K~1 and £ in the definition of ( P ) ; if p > 2 use £/2p.
We may suppose a > 0 ; otherwise replace a by |a|. Put jS = a^"1

and (^ = ft * a. It is clear that <^e Ap(G) and IMI = 1. We have to
show that H ^ O * u ) — v *u\\ < 2e where u and v are as in the
definition on F (K). To do this we define U, U'ELp(G ; Lp(G))
by \J(x) = u (x) a, V\x) = u(x) \(x-1) a, i.e. U(x , $) = u(x) a(f),
U' (x , S) = u (x) a(x^). Similarly we define V, V E L^(G ; L^(G)) by
V(x) = y(x)^ , \\x) = i/(;c) X(x-1)^. Let

P : Lp(G ; Lp(G)) ® L^(G ; Lp.(G))^ Ap(G)

be the canonical morphism. Then

P(U <» V) = y * & and P(U' « V') = <^(v * u\

Therefore we have

||<p(v * u) - (y * M)|| < ||U1 ® V' - U ^ V||

< IKU' - U) ® V|| + HIT ^ (V' - V)||

< \W - U||p ||V||̂  + \\V\ \\\1 - V||̂
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N o w l l V l l ^ ^ l l y l l ^ w h i l e l l U ' - U H p ^ l l ^ • sup ||X (x-^a-a^
with the supremum taken overx G supp u. Thus ||U' — U|| 1 | V [ | - < £
and a similar estimate holds for l JU' l lp ||V' — V|lp» since

IIXOc-1)^-^^ for JCEK.
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