Completeness and existence of bounded biharmonic functions on a riemannian manifold

<http://www.numdam.org/item?id=AIF_1974__24_1_311_0>
COMPLETENESS AND EXISTENCE
OF BOUNDED BIHARMONIC FUNCTIONS
ON A RIEMANNIAN MANIFOLD

by Leo SARIO (1)

A.S. Galbraith has communicated to us the following intriguing problem: Does the completeness of a manifold imply, or is it implied by, the emptiness of the class H^2B of bounded nonharmonic biharmonic functions? Among all manifolds considered thus far in biharmonic classification theory (cf. Bibliography), those that are complete fail to carry H^2B-functions, and one might suspect that this is always the case. We shall show, however, that there do exist complete manifolds of any dimension that carry H^2B-functions. Moreover, there exist both complete and incomplete manifolds not permitting these functions, and, trivially, incomplete manifolds possessing them.

We attach a Bibliography of recent work in the field.

1. Let C be the totality of complete Riemannian manifolds M, characterized by an infinite distance of any point of M to the ideal boundary. Denote by $\hat{\mathcal{C}}^N_{H^2B}$ and $\tilde{\mathcal{C}}^N_{H^2B}$ the classes of N-manifolds, $N \geq 2$, for which $H^2B = \emptyset$ or $H^2B \neq \emptyset$, respectively.

THEOREM 1. - $C \cap \hat{\mathcal{C}}^N_{H^2B} \neq \emptyset$ for every N.

Proof. — Take the N-cylinder

$$|x| < \infty, \quad |y_i| \leq 1, \quad i = 1, 2, \ldots, N - 1,$$

with each face $y_i = 1$ identified with $y_i = -1$, so as to obtain a covering space of the N-torus in the same manner as a conventional cylinder is a covering surface of the torus. Let T be this N-cylinder with the Riemannian metric

(1) The work was sponsored by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-71-G181, University of California, Los Angeles.
where

\[\mu(x) = (2 + x^2)^{\frac{1}{2}} \log(2 + x^2). \]

To see that \(T \in \mathcal{C} \), it suffices to show, in view of the symmetry, that \(\int_0^\infty \mu^{-1}(x) \, dx = \infty \). The verification is immediate:

\[
\int_0^\infty (2 + x^2)^{-\frac{1}{2}} \log^{-1}(2 + x^2) \, dx > \frac{1}{2} \int_0^\infty (2 + x)^{-1} \log^{-1}(2 + x) \, dx
\]

\[
= \frac{1}{2} \int_0^\infty \log \log(2 + x) = \infty.
\]

We introduce the function

\[u(x) = \int_0^x \mu^{-3}(t) \int_0^t \mu(s) \int_0^s \mu^{-3}(r) \, dr \, ds \, dt. \]

The Laplace-Beltrami operator \(\Delta = d\delta + \delta d \) gives

\[\Delta u = \frac{1}{2} (g_x^x u')' = -\mu^{-1}(\mu^2 u')' = -\int_0^x \mu^{-3}(r) \, dr \]

and

\[\Delta^2 u = -\mu^{-1}(\mu \mu^2 (-\mu^{-3}))' = 0. \]

Thus \(u \) is nonharmonic biharmonic.

To see that \(u \) is bounded it suffices to show that it is so for \(x > 0 \). For all \(s > 0 \),

\[\int_0^s \mu^{-3}(r) \, dr = \int_0^s (2 + r^2)^{-3/2} \log^{-3}(2 + r^2) \, dr = o(1), \]

and for all \(t > 0 \),

\[
\int_0^t \mu(s) \int_0^s \mu^{-3}(r) \, dr \, ds < c \int_0^t (2 + s^2)^{\frac{1}{2}} \log(2 + s^2) \, ds
\]

\[
< 2c \int_0^t (2 + s) \log(2 + s) \, ds
\]

\[= c \left[(2 + t)^2 \log(2 + t) - \frac{1}{2} (2 + t)^2 + \text{const.} \right]. \]
Here and later c is a constant, not always the same. We let $[\]$ stand for the expression in brackets and obtain

$$u(x) < c \int_0^x (2 + t^2)^{-3/2} \log^{-3}(2 + t^2) [\] \, dt.$$

The dominating term in the integrand is majorized by

$$\frac{1}{2} \, t^{-3} \log^{-3} t (2 + t)^2 \log(2 + t).$$

The integral from 1 to $x > 1$ is bounded, and consequently so is u for all x.

This completes the proof of Theorem 1.

2. The following simple example, valid for $N \geq 3$, is perhaps also of interest. Let

$$T : \quad |x| < \infty, \quad |y| \leq \pi, \quad |z_i| \leq 1, \quad i = 1, \ldots, N - 2,$$

with the metric

$$ds^2 = dx^2 + e^{2y} dy^2 + e^{(2e^x - x)/(N - 2)} \sum_{i=1}^{N-2} dz_i^2,$$

the opposite faces again identified by pairs. Clearly $T \in \mathcal{C}$.

The function

$$u = \cos y$$

belongs to $\mathcal{H}^2 \mathcal{B}$. In fact,

$$\Delta u = -e^{-e^x + x} (e^{e^x - x} e^x) (-\cos y)$$

and

$$\Delta^2 u = -e^{-e^x + x} [(e^{e^x - x} e^x)' \cos y + e^{e^x - x} e^x (-\cos y)] = 0.$$

Thus $T \in \mathcal{C} \cap \tilde{\mathcal{E}}_{\mathcal{H}^2 \mathcal{B}}$.

3. The reason that we are only interested in nonharmonic biharmonic functions is, of course, that completeness is known not
to exclude bounded harmonic functions (Nakai-Sario [6]). For $N \geq 3$, we insert here a simple proof of this fact.

Take the N-cylinder

$$T: |x| < \infty, \quad |y| \leq 1, \quad |z_i| \leq 1, \quad i = 1, \ldots, N-2,$$

with the metric

$$ds^2 = dx^2 + e^{2x^2} dy^2 + \sum_{i=1}^{N-2} dz_i^2.$$

Trivially $T \in \mathcal{C}$. The function

$$k(x) = \int_0^x e^{-t^2} \, dt$$

is harmonic,

$$\Delta h = -e^{-x^2} (e^{x^2} e^{-x^2})' = 0.$$

It also is bounded and, in fact, even Dirichlet finite:

$$D(h) = c \int_{-\infty}^{\infty} e^{-2x^2} e^{x^2} \, dx < \infty.$$

4. We return to nonharmonic biharmonic functions.

Theorem 2. $C \cap \mathcal{E}_h^{N} \neq \emptyset$ for every N.

Proof. The Euclidean N-space $E^N \in \mathcal{C}$. Every biharmonic function u has an expansion in spherical harmonics S_{nm}

$$u = \sum_{u=0}^{\infty} \sum_{m=1}^{m_n} (a_{nm} r^{n+2} + b_{nm} r^n) S_{nm}.$$

If $u \in H^2B$, then

$$\int_{|x|=r} u S_{nm} d\omega = c(a_{nm} r^{n+2} + b_{nm} r^n)$$

is bounded in r, hence $a_{nm} = b_{nm} = 0$ for all n, except for b_{01}. Therefore u is constant.

5. In view of $u = r^2 \in H^2B$ on the Euclidean N-ball, we have trivially $\mathcal{C} \cap \mathcal{E}_h^{N} \neq \emptyset$ for every N, with \mathcal{C} the totality of incomplete Riemannian manifolds. It remains to show:
THEOREM 3. - \(C \cap \Theta^N_{H^2_B} \neq \emptyset \) for every \(N \).

Proof. – Let \(E^N_{\alpha} \) be the \(N \)-space \(0 < r < \infty \) with the metric

\[
ds = r^\alpha |dx|,
\]

\(\alpha \) a constant. It is known (Sario-Wang [19, 21]) that if \(N \geq 4 \), \(E^N_{\alpha} \in \Theta^N_{H^2_B} \) for every \(\alpha \); \(E^2_{\alpha} \in \Theta^2_{H^2_B} \) if and only if \(\alpha \neq -1 + n/2 \), \(n = 1,2, \ldots \); \(E^3_{\alpha} \in \Theta^3_{H^2_B} \) if and only if \(\alpha \neq -1 + \left(\frac{1}{2} n(n + 1) \right)^{1/2} \).

On the other hand, \(E^N_{\alpha} \in \bar{C} \) for every \(\alpha \), hence the theorem.

The author is sincerely indebted to Professor Cecilia Wang for a painstaking checking of the manuscript.

BIBLIOGRAPHY

Manuscrit reçu le 22 mai 1973
accepté par M. Brelot.

Leo Sario
Department of Mathematics
University of California
Los Angeles, Calif. (USA)