R. M. Dudley

Metric entropy and the central limit theorem in $C(S)$

<http://www.numdam.org/item?id=AIF_1974__24_2_49_0>
METRIC ENTROPY
AND THE CENTRAL LIMIT THEOREM IN C(S)
by Richard M. DUDLEY

A central limit theorem will be proved in the Banach space C(S) where S is a compact metric space. It will be assumed that the individual random variables X_n in C(S) are independent and identically distributed and satisfy

$$|X_i(s) - X_i(t)| \leq M(\omega)e(s, t) \quad \text{for all } s, t \in S,$$

where M is a random variable with $EM^p < \infty$, $p > 2$, and e is a metric on S for which the ε-entropy H satisfies

$$\limsup_{\varepsilon \to 0} \varepsilon^2 H(S, e, \varepsilon) < \infty \quad \text{for some } \alpha < 2p/(p + 2).$$

The first theorem of this type apparently was that of Strassen (1969) for $p = \infty$, i.e. for M bounded. The main credit for the further extension to $p < \infty$ belongs to Evarist Giné (1974), who treated the case $p = 2$. His method, using truncation and Bernstein's inequality, will also be followed below. Theorem 1 below, described in the previous paragraph, can be considered as interpolating between Strassen's result for $p = \infty$ and Giné's for $p = 2$.

If $p = \infty$ or $p = 2$, the condition on H can be weakened to

$$\int_0^1 H^{2/p - 1}(S, e, t) \, dt < \infty.$$

For $2 < p < \infty$, Giné (1973) has found a different and often weaker sufficient condition, namely

$$H^{(p+3)/2p}(S, e, \varepsilon) = o(1/|\varepsilon| \log |\varepsilon|) \quad \text{as } \varepsilon \downarrow 0.$$

Section 2 presents some counterexamples which indicate why hypotheses of a weaker type would not be enough.
DEFINITIONS. — Given a compact space S, $C(S)$ denotes
the set of all continuous real-valued functions on S,
metrized as usual by the supremum norm.
Given $\varepsilon > 0$, let

$$N(S, e, \varepsilon) = \inf \left\{ N : \exists A_j \subseteq S, \bigcup_{j=1}^{N} A_j, \sup_{x, y \in A_j} e(x, y) \leq 2\varepsilon \right\},$$

$$H(S, e, \varepsilon) = \log N(S, e, \varepsilon).$$

Given a $C(S)$-valued random variable X, $EX = f$ means
that for any $v \in C(S)^*$, $E \int X \, dv = \int f \, dv$.

If $X_1, X_2, \ldots,$ are independent $C(S)$-valued random
variables, we say the central limit theorem holds for the X_j
iff there is a Gaussian process Z on S with continuous
sample functions such that $L^n \left(n^{-\frac{1}{2}} (X_1 + \cdots + X_n) \right) \to L(Z)$
in $C(S)$ as $n \to \infty$, i.e. for every bounded (non-linear) real
continuous functional F on $C(S)$,

$$EF \left(n^{-\frac{1}{2}} (X_1 + \cdots + X_n) \right) \to EF(Z).$$

If the X_j are identically distributed with law μ, where μ
is a Borel probability measure on $C(S)$, then we say the
central limit theorem holds for μ iff it holds for the X_j.

Since the Lipschitz condition on X_1 may seem to be a
strong assumption, it should be noted that S may originally
be given with some other metric d. Then, since S is compact
and $X_1 \in C(S)$, there are some numbers $\delta_m \downarrow 0$ fast enough
so that

$$\Pr \{ \sup \{|X_1(s) - X_1(t)| : d(s, t) \leq \delta_m\} \geq m^{-2} \} \leq m^{-2}.$$ Then there is a modulus of continuity g, i.e. a continuous,
subadditive, increasing function on $[0, \infty)$ with $g(0) = 0$,
such that $g(\delta_m) \geq m^{-2}$. Letting $e = g \circ d$ we now have a
metric e such that 1) holds for some random variable M,
although M may not have a pth moment. Thus the hypotheses
limit the size of S as measured in terms of the modulus of
continuity of X_1.

The central limit theorem poses more difficulties in $C(S)$
than in some other Banach spaces. For example in L^r for
$2 \leq r < \infty$, $EX_1 = 0$ and $E\|X_1\|^2 < \infty$ imply the central
limit theorem (Fortet and Mourier [1955]). The counterexamples
given in sec. 2 below confirm the known fact that in \(C(S) \)
stronger conditions are needed.

The reader familiar with Gaussian processes may also note
that to ask whether a Gaussian process has sample functions in
L^p is usually a much deeper question for \(p = \infty \) than for
\(p < \infty \).

Since every separable Banach space is isometric to a linear
subspace of a space \(C(S) \), our central limit theorem gives as a
corollary a general central limit theorem for separable Banach
spaces. This corollary will, however, be far from best possible
for many Banach spaces, such as \(L^2 \), where metric entropy
hypotheses are not really relevant.

Theorem 1. — Suppose \((S, e)\) is a compact metric space and
\(\mu \) is a probability measure on \(C(S) \) such that for some \(p > 2 \)
there is a random variable \(M \in \mathcal{L}^p(\mu) \) such that

a) \(|f(x) - f(y)| \leq M f e(x, y)\) for all \(x, y \in S \) and \(\mu \)-almost
all \(f \in C(S) \),

b) For all \(x \in S \), \(E_{\mu} f(x) = 0 \) and \(E_{\mu} f(x)^2 < \infty \), and
c) \(H(S, e, \varepsilon) = O(e^{-\alpha}) \) as \(\varepsilon \downarrow 0 \) for some \(\alpha < 2p/(p + 2) \).

Then the central limit theorem holds for \(\mu \).

Corollary. — Let \(Y \) and \(X \) be separable Banach spaces
and let \(T \) be a bounded linear transformation from \(Y \) into \(X \).
Let \(Y_n \) be independent and identically distributed in \(Y \) with
\(E Y_i = 0 \) and \(E \|Y_i\|^p < \infty \) for some \(p > 2 \). Let \(S \) be the
unit ball in the dual space \(X^* \), with weak-* topology. Let \(e \) be
the usual norm metric on \(Y^* \). Suppose \(H(T^*(S), e, \varepsilon) = O(e^{-\alpha}) \)
as \(\varepsilon \downarrow 0 \) for some \(\alpha < 2p/(p + 2) \). Then the central limit
theorem holds in \(X \) for the variables \(X_j = T(Y_j) \).

In the situation of Theorem 1 and its Corollary, the central
limit theorem may fail if \(\alpha > 2 \), no matter how large \(p \) is.
This is not too surprising, since the limiting Gaussian process
may fail to have continuous sample functions if the exponent
of entropy is greater than 2, although that is for a possibly
different metric \(E^{\frac{1}{2}} (X_1(s) - X_1(t))^2 \). I do not know whether
\(2p/(p + 2) \) is a best possible bound for \(\alpha \) if \(p < \infty \); it is if
\(p = \infty \) (Strassen and Dudley [1969], section 2).
Proof of Theorem 1. — In a) we can assume
\[M(f) = \sup \{|f(x) - f(y)|/e(x, y) : x \neq y\},\]
and we can take \(E_\mu M(f)^p \leq 1\) and \(\alpha > 1\).

Let \(Y_1, Y_2, \ldots\), be independent \(C(S)\)-valued random variables with distribution \(\mu\). By a) and b),
\[E_\mu(f(x) - f(y))^2 \leq E_\mu M^2 e(x, y)^2 \leq e(x, y)^2.\]
Hence by c), since \(\alpha < 2\), the Strassen-Sudakov theorem implies that the limiting Gaussian process \(Z\) has continuous sample functions. It remains to show that the distributions
\[\mathcal{L}(n^{-\frac{1}{2}}(Y_1 + \cdots + Y_n))\]
are uniformly tight on \(C(S)\).

To do this we will truncate the \(Y_n\). Let \(M_n = M(Y_n)\). Then the \(M_n\) are independent identically distributed random variables with a pth moment. Fix a \(\gamma\) such that \(\alpha < 1/\gamma < 2p/(p + 2)\), i.e. \(\frac{1}{2} + p^{-1} < \gamma < 1/\alpha\). Let \(\delta = \gamma - \frac{1}{2} - p^{-1}\). Let
\[U_n = Y_n \quad \text{if} \quad |M_n| \leq \frac{1}{2} n^{\delta + (1/p)}, \]
0 otherwise.

Then \(\sum_{n=1}^{\infty} \Pr(U_n \neq Y_n) < \infty\), so it suffices to prove that the central limit theorem holds for the \(U_n\).

We have \(E\|U_n\| \leq E\|Y_n\|\) which is bounded uniformly in \(n\) by a) and b). Also
\[|E[U_n(x) - E_U_n(y)]| \leq E|U_n(x) - U_n(y)| \leq E|Y_n(x) - Y_n(y)| \leq (E_{\mu} M)e(x, y),\]
for all \(x, y \in S\), so that \(E_U_n(x)\) is a Lipschitzian function of \(x\). Now
\[|E_U_n(x)| = |E Y_n(x) + E(U_n - Y_n)(x)| = |E(Y_n - U_n)(x)| \leq (E_{\mu} M) \Pr(|M_n| > n^{\delta + (1/p)}) \leq C n^{-\frac{1}{2} - \frac{1}{2} p^\delta}\]
for some constant \(C\). Thus \(\sum_{j=1}^{n} E U_j(x)/n^{\frac{1}{2}} \rightarrow 0\) as \(n \rightarrow \infty\), uniformly in \(x\). Hence we can center the \(U_n\): let \(X_n = U_n - E U_n\). We need only prove the central limit
theorem for the X_n, which satisfy: $EX_n = 0$, $EX_n(t)^2 < \infty$ for all $t \in S$, $M_p \equiv \sup_{n} EM(X_n)^p < \infty$, and we can assume $M_p \leq 1$; finally $M(X_n) \leq n^{2+(1/p)}$ for all $n \geq n_0$ (where n_0 does not depend on ω), so we can assume it holds for all n.

Let $S_n = X_1 + \cdots + X_n$. We have

\[(2) \quad n^{-\frac{1}{2}}|S_n(x) - S_n(y)| \leq n^\gamma e(x, y) \quad \text{for all } x, y \in S.\]

Next we use an upper exponential bound, specifically Bernstein's inequality (cf. Bennett [1962], and for a correction to the proof and a similar application, Giné [1974]). We have for any $\varepsilon > 0$

\[(3) \quad \Pr \left\{ n^{-\frac{1}{2}}|S_n(x) - S_n(y)| \geq \varepsilon \right\} \leq \exp \left(-\varepsilon^2/\left[2e(s, t)^2 + \varepsilon n^{-1}e(s, t)\right] \right)\]

for any $s, t \in S$.

Since $\sup_n E(n^{-\frac{1}{2}}S_n(x)^2) < \infty$ for any $x \in S$, the uniform tightness of $\mathcal{L}(n^{-\frac{1}{2}}S_n)$ will be proved if we can establish the following « probable equicontinuity » result: for some $\varepsilon_m \rightarrow 0$,

\[(4) \quad \sup_n \Pr \left\{ \sup_{x, y} \left\{ |S_n(x) - S_n(y)|/n^{\frac{1}{2}} : e(x, y) \leq 2^{-m} \right\} > \varepsilon_m \right\} \leq \varepsilon_m.\]

Take any K such that $\gamma < K < 1/\alpha$. In proving that (2) and (3) imply (4) for a given n, we will use (2) for $e(s, t) \leq n^{-K}$ and (3) for $e(s, t) > n^{-K}$.

If we use (2) for $2^{-m} \leq n^{-K}$, we will have (4) in this case for $\varepsilon_m \geq 2^{-m} n^{\gamma}$. To do this for all n we need

\[\varepsilon_m > 2^{-m} \sup \{ n^{\gamma} : n^{K} \leq 2^{m} \},\]

for which it will suffice to take

\[\varepsilon_m > 2^{-m+\log_2 n} \equiv \varepsilon'_m \rightarrow 0 \quad \text{as} \quad m \rightarrow \infty\]

since $\gamma < K$.

It remains to show that (3) implies (4) for suitable $\varepsilon_m \rightarrow 0$ if $2^{-m} > n^{-K}$, i.e. for $m < K \log_2 n$. (Here \log_2 denotes logarithm to the base 2.)

For $m = 1, 2, \ldots$, let F_m be a finite set of minimal cardinality such that for every $x \in S$ there is some $x_m \in F_m$.
with \(e(x, x_m) \leq 2^{-m-3} \). We choose such an \(x_m \) for each \(x \). For some constant \(C \geq 1 \) we have by c):

\[
(5) \quad \text{card}(F_m) \leq \exp(C2^{m_2}).
\]

For any positive integers \(k \) and \(n \) we shall choose numbers \(\varepsilon_{kn} > 0 \) such that

\[
(6) \quad \limsup_{m \to \infty} \sum_{k=m}^{[K \log_2 n]} P_{kn} = 0
\]

where

\[P_{kn} = \Pr \{ \exists x, y \in F_k \cup F_{k+1} : \]
\[
e(x, y) \leq 2^{1-k} n^{-\frac{1}{2}} |S_n(x) - S_n(y)| \geq \varepsilon_{kn}, \]
\[\text{and such that } \lim_{m \to \infty} \beta_m = 0 \] \[\beta_m = \sup \{ \beta_{mn} : n > 2^{m-k} \} \]

and

\[\beta_{mn} = \sum_{k=m}^{[K \log_2 n]} \varepsilon_{kn}. \]

Then to obtain (6) it will suffice to make \(P_{kn} \leq \varepsilon_{kn} \).

If we can find such \(\varepsilon_{kn} \), then given \(m \) and \(n \) and any \(x, y \) with \(e(x, y) \leq 2^{-m} > n^{-k} \), let \(r = [K \log_2 n] + 1 \), \(T_n(x, y) = n^{-\frac{1}{2}} |S_n(x) - S_n(y)| \). Then since

\[e(x_m, y_m) \leq 2 \cdot 2^{-m-3} + 2^{-m} < 2^{1-m}, \]
we have, except on a set of probability at most \(\sum_{j=m}^{r-1} P_{jn} \), the inequality

\[
T_n(x, y) \leq T_n(x, x_r) + T_n(y, y_r) + T_n(x_m, y_m) + \sum_{j=m}^{r-1} [T_n(x_j, x_{j+1}) + T_n(y_j, y_{j+1})] \leq 2n^{-k} + \sum_{j=m}^{r-1} 3\varepsilon_{jn} \leq 2 \cdot 2^{m(y-k)/k} + 3\beta_m.
\]

Then we could take \(\varepsilon_m = \max(\varepsilon_m, 2 \cdot 2^{m(y-k)/k} + 3\beta_m) \) and obtain (4) as desired.

We must still find \(\varepsilon_{kn} \) to satisfy (6) and \(\beta_m \to 0 \). By (3) and (5) we have

\[P_{kn} \leq 4 \exp\left(8C2^{k_2} - \varepsilon_{kn}^2/[4^{2-k} + \varepsilon_{kn}n^{-1}2^{1-k}]\right). \]
Thus \(P_{kn} \leq \varepsilon_{kn} \) will follow from
\[
8C2^{kx} - \varepsilon_{kn}^2/[4^{x-k} + \varepsilon_{kn}n^{\gamma-1}2^{1-k}] \leq \log \varepsilon_{kn} - \log 4,
\]
or from
\[
(7) \quad \varepsilon_{kn}^2 > [9C2^{kx} + |\log \varepsilon_{kn}|](4^{x-k} + 2^{1-k}n^{\gamma-1}\varepsilon_{kn}).
\]

(7) will follow from the three inequalities

(A) \(|\log \varepsilon_{kn}| < 7C2^{kx},
\]
(B) \(\varepsilon_{kn} > 32C2^{kx-2k+4}, \) and
\(\varepsilon_{kn} > 32C2^{kx-k+1}n^{\gamma-1}.\)

(B) and (C) will both be satisfied when we set, for a sufficiently large constant \(N > 1, \)
\[
(8) \quad \varepsilon_{kn} = N \max \left(2^{\frac{1}{2}k(x-2)}, n^{\gamma-1}2^{k(x-1)} \right).
\]

Then (8) also implies (A) for \(k \) large enough, since
\[
\sup_n |\log \varepsilon_{kn}| \leq \log N + k(2 - x) < 7C2^{kx}, \quad k \text{ large.}
\]

To evaluate the maximum in the definition (8) let \(\zeta = 2(1 - \gamma)/\alpha. \) Then
\[
\varepsilon_{kn} = \begin{cases} 2^{\frac{1}{2}k(x-2)}N & \text{for } k \leq \zeta \log_2 n, \\ n^{\gamma-1}2^{k(x-1)}N & \text{for } \zeta \log_2 n < k \leq r. \end{cases}
\]

Hence
\[
\beta_{mn} = \sum_{k=m}^{r-1} \varepsilon_{kn} \leq \sum_{k=m}^{\lceil \zeta \log_2 n \rceil} N2^{\frac{1}{2}k(x-2)} + \sum_{k=\lceil \zeta \log_2 n \rceil}^{r-1} Nn^{\gamma-1}2^{k(x-1)}.
\]

The first sum is part of the tail of a convergent geometric series, since \(\alpha < 2, \) so it approaches 0 as \(m \to \infty, \) uniformly in \(n. \) The second sum is at most
\[
N(1 + K \log_2 n)n^{\gamma-1}2^{r(x-1)},
\]

since \(\alpha > 1. \) As \(m \to \infty, n > 2^{m/k} \to \infty \) so for \(m \) large,
\[
N(1 + K \log_2 n)n^{\gamma-1} < n^{k-1},
\]

so the second sum is smaller than \(2^{m(\alpha-1)+1-(1/k)} \to 0 \) as \(m \to \infty \) since \(\alpha < 1/K, \) and the proof is complete.
Counterexamples.

The following examples seem to show that assumptions on moments of the norm of X_1 and of differences $X_1(t) - X_1(s)$ do not give good central limit theorems. The examples are based on the same scheme as those in Strassen and Dudley (1969), sec. 3. The idea of extending this scheme to find stronger counter-examples was suggested by A. de Araujo (1973), although his examples there do not go as far as the ones below.

Proposition. — For any $K < \frac{1}{2}$ there is a process $X(t)(\omega)$, $0 \leq t \leq 1$, with continuous sample functions, $|X(t)(\omega)| \leq 1$ for all t and ω, and $E(X(s) - X(t))^2 \leq |s - t|^K$ for all $s, t \in [0, 1]$, such that the central limit theorem does not hold for (independent identically distributed variables in $C([0, 1])$ with) the distribution of X.

Proof. — For each $n = 1, 2, \ldots$, we shall decompose $[0, 1]$ into a set I_n of N_n equal subintervals, where $N_n = \prod_{s=1}^{n} 6k_s$, k_s integers. Thus each interval in I_{n-1} is decomposed into $6k_n$ equal subintervals to form I_n, where $I_0 = \{[0, 1]\}$.

For each n and each $j = 0, \ldots, k_n - 1$, we define a piecewise linear continuous function $g_{n,j}$ as follows. Let

$$p_n = cn^{-\beta} \text{ where } 1 < \beta < 2 \text{ and } c = 1/\sum_{n=1}^{\infty} n^{-\beta}.$$
In Strassen and Dudley (1969) we took $\beta = 5/4$ but here the choice is not important. To be definite, we take $\beta = 3/2$.

Now we define a probability measure μ on $C([0, 1])$ by setting $\mu(\{g_n\}) = \mu(\{-g_n\}) = p_n/2k_n$ for each $n = 1, 2, \ldots$ and each $j = 0, \ldots, k_n - 1$. Let X be a random variable with distribution μ. Then clearly $|X(t)| \leq 1$. Also for each t, $EX(t) = 0$ since X is symmetric and bounded.

Now we prove that the central limit theorem never holds for μ with the given p_n, for any $k_n > 2$.

Let Ω be a probability space over which independent processes X_1, X_2, \ldots, are defined, each with distribution μ. For $\omega \in \Omega$ let $A_{mn} = A_{mn}(\omega) = \{r < m : (\exists j) X_r(\omega) = \pm g_n\}$

Let $f_{mn} = \sum_{r \in A_{mn}} X_r$. Let $B_{mn} = \{\omega : (\exists t) f_{mn}(t) \neq 0\}$. If $\omega \in B_{mn}$, then there is a j such that $f_{mn} > 1$ either on all intervals where $g_n = 1$ or on all those where $g_n = -1$.

Thus for any j_1, \ldots, j_n with $j_s = 0, 1, \ldots, k_s - 1$, $s = 1, \ldots, n$, and for any signs $\sigma_s = \pm 1$, there is an interval in I_n on which $\sigma_s g_{s,j_s} = 1$ for all $s = 1, \ldots, n$.

Let $Z_m = m^{-\frac{1}{2}}(X_1 + \cdots + X_m)$. Then $\max Z_m \geq m^{-\frac{1}{2}}J_m$ where $J_m = J_m(\omega)$ is the number of values of n with $\omega \in B_{mn}$.

Let M_{mn} be the number of elements of A_{mn}. Then

$\Pr (M_{mn} = 0) = (1 - p_n)^m \leq \exp(-mp_n) \leq 1/e$ if $mp_n \geq 1$.

This holds for $n = 1, 2, \ldots$, $[(cm)^{2/3}] = n_m$ where $[x]$ denotes the greatest integer $\leq x$.

Let $K_m = [n_m - m\gamma]$ where $\frac{1}{2} < \gamma < 2/3$. For definiteness let $\gamma = 5/8$. Then

$\Pr \{M_{mn} = 0 \text{ for at least } K_m \text{ values of } n \leq n_m\} \leq \exp\left(-K_m\right)^{n_m} \leq \exp\left(-K_m + (m\gamma + 1) \log (cm)^{2/3}\right)$

$\leq \exp\left(-\frac{1}{2} (cm)^{2/3}\right) \leq \frac{1}{2}$

for m large enough.

The conditional probability of B_{mn}, given that $M_{mn} \geq 1$ and any conditions on the X_r for $r \notin A_{mn}$, is at least $\frac{1}{2}$.
Thus by comparison to binomial probabilities, the conditional probability that at least $1/3$ of m^T such events occur is asymptotically at least $\frac{1}{2}$, and

$$\liminf_{m \to \infty} \Pr \{ J_m \geq m^T/3 \} \geq \frac{1}{4},$$

by the weak law of large numbers. Hence

$$\liminf_{m \to \infty} \Pr \{ \max Z_m \geq m^{1/3}/3 \} \geq \frac{1}{4},$$

so the distributions of the Z_m are not uniformly tight and cannot converge.

Now we estimate mean-square differences. Given $s, t \in [0, 1]$, take n such that $1/N_{n+1} < |s - t| < 1/N_n$, where $N_0 = 1$. Note that $X(s) - X(t) = 0$ unless either s or t belongs to some interval on which $X = \pm g_{nj} \neq 0$. Thus

$$\mathbb{E}(X(s) - X(t))^2 \leq \sum_{m<n} \left(2p_m k_n^{-1} N_n |s - t|^2 + 8 \left(\sum_{m>n} p_m / k_m \right) \right) \leq 72k_n^{-2} + 2p_n k_n^{-1} N_n^2 |s - t|^2 + 8 \sum_{m>n} p_m / k_m$$

since $N_m |s - t| \leq 1/k_n$ for $m < n$.

Now we want to choose the k_n to make $\mathbb{E}(X(s) - X(t))^2$ as small as possible. Fix any $b > 0$ and let

$$k_n = \lceil \exp ((1 + b) n) \rceil.$$

Then for n large,

$$\mathbb{E}(X(s) - X(t))^2 \leq 8/k_{n+1} + 72k_n^{-2} + \exp (- (1 + b)^n) N_n^2 |s - t|^2.$$

Now by summation of a finite geometric series,

$$N_n^2 = \prod_{j=1}^n k_j^2 \leq \exp (2b^{-1}(1 + b)^{n+1}),$$

so

$$\mathbb{E}(X(s) - X(t))^2 \leq 24 \exp (- (1 + b)^{n+1}) + 216 \exp (- 2(1 + b)^n) + |s - t|^2 \exp ((2 + b) b^{-1}(1 + b)^n).$$
Now again by summing a geometric series, we have for any \(\varepsilon > 0 \) and \(n \) large enough
\[
N_n = \prod_{j=1}^{n} \left[\exp \left((1 + b)^j \right) \right] \geq \exp \left(-n + \frac{1}{b} \left(1 - b \right) \right) \\
\geq \exp \left(\frac{1}{b} \left(1 - b \right) \right).
\]

Thus for \(b \geq 1 \),
\[
E(X(s) - X(t))^2
\leq 240 \left| s - t \right| \left| N_{n+1} \right|^{2b/(1+b)} + \left| s - t \right|^2 \left(\frac{2b}{1+b} \right) \left(1 + \varepsilon \right) \\
\leq 240 \left| s - t \right| \left(2b/(1+b) \right) + \left| s - t \right|^2 \left(1 - \varepsilon \right),
\]
for some \(\delta > 0 \). To maximize the smaller of the two exponents of \(\left| s - t \right| \) we let \(\varepsilon \downarrow 0 \), so that \(\delta \downarrow 0 \), and let \(b = 1 \), so we get the upper bound \(241 \left| s - t \right|^k \) for any \(K < \frac{1}{2} \). Replacing \(X \) by \(X/13 \) we can get rid of the constant 241 and the proof is complete.

It is known that if \(E(X(s) - X(t))^2 \leq \left| s - t \right| \left| s - t \right|^{1+\varepsilon} \) for some constants \(C < \infty \) and \(\varepsilon > 0 \), \(s, t \in [0, 1] \), then \(X \) has a version with continuous sample functions. (This was first proved by Kolmogorov; see Loève (1963), p. 519.) Since \(n^{-\frac{1}{2}} S_n \) has the same second-moment structure as \(X_1 \), for all \(n \), it is not hard to see that if also \(E(X(s))^2 < \infty \) for some (and hence all) \(s \in [0, 1] \), then Kolmogorov’s theorem works uniformly in \(n \) to estimate the modulus of sample function continuity and boundedness, so that the central limit theorem must hold. This observation apparently was first made by A. de Araujo (1973).

BIBLIOGRAPHY

Richard M. Dudley,
Room 2-245,
Massachusetts Institute of Technology,
Cambridge, Mass. 02139 (USA).