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REMARKS ON EQUILIBRIUM POTENTIAL
AND ENERGY

by Kai Lai CHUNG (*)

Dedie a Monsieur M. Brelot a Voccasion
de son 70e anniversaire.

1. To M. Brelot we owe various basic principles and methods
of general potential theory (see e.g. [1]). The relationship
between them constitutes an important part of the develop-
ment. In a recent paper [2] I established an equilibrium prin-
ciple for a broad class of Markov processes by a simple proba-
bilistic method which may be succinctly described as that of
« last exit )). In contrast, the probabilistic method of solving
the Dirichlet problem, due largely to Doob, may be described
as that of the « first exit)). Now the classical method of solving
the equilibrium problem, introduced by Gauss and perfected
by Frostman, accrues from the minimization of a quadratic
functional involving the ((energy)). It is natural to ask whether
the method of last exit has anything to do with that of energy.
Indeed, the first question that arises is whether the equili-
brium measure obtained in [2] does minimize some kind of
energy. The hypotheses made there are free from the usual
duality assumptions and certainly do not require the symmetry
of the (potential density) kernel, on which the classical method
of energy relies heavily. Although the concept of energy has
been extended to the nonsymmetric case, its utilization in a
general probabilistic context appears to be still a distant goal.

(*) This work was supported in part by NSF grant GP 41710 at Stanford Uni-
versity.
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In this note we shall show that for a symmetric kernel, the
equilibrium measure obtained by the last exit method does
in fact minimize the energy. Even this little step requires
much strengthening of the hypotheses in [2] to be specified
below.

2. First we derive a consequence of the results in [2].
Recall that we have a temporally homogeneous Markov
process {X^, 1 ^ 0 } taking values in a locally compact
topological space E with countable base, and its topolo-
gical Borel field <^. It will be assumed that all paths
are continuous; see the last section for remarks concerning
the more general case covered in [2]. The potential density u
(with respect to some reference measure) satisfies the follow-
ing conditions :

(a) for each x e E, u(;r, y)~1 is finite continuous in i/;
(fc) u[x, y) = oo if and only if x == y.

We will not be concerned with the generalizations of condi-
tion (6) given toward the end of [2]. Define for B e S :

(1) T B = i n f O > 0: X,eB},
YB == sup {( > 0: X( e B},

,4-*^-v->^ •t-1~^4. '-^.t /^L ___ M-^ „,,—.with the convention that inf 0 == oo, sup 0 == 0 when 0
is the empty set. Then the principal result of [2] is as follows.
For each transient set B there exists a (T-finite measure [XB
with support in the boundary &B of B, such that for every
x e E we have

(2) P«{TB < a)} = f^ u{x, y)^ {dy).

Moreover, [L^ is determined in the following way. For A e S
let

(3) LB^, A) = P-{YB > 0; X(YB) e A};

then La(^, .) has support in ^)B, and

(4) (AB(A) = f^ u{x, y^L^x, dy)

for any x e E. Thus the right member of (4) does not depend
on x.
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From now on we assume that each compact is transient;
more generally we may consider only transient compacts
below. For such a set K we put

(5) D(K) =: (iK(E)-1.

LEMMA. — Let {K^, n ^ 1} be compacts such that

K°i ̂  K^+i {where K^ is the interior of KJ and [ } K» == K,
and suppose that D(K) < oo. Then we ha^e n

(6) D(K) = lim D(KJ.
n

Proof. - Let T, = TK,, T == TK, Yn = T^, Y = TK. Then
Y ^ Tn+i ^ Tn a11^ Y ^ P == I1111 Yn- By the continuity of

n
paths, we have Xp == lim X^. On the set {y > 0}, we
have {y^ > 0} for all n; hence X^ e K^ and by conti-
nuity Xp e K, so p ^ Y. Thus (B == y and

(7) limX^== X^ on {y > 0}.

Next, on the set f | {Yn > 0}, we have
n

T, < Tn < Yi < °o;

hence lim T, < oo and lim X(T,) e K by continuity. If
x e E — K, then P-'dim T^ > 0( = 1, hence

( n )

P^Him^^T^ == 1.
( n )

Thus we have for every x e E — K:

(8) PI {Yn > 0} - {r > 0}, P" - a.s.
n

For such an x and each bounded continuous f, we have by
(7) and (8):

(9) lim E«{Y, > 0; /•(X^)} = E-{Y > 0; f{X,)}.

Let L^ == L^, L == LK as given in (3). Then (9) means
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that L^, .) converges vaguely to L(rr, .). Hence by
assumption (a),

iim c L^ ^/) = r L(^ ^/)
n JK, ^, y) JR, ^, y)

This is (6) by (4) and (5).

3. From now on we assume that u is symmetric :

u[x, y) = u{y, x)

for all {x, y). Assumption (a) above implies that u > 0.
In order to avail ourselves of the classical theory of energy,
we must assume that u is lower semi-continuous. This is
assured if we strengthen (a) as follows : u(n?, y)~1 is finite
continuous in (x, y).

For a compact K let MK denote the class of signed
measures with support in K, and MK the subclass of proba-
bility measures in MK. We use the notation Uv for the
function

V^{x) = f^ u{x, y)v {dy).

For v^ and vg m MK the « mutual energy )) is defined by
/» r* r*

(^15 ^) = JE JE v! {dx)u(x, t/)v2 {dy) = j^ (Up.i) d^

= JE (u^2) d[L^

provided that the double integral exists in the usual « abso-
lute )) sense. The quantity

is the « energy » of v.
The kernel u satisfies the « positivity principle )) in case

for any v^ and Vg m MK we have |(vi, ^2)! ^ 11^11111^211-
Then ||vi — V g H ^ 0, and ]|vi — Vg II == 0 implies

Kll = Kll.
The kernel satisfies the « energy principle )) in case for any v^
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and Vg in MK, H ^ i — ^ll == 0 implies v^ == Vg. Let

n= { v e M I : Ml2 < oo},

(10) W(K) = inf |H|2.
ver^

We have W(K) > 0 since u > 0. The lower semi-conti-
nuity of u implies the existence of a ^K in M^ such that

(11) U X K p ^ V ^ K ) .

Thus XR minimizes the energy among ¥^. A. classical
argument then shows that for any v e F^, the equation

(12) UXK = W(K)

holds v-a.e. in the support of XK. If the kernel satisfies the
« (first) maximum principle », then (12) holds v-a.e. in E.
In the standard language of potential theory, this means that
(12) holds quasi-everywhere, or everywhere except for a set
of (inner) capacity zero. We shall assume this in what follows.
For an exposition of these results, see e.g. [3$ Chapter n, § 1].
The minimization procedure indicated above is different from
that used by Gauss and Frostman, but equivalent to it in
effect.

Now let {IK be the equilibrium measure for K established
in [2], given by (4) above. Suppose that [AK(E) > 0, namely
D(K) < oo. Normalize ^ to a probability measure (TR
by setting

OK = D(K)piK.

It follows from the representation (2) that U^K ^ 1 so that

(13) U<TK ^ D(K)

in E. Thus

(14) ||od|2 ^ D(K)

and (JK e F§L.
We shall call a compact K « smooth » in case every point

of K is regular for K, namely,

P - { T K = O } = I
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for every x e K. Since each interior point of K is clearly
regular for K, this is a condition for the boundary of K.
For a smooth K the inequalities in (13) and (14) become equa-
lities for x E K because the left member in (2) is then equal
to one. Thus

(15) U(TK(^) == D(K) = hKll2, x e K.

It follows from (15) and (12) that

(16) D(K) == f (U(TK) d\^ = f (UXK) ^TK == W(K),

and so by (11)
Kl =11M.

We have thus proved that for a smooth compact, the equi-
librium measure obtained by the last exit method minimizes
the energy. Now let K be an arbitrary compact and suppose
the following is true. There exists a sequence of smooth

compacts K^ such that Kit => K^i and f | K, == K.
n

(Such a condition is often used in the study of the Dirichlet
problem.) For each K^, we have D(K^) == W(KJ, as
just shown. It is clear from (10) that W(KJ ^ W(K) since
FI increases with K. Hence it follows from (6) that

D(K) =limW(K,) < W(K),
and so

OK - D(K)^ ^ W(K)(IK.

Recalling that V[L^ ^ 1 by (2), we have

UOK ^ W(K)U(IK ^ W(K)
and

(17) ll^ll2^ f (U^)^ ^ W(K).

This is the crucial inequality. We have by (12)

(18) ((TK, XK) = f (UXK) rfoK = W(K).

Using (17), (18) and (11), we obtain

K - M2 == KB2 ~ 2(<TK, XK) + ||XK||2 < W - 2W+W=0.
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Thus [IO-KH == || ̂ KJ if the positivity principle holds, and
CT^ == XK if the energy principle holds. This is what we set
out to show.

4. I take this opportunity to make a correction in [2],
when the paths may be discontinuous. We define, analogously
to TB and YB in (2) :

T B = i n f { f > 0: X,-eB},
^= sup {t > 0: X,_eB}.

Then in the general context treated in [2], when all paths
are right continuous and have left limits, we have in place
of (2) above, for every x e E :

(19) P-{TB < °o } = ^ u(x, y)(XB {dy)

where

(20) (.a(A) == ̂  u{x, y^L^x, dy)

for any x and A e S $ and

(21) LB(^, A) = P^YB > 0; X(YB-) e A}.

On p. 320 of [2], this was indicated with TB and YB instead
of TB a.nd YB- But it may happen that X(va) e B while
X(YB-) ^ B, so that the measure A -> P^YB > 0$ X(YB-) ^ A}
need not have support in B. This subtle error was discovered
by John B. Walsh and led to the stated correction. The proof
of (19) remains the same as well as the conclusions about the
equilibrium measure and its potential. For a Hunt process,
TB == TB a.s. for each B e € . Let us also remark that for
the purposes of [2], we may assume that a.11 paths are left
continuous. Then of course TB and TB, YB and YB are
identical. Every Hunt process, for instance, has such a left
continuous version. Thus in particular for the M. Riesz poten-
tials mentioned in [2] no change whatever is needed. Unfortu-
nately, the method of the present note does not apply to that
case because when the paths are not continuous the proof of
the Lemma fails. Whether the conclusion of the Lemma,
which is a necessary condition for K —»- (AK(E) to be a Choquet
capacity, remains true seems in doubt.

7
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