CORNELIU CONSTANTINESCU

On vector measures

Annales de l’institut Fourier, tome 25, n° 3-4 (1975), p. 139-161

<http://www.numdam.org/item?id=AIF_1975__25_3-4_139_0>
ON VECTOR MEASURES
by Corneliu CONSTANTINESCU

Dédié à Monsieur M. Brelot à l'occasion
de son 70e anniversaire.

The aim of this paper is to prove some properties concerning the measures which take their values in Hausdorff locally convex spaces. δ-rings of sets rather than σ-rings of sets will be used and a certain regularity of the measures will be assumed in order to include the Radon measures on Hausdorff topological spaces in these considerations.

A ring of sets is a set \mathcal{R} such that for any $A, B \in \mathcal{R}$ we have $A \Delta B, A \cap B \in \mathcal{R}$. A ring of sets is called a σ-ring of sets (resp. δ-ring of sets) if the union (resp. the intersection) of any countable family in \mathcal{R} belongs to \mathcal{R}. Any σ-ring of sets is a δ-ring of sets. Let G be Hausdorff topological additive group and let \mathcal{R} be a ring of sets. A G-valued measure on \mathcal{R} is a map μ of \mathcal{R} into G such that for any countable family $(A_i)_{i \in I}$ of pairwise disjoint sets of \mathcal{R} whose union belongs to \mathcal{R}, the family $(\mu(A_i))_{i \in I}$ is summable and its sum is $\mu\left(\bigcup_{i \in I} A_i\right)$. Let $A \in \mathcal{R}$ be a set and let $\mathcal{F}(A, \mathcal{F})$ be the set of finite unions of sets of \mathcal{R} (then $\emptyset \in \mathcal{F}(A, \mathcal{F})$). For any $A \in \mathcal{R}$ we denote by $\mathcal{F}(A, \mathcal{F})$ the filter on \mathcal{R} generated by the filter base

$$\{\{B \in \mathcal{R} | K \subseteq B \subseteq A\} | K \in \mathcal{F}, K \subseteq A\}.$$

A G-valued measure μ on \mathcal{R} will be called \mathcal{F}-regular if for any $A \in \mathcal{R}$, μ converges along $\mathcal{F}(A, \mathcal{F})$ to $\mu(A)$.
Any G-valued measure on \mathcal{R} is \mathcal{R}-regular. A set $A \in \mathcal{R}$ is called a null set for μ if $\mu(B) = 0$ for any $B \in \mathcal{R}$ with $B \subseteq A$. Let \mathcal{R} be a ring of sets, let G, G' be Hausdorff topological additive groups, and let μ (resp. μ') be a G-valued (resp. G'-valued) measure on \mathcal{R}. We say that μ is absolutely continuous with respect to μ' (in symbols $\mu \ll \mu'$) if any null set for μ' is a null set for μ. For any real valued measure μ on a σ-ring of sets \mathcal{R} we denote by $|\mu|$ the supremum of μ and $-\mu$ in the vector lattice of real valued measures on \mathcal{R}. If \mathcal{R} is a set such that μ is \mathcal{R}-regular then $|\mu|$ is \mathcal{R}-regular.

Proposition 1. — Let G be a topological additive group whose one point sets are G_0-sets (G is therefore Hausdorff) and let $(x_i)_{i \in I}$ be a family in G such that any countable subfamily of it is summable. Then there exists a countable subset J of I such that $x_i = 0$ for any $i \in I \setminus J$.

Let $(U_n)_{n \in \mathbb{N}}$ be a sequence of 0-neighbourhoods in G whose intersection is equal to $\{0\}$. The sets

$$J_n := \{i \in I | x_i \notin U_n\}$$

being finite for any $n \in \mathbb{N}$ the set $J := \bigcup_{n \in \mathbb{N}} J_n$ is countable.

For any $i \in I \setminus J$ we get $x_i \in \bigcap_{n \in \mathbb{N}} U_n$ and therefore $x_i = 0$.

Proposition 2. — Let G be a topological additive group whose one point sets are G_0-sets, let \mathcal{R} be a σ-ring of sets, and let μ be a G-valued measure on \mathcal{R}. Then there exists $A \in \mathcal{R}$ such that $\mu(B) = 0$ for any $B \in \mathcal{R}$ with $B \cap A = \emptyset$.

Let us denote by Σ the set of sets \mathcal{S} of pairwise disjoint sets of \mathcal{R} such that $\mu(S) \neq 0$ for any $S \in \mathcal{S}$. It is obvious that Σ is inductively ordered by the inclusion relation. By Zorn’s theorem there exists a maximal element $\mathcal{S}_0 \in \Sigma$. Then any countable subfamily of the family $(\mu(S))_{S \in \mathcal{S}_0}$ is summable. By the preceding proposition \mathcal{S}_0 is countable. We set

$$A := \bigcup_{S \in \mathcal{S}_0} S.$$

Then $A \in \mathcal{R}$. Let $B \in \mathcal{R}$ with $B \cap A = \emptyset$. If $\mu(B) \neq 0$
then \(\mathcal{E}_0 \cup \{B\} \in \Sigma \) and this contradicts the maximality of \(\mathcal{E}_0 \). ■

Theorem 3. — Let \(T \) be a Hausdorff topological space possessing a dense \(\sigma \)-compact set, let \(E \) be a locally convex space whose one point sets are \(G_\beta \)-sets, and let \(\mathcal{C}(T, E) \) be the vector space of continuous maps of \(T \) into \(E \) endowed with the topology of pointwise convergence. Let further \(\mathcal{R} \) be a \(\sigma \)-ring of sets, let \(\mathcal{R} \) be a set, and let \(\mu \) be a \(\mathcal{R} \)-regular \(\mathcal{C}(T, E) \)-valued measure on \(\mathcal{R} \). Then there exists a positive \(\mathcal{R} \)-regular real valued measure \(\nu \) on \(\mathcal{R} \) such that \(\mu \) is absolutely continuous with respect to \(\nu \).

Assume first \(E = \mathbb{R} \) and let us denote by \(\mathcal{C}_g(T) \) the vector space of continuous real functions on \(T \) endowed with the topology of compact convergence. Since \(T \) possesses a dense \(\sigma \)-compact set the one point sets of \(\mathcal{C}_g(T) \) are \(G_\beta \)-sets.

Let us denote for any \(t \in T \) by \(\mu_t \) the map

\[
A \mapsto (\mu(A))(t) : \mathcal{R} \to \mathbb{R}.
\]

Then \(\mu_t \) is a \(\mathcal{R} \)-regular real valued measure on \(\mathcal{R} \) for any \(t \in T \). Assume that for any countable subset \(M \) of \(T \) there exists \(A \in \mathcal{R} \) which is a null set for any \(\mu_t \) with \(t \in M \) and is not a null set for \(\mu \). Let \(\omega_1 \) be the first uncountable ordinal number. We construct by transfinite induction a family \(\{A_\xi\}_{\xi < \omega_1} \) in \(T \) and a decreasing family \(\{A^\xi\}_{\xi < \omega_1} \) in \(\mathcal{R} \) such that we have for any \(\xi < \omega_1 \):

a) \(A_\xi \) is a null set for any \(\mu_t \) with \(\eta \leq \xi \);

b) any set \(A \in \mathcal{R} \) is a null set for \(\mu \) if it is a null set for any \(\mu_t \) with \(\eta \leq \xi \) and if \(A \cap A^\xi = \emptyset \);

c) \(\bigcap_{\eta < \xi} A_\eta \setminus A^\xi \) is not a null set for \(\mu \).

Assume that the families were constructed up to \(\xi < \omega_1 \). By the hypothesis of the proof there exists a set of \(\mathcal{R} \) which is a null set for any \(\mu_t \) with \(\gamma < \xi \) and which is not a null set for \(\mu \). Hence there exists \(B \in \mathcal{R} \) and \(t_\xi \in T \) such that \(B \) is a null set for any \(\mu_t \) with \(\eta < \xi \) and such that

\[
\mu_{t_\xi}(B) \neq 0.
\]
Let \mathcal{R}' be the set of sets of \mathcal{R} which are null sets for any μ_{η} with $\eta \leq \xi$. Then \mathcal{R}' is a σ-ring of sets and by [7] Theorem II.4 (*) the map $\mathcal{R}' \to \mathcal{E}(T)$ induced by μ is a measure. By the preceding proposition there exists $C \in \mathcal{R}'$ such that any $D \in \mathcal{R}'$ with $C \cap D = \emptyset$ is a null set for μ. We set

$$A_\xi := C \cap \left(\bigcap_{\eta < \xi} A_\eta \right).$$

$a)$ is obviously fulfilled. Let $A \in \mathcal{R}'$ with $A \cap A_\xi = \emptyset$. Then $A \setminus C \in \mathcal{R}'$ and it is therefore a null set for μ. For any $\eta < \xi$ the set $A \setminus A_\eta$ is a null set for μ by the hypothesis of the induction. Hence A is a null set for μ and $a)$ is fulfilled. Since $B \cap C$ is a null set for μ_{ξ} we get

$$\mu_{\xi}(B \setminus C) \neq 0.$$

For any $\eta < \xi$ the set $(B \setminus C) \setminus A_\eta$ is a null set for μ_{ξ} for any $\zeta \leq \eta$ and by the hypothesis of the induction

$$(B \setminus C) \setminus A_\eta$$

is a null set for μ. It follows that $(B \setminus C) \setminus \bigcap_{\eta < \xi} A_\eta$ is a null set for μ and therefore

$$\mu_{\xi}\left((B \setminus C) \cap \left(\bigcap_{\eta < \xi} A_\eta \setminus A_\xi \right) \right) = \mu_{\xi}\left((B \setminus C) \cap \left(\bigcap_{\eta < \xi} A_\eta \right) \right) \neq 0.$$

We deduce that $\bigcap_{\eta < \xi} A_\eta \setminus A_\xi$ is not a null set for μ which proves $c)$.

Again by [7] Theorem II 4 any countable subfamily of the family $\left(\mu \left(\bigcap_{\eta < \xi} A_\eta \setminus A_\xi \right) \right)_{\xi < \omega}$ is summable in $\mathcal{E}(T)$ and this contradicts Proposition 1. Hence there exists a sequence $(t_n)_{n \in \mathbb{N}}$ in T such that any set of \mathcal{R} is a null set for μ if it is a null set for any μ_{t_n} with $n \in \mathbb{N}$. We set

$$\alpha_n := \sup_{A \in \mathcal{R}} |\mu_{t_n}(A)| < \infty$$

([1], III 4.5). The map
\[A \mapsto \sum_{n \in \mathbb{N}} \frac{1}{2^n} |\mu_n|(A) : \mathcal{A} \to \mathbb{R} \]
is a positive \(\mathcal{A}\)-regular real valued measure on \(\mathcal{A}\) and \(\mu\) is absolutely continuous with respect to it.

Let us treat now the general case. Let \(E'\) be the dual of \(E\) endowed with the \(\sigma(E', E)\)-topology and let \((U_n)_{n \in \mathbb{N}}\) be a sequence of closed convex 0-neighbourhoods in \(E\) whose intersection is equal to \(\{0\}\) and such that
\[U_{n+1} \subseteq \frac{1}{2} U_n \quad \text{for any} \quad n \in \mathbb{N}. \]

For any \(n \in \mathbb{N}\) let \(U_n^0\) be the polar set of \(U_n\) in \(E'\). Then, for any \(n \in \mathbb{N}\), \(U_n^0\) is a compact set of \(E'\) and \(\bigcup_{n \in \mathbb{N}} U_n^0\) is a dense set in \(E'\). Let \(T'\) be the topological (disjoint) sum of the sequence \((T \times U_n)_{n \in \mathbb{N}}\) of topological spaces. Then \(T'\) is a Hausdorff topological space possessing a dense \(\sigma\)-compact set. Let \(\mathcal{C}(T')\) be the vector space of continuous real functions on \(T'\) endowed with the topology of pointwise convergence. For any \(A \in \mathcal{A}\) let us denote by \(\lambda(A)\) the real function on \(T'\) equal to
\[(t, x') \mapsto \langle (\mu(A))(t), x' \rangle : T \times U_n^0 \to \mathbb{R} \]
on \(T \times U_n^0\). It is easy to see that \(\lambda(A) \in \mathcal{C}(T')\) and that \(\lambda\) is a \(\mathcal{A}\)-regular measure on \(\mathcal{A}\) with values in \(\mathcal{C}(T')\). Let \(A \in \mathcal{A}\) be a null set for \(\lambda\) and let \(t \in T\). Since \((\mu(A))(t)\) vanishes on \(\bigcup_{n \in \mathbb{N}} U_n^0\) and since this set is dense in \(E'\) we deduce \((\mu(A))(t) = 0\). The point \(t\) being arbitrary \(\mu(A)\) vanishes. Hence \(\mu\) is absolutely continuous with respect to \(\lambda\). By the first part of the proof there exists a positive \(\mathcal{A}\)-regular real valued measure \(\nu\) on \(\mathcal{A}\) such that \(\lambda\) is absolutely continuous with respect to \(\nu\). Then \(\mu\) is absolutely continuous with respect to \(\nu\).

Remark. For \(\mathcal{A} = \mathcal{A}\) this result could be deduced from [4] Theorem 2.2 and [3] Theorem 2.5. A simpler proof can be given by using [9] Theorem 2.3 or [10] Theorem 2.
2. Let \mathcal{R} be a δ-ring of sets, let \mathcal{R} be a set, let E be a Hausdorff locally convex space, and let \mathcal{M} be the set of \mathcal{R}-regular E-valued measures on \mathcal{R}. Then \mathcal{M} is a subspace of the vector space $E^\mathcal{R}$. For any continuous semi-norm p on E and for any σ-ring of sets \mathcal{R}' contained in \mathcal{R} the map

$$
\mu \mapsto \sup_{A \in \mathcal{R}'} p(\mu(A)) : \mathcal{M} \to \mathbb{R}_+
$$

([4], III 4.5) is a semi-norm on \mathcal{M}. We shall call the topology on \mathcal{M} generated by these semi-norms the semi-norm topology of \mathcal{M}. If \mathcal{R} is a σ-ring and E is \mathbb{R} then the semi-norm topology on \mathcal{M} is defined by the lattice norm

$$
\mu \mapsto \sup_{A \in \mathcal{R}} |\mu|(A) : \mathcal{M} \to \mathbb{R}_+
$$

and \mathcal{M} endowed with this norm is an order complete Banach lattice.

Let \mathcal{R} be a σ-ring of sets and let $T(\mathcal{R}) := \bigcup_{A \in \mathcal{R}} A$. A real function f on $T(\mathcal{R})$ is called \mathcal{R}-measurable if for any positive real number α the sets $\{x|f(x) > \alpha\}$, $\{x|f(x) < -\alpha\}$ belong to \mathcal{R}. Let μ be a real valued measure on \mathcal{R}. $L^1(\mu)$ will denote the set of \mathcal{R}-measurable μ-integrable real functions on $T(\mathcal{R})$. Let f be a subset of $L^1(\mu)$ such that $f' = f''$ μ-almost everywhere and therefore

$$
\int f' \, d\mu = \int f'' \, d\mu
$$

for any $f', f'' \in f$. We set

$$
\int f \, d\mu := \int f' \, d\mu,
$$

where f' is an arbitrary function of f. $L^1(\mu)$ and $L^\infty(\mu)$ will denote the usual Banach lattices and $\|\|_1$, $\|\|_\infty$ will denote their norms respectively. Any element of $L^\infty(\mu)$ is a subset of $L^1(\mu)$ ([4], III 4.5).

Proposition 4. — Let \mathcal{R} be a σ-ring of sets, let \mathcal{R} be a set, let \mathcal{M} be the Banach lattice of \mathcal{R}-regular real valued measures on \mathcal{R} and let

$$
\mathcal{F} := \{f \in \prod_{\mu \in \mathcal{M}} L^\infty(\mu)|\mu \ll \nu \Rightarrow f_\nu \subset f_\mu\}.
$$
Then \mathcal{F} is a subvector lattice of $\prod_{\mu \in \mathcal{M}} L^\infty(\mu)$ such that for any subset of \mathcal{F} which possesses a supremum in $\prod_{\mu \in \mathcal{M}} L^\infty(\mu)$ this supremum belongs to \mathcal{F}. For any $f \in \mathcal{F}$ we have
\[
\|f\| := \sup \|f_\mu\|_\infty < \infty
\]
and the map
\[
f \mapsto \|f\| : \mathcal{F} \to \mathbb{R}_+
\]
is a lattice norm. \mathcal{F} endowed with it is a Banach lattice. For any $f \in \mathcal{F}$ we denote by $\varphi(f)$ the map
\[
\mu \mapsto \int f_\mu \, d\mu : \mathcal{M} \to \mathbb{R}.
\]
Then $\varphi(f)$ belongs to the dual of \mathcal{M} for any $f \in \mathcal{F}$ and φ is an isomorphism of Banach lattices of \mathcal{F} onto the dual of \mathcal{M}.

Let $f, g \in \mathcal{F}$, let $x \in \mathbb{R}$, and let $\mu, \nu \in \mathcal{M}$ such that $\mu \ll \nu$. Then $f_\nu \subset f_\mu$, $g_\nu \subset g_\mu$ and therefore
\[
(f + g)_\nu = f_\nu + g_\nu \subset f_\mu + g_\mu = (f + g)_\mu,
\]
\[
(af)_\nu = af_\nu \subset af_\mu = (af)_\mu.
\]
This shows that \mathcal{F} is a vector subspace of $\prod_{\mu \in \mathcal{M}} L^\infty(\mu)$.

Let $\mathcal{G} \subseteq \mathcal{F}$ be a subset of \mathcal{F} possessing a supremum f in $\prod_{\mu \in \mathcal{M}} L^\infty(\mu)$ and let $\mu, \nu \in \mathcal{M}$ such that $\mu \ll \nu$. Then for any $g \in \mathcal{G}$ we have $g_\nu \subset g_\mu$ and therefore
\[
f_\nu = \sup_{g \in \mathcal{G}} g_\nu \subset \sup_{g \in \mathcal{G}} g_\mu = f_\mu.
\]
Hence \mathcal{F} is a subvector lattice of $\prod_{\mu \in \mathcal{M}} L^\infty(\mu)$ such that for any subset of \mathcal{F}, which possesses a supremum in $\prod_{\mu \in \mathcal{M}} L^\infty(\mu)$, this supremum belongs to \mathcal{F}.

Let $f \in \mathcal{F}$. Assume
\[
\sup_{\mu \in \mathcal{M}} \|f_\mu\|_\infty = \infty.
\]
Then there exists a sequence \((\mu_n)_{n \in \mathbb{N}}\) in \(\mathcal{M}\) such that
\[
\lim_{n \to \infty} \|f_{\mu_n}\|_{\mathcal{M}}^\infty = \infty.
\]
We set
\[
\mu = \sum_{n \in \mathbb{N}} \frac{1}{2^n \|\mu_n\|} |\mu_n|.
\]
Then \(\mu_n \ll \mu\) for any \(n \in \mathbb{N}\) and therefore \(f_\mu < f_{\mu_n}\). We get
\[
\|f_{\mu_n}\|_{\mathcal{M}} < \|f_\mu\|_{\mathcal{M}}^\infty,
\]
and this leads to the contradictory relation
\[
\infty = \lim_{n \to \infty} \|f_{\mu_n}\|_{\mathcal{M}} < \|f_\mu\|_{\mathcal{M}}^\infty < \infty.
\]
Let \(f, g \in \mathcal{F}\), and let \(\alpha \in \mathbb{R}\). We have
\[
\|f + g\| = \sup_{\mu \in \mathcal{M}} \|f_\mu + g_\mu\|_{\mathcal{M}}^\infty \leq \sup_{\mu \in \mathcal{M}} (\|f_\mu\|_{\mathcal{M}}^\infty + \|g_\mu\|_{\mathcal{M}}^\infty) \leq \|f\| + \|g\|,
\]
\[
\|\alpha f\| = \sup_{\mu \in \mathcal{M}} \|\alpha f_\mu\|_{\mathcal{M}}^\infty = \sup_{\mu \in \mathcal{M}} |\alpha| \|f_\mu\|_{\mathcal{M}}^\infty = |\alpha| \|f\|,
\]
\[
f = 0 \iff (\mu \in \mathcal{M} \implies \|f_\mu\|_{\mathcal{M}}^\infty = 0) \iff \|f\| = 0,
\]
\[
|f| < |g| \implies \|f\| = \sup_{\mu \in \mathcal{M}} \|f_\mu\|_{\mathcal{M}}^\infty < \sup_{\mu \in \mathcal{M}} \|g_\mu\|_{\mathcal{M}}^\infty = \|g\|
\]
Hence
\[
f \mapsto \|f\| : \mathcal{F} \to \mathbb{R}_+
\]
is a lattice norm.

Let \(f \in \mathcal{F}\), let \(\mu, \nu \in \mathcal{M}\), and let \(\alpha \in \mathbb{R}\). Then
\[
f_{\|\mu\|+\|\nu\|} < f_\mu \cap f_\nu < f_{\mu+\nu}, \quad f_\mu < f_{\alpha \mu},
\]
and therefore
\[
(\varphi(f))(\mu + \nu) = \int f_{\|\mu\|+\|\nu\|} \, d(\mu + \nu)
\]
\[
= \int f_{\|\mu\|+\|\nu\|} \, d\mu + \int f_{\|\mu\|+\|\nu\|} \, d\nu = (\varphi(f))(\mu) + (\varphi(f))(\nu),
\]
\[
(\varphi(f))(\alpha \mu) = \int f_\mu \, d(\alpha \mu) = \alpha \int f_\mu \, d\mu = \alpha (\varphi(f))(\mu).
\]
This shows that \(\varphi(f)\) is linear. From
\[
|\varphi(f)(\|\mu\|)| = \int f_\mu \, d\mu \leq \|f_\mu\|_{\mathcal{M}}^\infty \|\mu\| \leq \|f\| \|\mu\|
\]
we get \(\|\varphi(f)\| \leq \|f\|\). Hence \(\varphi(f)\) belongs to the dual of \(\mathcal{M}\).

It is obvious that \(\varphi\) is an injection and that \(\varphi\) maps the positive elements of \(\mathcal{F}\) into positive linear forms on \(\mathcal{M}\).

Let us prove now that \(\varphi\) is a surjection. Let \(\theta\) be a conti-
nuous linear form on \mathcal{M} and let $\mu \in \mathcal{M}$. For any $g \in L^1(\mu)$ we denote by $g.\mu$ the map $\Lambda \mapsto \int_\Lambda g \, d\mu : \mathcal{R} \to \mathbb{R}$. Then $g.\mu \in \mathcal{M}$ and the map $g \mapsto \theta(g.\mu) : L^1(\mu) \to \mathbb{R}$ is a continuous linear form on $L^1(\mu)$. Hence there exists $f_\mu \in L^n(\mu)$ such that $\|f_\mu\|_n \leq \|\theta\|$ and
\[\theta(g.\mu) = \int f_\mu g \, d\mu \]
for any $g \in L^1(\mu)$. Let $\mu, \nu \in \mathcal{M}$ such that $\mu \ll \nu$. By Lebesgue-Radon-Nikodym theorem there exists $h \in L^1(\nu)$ such that $\mu = h.\nu$. We get for any $g \in L^1(\mu)$, $gh \in L^1(\nu)$ and
\[\int f_\mu g \, d\mu = \theta(g.\mu) = \theta(gh.\nu) = \int f_{\nu} gh \, d\nu = \int f_\nu g \, d\mu. \]
This shows that $f_{\nu} \leq f_\mu$. Hence $f := (f_\mu)_{\mu \in \mathcal{M}} \in \mathfrak{F}$ and it is clear that $\varphi(f) = \theta$. Moreover
\[\|f\| = \sup_{\mu \in \mathcal{M}} \|f_\mu\|_n \leq \|\theta\|. \]
Hence φ is an isomorphism of normed vector lattices. We deduce that \mathfrak{F} is a Banach lattice.

Proposition 5. — Let \mathcal{R} be a δ-ring of sets and let \mathcal{R}_1, \mathcal{R}_2 be σ-ring of sets contained in \mathcal{R}. Then there exists a σ-ring of sets \mathcal{R}_0 contained in \mathcal{R} and containing $\mathcal{R}_1 \cup \mathcal{R}_2$ and such that any set of \mathcal{R} which is contained in a set of \mathcal{R}_0 belongs to \mathcal{R}_0.

Let us denote by \mathcal{R}_0 the set of $A \in \mathcal{R}$ for which there exists $(B, C) \in \mathcal{R}_1 \times \mathcal{R}_2$ such that $A \subset B \cup C$. It is easy to check that \mathcal{R}_0 possesses the required properties.

Proposition 6. — Let \mathcal{R} be a δ-ring of sets, let \mathfrak{K} be a set, and let \mathfrak{R}' be a σ-ring of sets contained in \mathfrak{R} and such that any set of \mathcal{R} contained in a set of \mathfrak{R}' belongs to \mathfrak{R}'. Let further E be a Hausdorff locally convex space, let \mathcal{M} (resp. \mathcal{M}_0) be the vector space of \mathfrak{R}-regular E-valued measures on \mathcal{R} (resp. \mathfrak{R}') endowed with the semi-norm topology, and let \mathcal{M}' (resp. \mathcal{M}_0') be its dual. For any $\mu \in \mathcal{M}$ we have $\mu|\mathfrak{R}' \in \mathcal{M}_0$ and the map φ
\[\mu \mapsto \mu|\mathfrak{R}' : \mathcal{M} \to \mathcal{M}_0 \]
is linear and continuous. Let p be a continuous semi-norm on E, let \mathcal{N} (resp. \mathcal{N}_0) be the set of $\mu \in \mathcal{M}$ (resp. $\mu \in \mathcal{M}_0$) such that
\[
\sup_{\Lambda \in \overline{\mathcal{E}}} p(\mu(\Lambda)) \leq 1,
\]
let \mathcal{N}_0 (resp. \mathcal{N}_0^c) be its polar set in \mathcal{M}' (resp. \mathcal{M}_0') and let $\varphi' : \mathcal{M}_0' \to \mathcal{M}'$ be the adjoint map of φ. Then $\varphi'(\mathcal{N}_0^c) = \mathcal{N}_0$.

It is obvious that $\mu \in \mathcal{M}$ implies $\mu|_{\mathcal{R'}} \in \mathcal{M}_0$, that φ is linear and continuous, and that $\varphi(\mathcal{N}) \subset \mathcal{N}_0$. Hence
\[
\varphi'(\mathcal{N}_0^c) \subset \mathcal{N}_0.
\]

Let $\theta \in \mathcal{N}_0$ and let $\nu \in \mathcal{M}_0$. For any $A \in \mathcal{R}$ we denote by ν_A the map
\[
B \mapsto \nu(A \cap B) : \mathcal{R} \to E.
\]
It is immediate that $\nu_A \in \mathcal{M}$. Let F be the quotient locally convex space $E/p^{-1}(0)$ and let u be the canonical map $E \to F$. Then the one point sets of F are G_δ-sets and $u \circ \nu$ is an F-valued measure on \mathcal{R}. By Proposition 2 there exists $A \in \mathcal{R}$ such that any $B \in \mathcal{R}$ with $B \cap A = \emptyset$ is a null set for $u \circ \nu$. Let $A' \in \mathcal{R}$, $A \subset A'$. For any $B \in \mathcal{R}$ the set $A' \cap B \setminus A' \cap B$ is a null set for $u \circ \nu$ and therefore
\[
p(\nu_{A'}(B) - \nu_A(B)) = 0.
\]
Hence $\nu_{A'} - \nu_A \in \varepsilon \mathcal{N}$ for any $\varepsilon > 0$. We get $\theta(\nu_{A'}) = \theta(\nu_A)$. Hence if \mathcal{F} denotes the section filter of \mathcal{R} ordered by the inclusion relation then the map
\[
A \mapsto \theta(\nu_A) : \mathcal{R} \to \mathcal{R}
\]
converges along \mathcal{F}.

Let $\theta \in \mathcal{N}_0$. With the above notations we set for any $\nu \in \mathcal{M}_0$
\[
\theta_0(\nu) := \lim_{A \to \mathcal{F}} \theta(\nu_A).
\]
It is easy to see that θ_0 is a linear form on \mathcal{M}_0. If $\nu \in \mathcal{N}_0'$ then $\nu_A \in \mathcal{N}$ for any $A \in \mathcal{R}$ and therefore $|\theta_0(\nu)| \leq 1$. It follows $\theta_0 \in \mathcal{N}_0^c$. Let $\mu \in \mathcal{M}$. We set $\nu := \varphi(\mu)$. Let A be a set of \mathcal{R} such that any $B \in \mathcal{R}$ with $B \cap A = \emptyset$
is a null set for $u \circ v$. Then $\theta_0(v) = \theta(v_A)$. For any $B \in \mathcal{R}'$ we have
$$p(\mu(B) - v_A(B)) = p(\mu(B - A \cap B)) = 0.$$
Hence $\mu - v_A \in \varepsilon \mathcal{N}$ for any $\varepsilon > 0$ and therefore
$$\theta(\mu) = \theta(v_A).$$
We get
$$\langle \mu, \varphi'(\theta_0) \rangle = \langle \varphi(\mu), \theta_0 \rangle = \langle \nu, \theta_0 \rangle = \langle v_A, \theta \rangle = \langle \mu, \theta \rangle.$$
Since μ is arbitrary it follows $\varphi'(\theta_0) = 0$. Hence
$$\varphi'(\mathcal{N}_0) = \mathcal{N}_0.$$

Proposition 7. — Let \mathcal{R} be a δ-ring of sets, let \mathcal{R} be a set, let \mathcal{S} be a set of σ-rings of sets \mathcal{R} contained in \mathcal{R} and such that any set of \mathcal{R} contained in a set of \mathcal{R} belongs to \mathcal{R}', and let E be a Hausdorff locally convex space. For any $\mathcal{R} \in \Gamma \cup \{\mathcal{R}\}$ let $\mathcal{M}(\mathcal{R}')$ be the vector space of \mathcal{R}-regular E-valued measures on \mathcal{R}' endowed with the semi-norm topology, let $\mathcal{M}(\mathcal{R}')'$ be its dual, let $\varphi_{\mathcal{R}'}$ be the map
$$\mu \mapsto \mu|_{\mathcal{R}'} : \mathcal{M}(\mathcal{R}) \to \mathcal{M}(\mathcal{R}')$$
(Proposition 6), and let $\varphi_{\mathcal{R}'} : \mathcal{M}(\mathcal{R}')' \to \mathcal{M}(\mathcal{R})'$ be its adjoint map. Then
$$\mathcal{M}(\mathcal{R})' = \bigcup_{\mathcal{R}' \in \Gamma} \varphi_{\mathcal{R}'}(\mathcal{M}(\mathcal{R}')').$$

Let $\theta \in \mathcal{M}(\mathcal{R}')$. By Proposition 5 there exists $\mathcal{R}' \in \Gamma$ and a continuous semi-norm p on E such that $|\theta(\mu)| \leq 1$ for any $\mu \in \mathcal{M}(\mathcal{R})$ with
$$\sup_{A \in \mathcal{R}'} p(\mu(A)) \leq 1.$$
By Proposition 6 there exists $\theta_0 \in \mathcal{M}(\mathcal{R}')'$ such that
$$\varphi_{\mathcal{R}'}(\theta_0) = \theta.$$

3. Let \mathcal{R} be a δ-ring of sets, let \mathcal{R} be a set, let \mathcal{M} be the vector space of \mathcal{R}-regular real valued measures on \mathcal{R} endowed with the semi-norm topology, and let \mathcal{M}' be its dual. Let further E be a Hausdorff locally convex space, let E' be its dual, and let μ be a \mathcal{R}-regular E-valued
measure on \(R \). Then for any \(x' \in E' \), \(x' \circ \mu \) belongs to \(M \).
If \(\theta \in M' \) then

\[
x' \mapsto \langle x' \circ \mu, \theta \rangle : E' \to R
\]

is a linear form on \(E' \). If there exists \(x \in E \) such that

\[
\langle x' \circ \mu, \theta \rangle = \langle x, x' \rangle
\]

for any \(x' \in E' \) we say that \(\theta \) is \(\mu \)-integrable. Then \(x \) is
uniquely defined by the above relation and we shall denote it by \(\int \theta \, d\mu \). Any \(A \in R \) may be considered as an element
of \(M' \) namely as the linear form \(\theta_A \) on \(M \)

\[
v \mapsto v(A) : M \to R.
\]

It is easy to see that

\[
A \mapsto \theta_A : R \to M'
\]

is an injection, that \(\theta_A \) is \(\mu \)-integrable and

\[
\int \theta_A \, d\mu = \mu(A).
\]

If any \(\theta \in M' \) is \(\mu \)-integrable we say that the measure \(\mu \) is normal. It will be shown in Theorem 10 that if \(E \) is quasi-
complete then any \(E \)-valued measure is normal. If \(R \) is a \(\sigma \)-ring of sets then any bounded \(R \)-measurable real
function \(f \) may be considered as a map \(\theta_f \)

\[
v \mapsto \int f \, dv : M \to R
\]

which obviously belongs to \(M' \). For any normal measure \(\mu \) we shall write

\[
\int f \, d\mu := \int \theta_f \, \mu.
\]

If \(\mu \) is a normal measure then it may be regarded as a map

\[
\theta \mapsto \int \theta \, d\mu : M' \to E
\]

and, identifying \(R \) with a subset of \(M' \) via the above injec-
tion, this map is an extension of \(\mu \) to \(M' \). If \(N \) is a set
of normal \(R \)-regular \(E \)-valued measures on \(R \) then, taking
into account the above extensions of the normal measures, it
may be regarded as a set of maps of \(M' \) into \(E \) and so we
may speak of the topology on \(N \) of pointwise convergence
in \(M' \).
We want to make still another remark. If F is another Hausdorff locally convex space and if $u : E \rightarrow F$ is a continuous linear map then for any \mathcal{R}-regular E-valued measure μ on \mathcal{R} the map $u \circ \mu$ is a \mathcal{R}-regular F-valued measure on \mathcal{R}. Moreover any μ-integral $\theta \in \mathcal{M}'$ is $u \circ \mu$-integral and

$$\int \theta \, d(u \circ \mu) = u \left(\int \theta \, d\mu \right).$$

Proposition 8. — Let \mathcal{R} be a δ-ring of sets, let \mathcal{M} be the vector space of \mathcal{R}-regular real valued measures on \mathcal{R} endowed with the semi-norm topology, and let \mathcal{M}' be its dual. Let further E be a Hausdorff locally convex space, let $\mathcal{M}(E)$ be the vector space of \mathcal{R}-regular E-valued measures on \mathcal{R} endowed with the topology of pointwise convergence in \mathcal{R}, and let \mathcal{N} be a compact set of $\mathcal{M}(E)$ such that any measure of \mathcal{N} is normal. Then the topologies on \mathcal{N} of pointwise convergence in \mathcal{R} or in \mathcal{M}' coincide.

Since \mathcal{R} may be identified with a subset of \mathcal{M}' we have only to show that the topology on \mathcal{N} of pointwise convergence in \mathcal{R} is finer than the topology on \mathcal{N} of pointwise convergence in \mathcal{M}'. By Proposition 7 we may assume that \mathcal{R} is a σ-ring of sets. Let $\theta \in \mathcal{M}'$ and let p be a continuous semi-norm on E. We denote by E_p the normed quotient space $E/p^{-1}(0)$, by u_p the canonical map $E \rightarrow E_p$, and by $\mathcal{C}(\mathcal{N}, E_p)$ the vector space of continuous maps of \mathcal{N} (endowed with the topology of pointwise convergence in \mathcal{R}) into E_p endowed with the topology of pointwise convergence. For any $A \in \mathcal{R}$ let $\lambda(A)$ be the map

$$\mu \mapsto u_p \circ \mu(A) : \mathcal{N} \rightarrow E_p.$$

Then $\lambda(A) \in \mathcal{C}(\mathcal{N}, E_p)$ and it is obvious that λ is a \mathcal{R}-regular measure on \mathcal{R} with values in $\mathcal{C}(\mathcal{N}, E_p)$. By theorem 3 there exists a \mathcal{R}-regular real valued measure ν on \mathcal{R} such that λ is absolutely continuous with respect to ν. By Proposition 4 there exists a bounded \mathcal{R}-measurable real function f on $\bigcup A \in \mathcal{R}$ such that

$$\theta(f) = \int f \, d\nu.$$
for any \mathbb{R}-regular real valued measure μ on \mathbb{R} which is absolutely continuous with respect to ν. Let E'_p be the dual of E_p. Then for any $x' \in E'_p$ and for any $\mu \in \mathcal{N}$ the map $x' \circ u_p \circ \mu$ is a \mathbb{R}-regular real valued measure on \mathbb{R} absolutely continuous with respect to ν. Hence

$$\langle x' \circ u_p \circ \mu, \theta \rangle = \int f d(x' \circ u_p \circ \mu)$$

for any $\mu \in \mathcal{N}$ and for any $x' \in E'_p$. We get

$$u_p \left(\int \theta \, d\mu \right) = \int \theta \, d(u_p \circ \mu) = \int f \, d(u_p \circ \mu)$$

for any $\mu \in \mathcal{N}$. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of step functions with respect to \mathcal{R} converging uniformly to f. Since \mathcal{N} is compact the set $\{\mu(A)|\mu \in \mathcal{N}\} \subseteq E$ is bounded for any $A \in \mathcal{R}$. We deduce that the set $\{\mu(A)|\mu \in \mathcal{N}, A \in \mathcal{R}\}$ is bounded ([5], Corollary 6). Hence the sequence

$$\left(\mu \mapsto \int f_n \, d\mu : \mathcal{N} \rightarrow E \right)_{n \in \mathbb{N}}$$

of functions on \mathcal{N} converges uniformly to the function

$$\mu \mapsto \int f \, d\mu : \mathcal{N} \rightarrow E.$$

The functions of the sequence being continuous with respect to the topology on \mathcal{N} of pointwise convergence in \mathcal{R} we deduce that the last function is continuous with respect to this topology. We deduce further that the map

$$\mu \mapsto u_p \left(\int \theta \, d\mu \right) : \mathcal{N} \rightarrow E_p$$

is continuous with respect to the topology on \mathcal{N} of pointwise convergence in \mathcal{R}. Since p is arbitrary it follows that the map

$$\mu \mapsto \int \theta \, d\mu : \mathcal{N} \rightarrow E$$

is continuous with respect to this topology. Since θ is arbitrary the topology on \mathcal{N} of pointwise convergence in \mathcal{R} is finer than the topology on \mathcal{N} of pointwise convergence in \mathcal{M}'. ■

Corollary. — Let \mathcal{R} be a σ-ring of sets, let \mathcal{K} be a set, and let \mathcal{N} be a set of \mathcal{R}-regular real valued measures on \mathcal{R}.
compact with respect to the topology of pointwise convergence in \mathcal{N}. Then any sequence in \mathcal{N} possesses a convergent subsequence with respect to this topology.

Let \mathcal{M} be the vector space of \mathfrak{R}-regular real valued measures on \mathfrak{R} endowed with the semi-norm topology. By the proposition, \mathcal{N} is weakly compact in \mathcal{M} and the assertion follows from Šumliam theorem. ■

Let X be an ordered set and let Y be a topological space. We say that a map $f: X \to Y$ is order continuous if for any upper directed subset A of X possessing a supremum $x \in X$ the map f converges along the section filter of A to $f(x)$. An ordered set X is called order σ-complete if any upper bounded increasing sequence in X possesses a supremum.

Theorem 9. — Let E be an order σ-complete vector lattice, let F be a locally convex space, and let u be a linear map of E into F. If u is order continuous with respect to the weak topology of F then it is order continuous with respect to the initial topology of F.

Let U be a 0-neighbourhood in F, let U^0 be its polar set in the dual F' of F endowed with the induced $\sigma(F', F)$-topology, let $\mathcal{C}(U^0)$ (resp. $\mathcal{C}_u(U^0)$) be the vector space of continuous real functions on U^0 endowed with the topology of pointwise convergence (resp. with the topology of uniform convergence), and let us denote for any $x \in E$ by $f(x)$ the map

$$y \mapsto \langle u(x), y \rangle : U^0 \to \mathbb{R}$$

which obviously belongs to $\mathcal{C}(U^0)$.

Let $(x_n)_{n \in \mathbb{N}}$ be an increasing sequence in E with supremum $x \in E$. Then for any $M \in \mathbb{N}$

$$\sum_{n \leq m} (x_{n+1} - x_n)$$

is an upper bounded increasing sequence in E and possesses therefore a supremum. Since u is order continuous with respect to the weak topology of E it follows that

$$(f(x_{n+1} - x_n))_{n \in M}$$

is summable in $\mathcal{C}(U^0)$. The space U^0 being compact we deduce by [7] Theorem II 4 that $$(f(x_{n+1} - x_n))_{n \in \mathbb{N}}$$ is sum-
mable in $\mathcal{C}_u(U^0)$. Its sum has to be $f(x - x_0)$. Hence

$$(f(x_n))_{n \in \mathbb{N}}$$

converges uniformly to $f(x)$.

Let now A be an upper directed subset of E with supremum $x \in E$ and let \mathcal{F} be its section filter. If f does not map \mathcal{F} into a Cauchy filter on $\mathcal{C}_u(U^0)$ then it is easy to construct an increasing sequence $(x_n)_{n \in \mathbb{N}}$ in A such that $(f(x_n))_{n \in \mathbb{N}}$ is not a Cauchy sequence in $\mathcal{C}_u(U^0)$. Since E is order σ-complete and $(x_n)_{n \in \mathbb{N}}$ is upper bounded by x it possesses a supremum and this contradicts the above considerations. Hence f maps \mathcal{F} into a Cauchy filter on $\mathcal{C}_u(U^0)$ and therefore, by the completeness of $\mathcal{C}_u(U^0)$ into a convergent filter on $\mathcal{C}_u(U^0)$. Using again the hypothesis that u is order continuous with respect to the weak topology of F we deduce that $f(\mathcal{F})$ converges to $f(x)$ in $\mathcal{C}(U^0)$ and therefore in $\mathcal{C}_u(U^0)$. Since U is arbitrary it follows that u converges along \mathcal{F} to $u(x)$ in the initial topology of F which shows that u is order continuous with respect to this topology. ♦

Let E be a locally convex space, let E' be its dual endowed with the $\sigma(E',E)$-topology, and let \hat{E} be the set of linear forms y on E' such that for any σ-compact set A of E' there exists $x \in E$ such that x and y coincide on \overline{A}. We say that E is δ-complete if $\hat{E} = E$.

Lemma. — *Any quasicomplete locally convex space is δ-complete.*

Let E be a quasicomplete locally convex space and let $y \in \hat{E}$ (with the above notations). Let \mathcal{U} be the neighbourhood filter of 0 in E and for any $U \in \mathcal{U}$ let U^0 be its polar set in the dual of E and let A_U be the set of $x \in E$ such that x and y coincide on $\bigcup_{n \in \mathbb{N}} U^0$. It is obvious that there exists $\alpha_U \in \mathbb{R}$ such that $A_U \subset \alpha_U U$. Let \mathcal{F} be the filter on E generated by the filter base $\{A_U \mid U \in \mathcal{U}\}$. Then \mathcal{F} is a Cauchy filter on E containing the bounded set $\bigcap_{U \in \mathcal{U}} \alpha_U U$ and converging to y uniformly on the sets $U^0(U \in \mathcal{U})$.
Since E is quasicomplete $y \in E$ and therefore E is δ-complete.

Remark. — \mathbb{L} endowed with its weak topology is sequentially complete and δ-complete but it is not quasicomplete.

Theorem 10. — Let \mathcal{R} be a δ-ring of sets, let \mathcal{R} be a set, let \mathcal{M} be the vector space of \mathcal{R}-regular real valued measures on \mathcal{R} endowed with the semi-norm topology, and let \mathcal{M}' be its dual endowed with the Mackey $\tau(\mathcal{M}', \mathcal{M})$-topology. Let further E be a Hausdorff sequentially complete δ-complete locally convex space, let E' be its dual, let \mathcal{L} be the vector space of continuous linear maps of \mathcal{M}' into E endowed with the topology of uniform convergence on the equicontinuous sets of \mathcal{M}', and let $\mathcal{M}(E)$ be the vector space of \mathcal{R}-regular E-valued measures on \mathcal{R} endowed with the semi-norm topology. Then for any $\theta \in \mathcal{M}'$ and for any $\mu \in \mathcal{M}(E)$ there exists a unique element $\int \theta \, d\mu$ of E such that

$$\langle x' \circ \mu, \theta \rangle = \langle \int \theta \, d\mu, x' \rangle$$

for any $x' \in E'$. For any $\mu \in \mathcal{M}(E)$ the map $\psi(\mu)$

$$\theta \mapsto \int \theta \, d\mu : \mathcal{M}' \to E$$

belongs to \mathcal{L} and it is order continuous. ψ is a linear injection of $\mathcal{M}(E)$ into \mathcal{L} which induces a homeomorphism of $\mathcal{M}(E)$ onto the subspace $\psi(\mathcal{M}(E))$ of \mathcal{L}. For any σ-ring of sets \mathcal{R}' contained in \mathcal{R} and for any $\mu \in \mathcal{M}(E)$ the closed convex circled hull of $\{\mu(A) | A \in \mathcal{R}'\}$ is weakly compact in E.

In order to prove the existence of $\int \theta \, d\mu$ we may assume by Proposition 7 that \mathcal{R} is a σ-ring of sets. Let \mathcal{F} be the Banach space of bounded \mathcal{R}-measurable real functions on $\bigcup_{A \in \mathcal{R}} A$ with the supremum norm. Since E is sequentially complete we may define in the usual way $\int f \, d\mu \in E$ for any $f \in \mathcal{F}$. Let A be a subset of E' σ-compact with respect to the $\sigma(E', E)$-topology. By Theorem 3 there exists $\nu \in \mathcal{M}$ such that $x' \circ \mu \ll \nu$ for any $x' \in \overline{A}$. By Proposition 4
there exists $f \in \mathcal{F}$ such that
$$\langle x' \circ \mu, \theta \rangle = \int f d(x' \circ \mu) = \langle \int f d\mu, x' \rangle$$
for any $x' \in \overline{A}$. Since E is δ-complete there exists
$$\int \theta \ d\mu \in E$$
such that
$$\langle x' \circ \mu, \theta \rangle = \langle \int \theta \ d\mu, x' \rangle$$
for any $x' \in E'$.

Let $\mu \in \mathcal{M}(E)$. It is obvious that $\Psi(\mu)$ is linear and from
the relation defining it, it follows that it is continuous with
respect to the $\sigma(\mathcal{M}', \mathcal{M})$ and $\sigma(E, E')$ topologies. We deduce
that $\Psi(\mu)$ belongs to \mathcal{L}. From Proposition 4 or from the
theory of Banach lattices we deduce that $\Psi(\mu)$ is order con-
tinuous with respect to the weak topology of E. By the prece-
ding theorem it is order continuous with respect to the initial
topology of E.

It is obvious that Ψ is linear. Let $\mu \in \mathcal{M}(E)$ such that
$\Psi(\mu) = 0$. Let $A \in \mathcal{R}$ and let θ be the map
$$\nu \mapsto \nu(A) : \mathcal{M} \rightarrow \mathbb{R}.$$
Then $\theta \in \mathcal{M}'$ and we get
$$\mu(A) = \int \theta \ d\mu = (\Psi(\mu))(\theta) = 0.$$
Since A is arbitrary we get $\mu = 0$. Hence Ψ is an injection.

Let p be a continuous semi-norm on E and let \mathcal{A} be
an equicontinuous set of \mathcal{M}'. Then there exists a σ-ring
of sets \mathcal{R}' contained in \mathcal{R} such that
$$\alpha := \sup_{\nu \in \mathcal{N}, \nu \in \mathcal{M}} |\langle \nu, \theta \rangle| < \infty,$$
with
$$\mathcal{N} := \{ \nu \in \mathcal{M} \mid \sup_{\Lambda \in \mathcal{R}'} |\nu(A)| \leq 1 \}.$$
Let $\mu \in \mathcal{M}(E)$ such that
$$\sup_{\Lambda \in \mathcal{R}'} p(\mu(A)) \leq \frac{1}{\alpha + 1}.$$
Let further $x' \in E'$ such that $\langle x, x' \rangle \leq 1$ for any $x \in E$ with $p(x) \leq 1$. We get

$$\sup_{\Lambda \in R'} |x' \circ \mu(\Lambda)| = \sup_{\Lambda \in R'} |\langle \mu(\Lambda), x' \rangle| \leq \frac{1}{\alpha + 1}$$

and therefore $x' \circ \mu \in \frac{1}{\alpha + 1} N$ and

$$|\langle (\psi(\mu))(\theta), x' \rangle| = |\int \theta d\mu, x' \rangle| = |\langle x' \circ \mu, \theta \rangle| \leq 1$$

for any $\theta \in A$. Since x' is arbitrary it follows

$$p((\psi(\mu))(\theta)) \leq 1$$

for any $\theta \in A$. Hence ψ is a continuous map of $M(E)$ into L.

Let p be a continuous semi-norm on E and let R' be a σ-ring of sets contained in R. Let us denote by N the set of $\nu \in M$ such that

$$\sup_{\Lambda \in R'} |\nu(\Lambda)| \leq 1$$

and by N^0 its polar set in M'. Then N^0 is an equicontinuous set of M'. Let $\mu \in M(E)$ such that

$$\sup_{\theta \in R^0} p((\psi(\mu))(\theta)) \leq 1$$

and let $A \in R'$. We denote by θ the map

$$\nu i\mapsto \nu(\Lambda) : M \to R.$$

Then $\theta \in N^0$ and therefore

$$p(\mu(\Lambda)) = p((\psi(\mu))(\theta)) \leq 1.$$

This shows that ψ is an open map of $M(E)$ onto the subspace $\psi(M(E))$ of L.

In order to prove the last assertion we may assume by Proposition 5 that any set of R contained in a set of R' belongs to R'. The map $\psi(\mu)$ is continuous if we endow M' with the $\sigma(M', M)$-topology and E with the weak topology. Let N be the set of $\mu \in M$ such that

$$\sup_{\Lambda \in R'} |\mu(\Lambda)| \leq 1$$
and let \mathcal{N}^0 be its polar set in \mathcal{M}. \mathcal{N}^0 is compact with respect to the $\sigma(\mathcal{M}', \mathcal{M})$-topology and therefore $(\psi(\mu))(\mathcal{N}^0)$ is weakly compact in E. Since \mathcal{N}^0 is circled and convex and since it contains the set $\{\mu(A) | A \in \mathcal{R}\}$ we infer that the closed convex hull of $\{\mu(A) | A \in \mathcal{R}\}$ is weakly compact.

Remarks 1. — J. Hoffmann-Jørgensen proved ([2] Theorem 7) that if E is quasicomplete and if \mathcal{R} is a σ-algebra then $\{\mu(A) | A \in \mathcal{R}\}$ is weakly relatively compact in E, under weaker assumptions about μ.

2. — In the proof we didn’t use completely the hypothesis that E is sequentially complete but only the weaker assumptions that any sequence $(x_n)_{n \in \mathbb{N}}$ in E converges if there exists a bounded set A of E such that for any $\varepsilon > 0$ there exists $m \in \mathbb{N}$ with $x_n - x_m \in \varepsilon A$ for any $n, m \in \mathbb{N}$, $n \geq m$.

3. — Let F be another Hausdorff locally convex space, let $\mathcal{M}(F)$ be the vector space of \mathcal{R}-regular F-valued measures on \mathcal{R} endowed with the seminorm topology, and let $u : E \to F$ be a continuous map. Then for any $\mu \in \mathcal{M}(E)$ we have $u \circ \mu \in \mathcal{M}(F)$, the map

$$
\mu \mapsto u \circ \mu : \mathcal{M}(E) \to \mathcal{M}(F)
$$

is continuous, and for any $\theta \in \mathcal{M}'$ we have

$$
\int \theta \, d(u \circ \mu) = u \left(\int \theta \, d\mu \right).
$$

4. — The theorem doesn’t hold any more if we drop the hypothesis that E is δ-complete.

Theorem 11. — Let \mathcal{R} be a δ-ring of sets, let \mathcal{F} be a set, let E be a Hausdorff sequentially complete δ-complete locally convex space such that for any convex weakly compact set K of E and for any equicontinuous set A' of the dual E' of E the map

$$(x, x') \mapsto \langle x, x' \rangle : K \times A' \to \mathcal{R}$$

is continuous with respect to the $\sigma(E, E')$-topology on K and $\sigma(E', E)$-topology on A', let $\mathcal{M}(E)$ be the vector space of \mathcal{R}-regular E-valued measures on \mathcal{R}, and let $(\mu_i)_{i \in I}$ be a family in $\mathcal{M}(E)$ such that for any $J \subseteq I$ the family $(\mu_i)_{i \in J}$
is summable in \mathcal{M} with respect to the topology of pointwise convergence in \mathcal{R}. Then for any $J \subseteq I$ the family $(\mu_i)_{i \in J}$ is summable in $\mathcal{M}(E)$ with respect to the semi-norm topology on $\mathcal{M}(E)$.

Let $\mathcal{B}(I)$ be the set of subsets of I. The map of $\mathcal{B}(I)$ into $\{0, 1\}^I$ which associates to any subset of I its characteristic functions is a bijection. We endow $\{0, 1\}$ with the discrete topology, $\{0, 1\}^I$ with the product topology, and $\mathcal{B}(I)$ with the topology for which the above bijection is an homeomorphism. Then $\mathcal{B}(I)$ is a compact space. The assertion that any subfamily of a family $(x_i)_{i \in I}$ in a Hausdorff topological additive group is summable is equivalent with the assertion that there exists a continuous map f of $\mathcal{B}(I)$ into G such that $f(J) = \sum_{i \in J} x_i$ for any finite subset J of I ([6]). By the hypothesis there exists therefore a continuous map f of $\mathcal{B}(I)$ into $\mathcal{M}(E)$ endowed with the topology of pointwise convergence in \mathcal{R} such that $f(J) = \sum_{i \in J} \mu_i$ for any finite subset J of I.

Let \mathcal{M} be the vector space of \mathcal{R}-regular real valued measures on \mathcal{R} endowed with the semi-norm topology, and let \mathcal{M}' be its dual. By Theorem 10 any measure of $\mathcal{M}(E)$ is normal and therefore $\mathcal{M}(E)$ may be considered as a set of maps of \mathcal{M}' into E. By Proposition 8 the above map f is continuous with respect to the topology on $\mathcal{M}(E)$ of pointwise convergence in \mathcal{M}'. It follows that for any $J \subseteq I$ the family $(\mu_i)_{i \in J}$ is summable in $\mathcal{M}(E)$ with respect to this last topology.

Let us endow \mathcal{M}' with the Mackey $\tau(\mathcal{M}', \mathcal{M})$-topology, let \mathcal{L} be the vector space of continuous linear maps of \mathcal{M}' into E, and let ψ be the injection $\mathcal{M}(E) \to \mathcal{L}$ defined in Theorem 10. It is obvious that ψ is continuous with respect to the topology on $\mathcal{M}(E)$ and \mathcal{L} of pointwise convergence in \mathcal{M}'. Hence for any $J \subseteq I$ the family $(\psi(\mu_i))_{i \in J}$ is summable in \mathcal{L} with respect to the topology of pointwise convergence in \mathcal{M}'.

Let U be a closed convex 0-neighbourhood in E and let U^0 be its polar set in E' endowed with the $\sigma(E', E)$-topology. Let \mathcal{N} be a σ-ring of sets contained in \mathcal{R}, let \mathcal{N}
be the set \(\{ v \in \mathcal{M} \mid \sup_{A \in \mathbb{R}} |v(A)| \leq 1 \} \), and let \(\mathcal{N}^0 \) be its polar set in \(\mathcal{M}' \) endowed with the \(\sigma(\mathcal{M}', \mathcal{M}) \)-topology. For any \(\mu \in \mathcal{M}(E) \) the map

\[\theta \mapsto \int \theta \, d\mu : \mathcal{N}^0 \rightarrow E \]

is continuous with respect to the weak topology of \(E \). It follows that the image of \(\mathcal{N}^0 \) through this map is a convex weakly compact set of \(E \). By the hypothesis about \(E \) the map \(\hat{\mu} \)

\[(\theta, x') \mapsto \left(\int \theta \, d\mu, x' \right) : \mathcal{N}^0 \times U^0 \rightarrow \mathbb{R} \]

is continuous. Let \(\mathcal{C}(\mathcal{N}^0 \times U^0) \) be the vector space of continuous real functions on \(\mathcal{N}^0 \times U^0 \). By the above proof for any \(J \subseteq I \) the family \((\hat{\mu}_i)_{i \in J} \) is summable in \(\mathcal{C}(\mathcal{N}^0 \times U^0) \) with respect to the topology of pointwise convergence. By [7] Theorem II 4 the same assertion holds with respect to the topology of uniform convergence. Let \(J \subseteq I \). Then there exists a finite subset \(K \) of \(J \) such that

\[\left| \sum_{i \in L} \hat{\mu}_i(\theta, x') - \sum_{i \in J} \hat{\mu}_i(\theta, x') \right| \leq 1 \]

for any finite subset \(L \) of \(J \) containing \(K \) and for any \((\theta, x') \in \mathcal{N}^0 \times U^0 \). We get

\[\sum_{i \in L} \mu_i(A) - \sum_{i \in J} \mu_i(A) \in U \]

for any finite subset \(L \) of \(J \) containing \(K \) and for any \(A \in \mathbb{R}' \). Since \(\mathbb{R} \) and \(U \) are arbitrary this shows that the family \((\mu_i)_{i \in J} \) is summable in \(\mathcal{M}(E) \) with respect to the seminorm topology. ■

BIBLIOGRAPHY

Manuscrit reçu le 23 décembre 1974.

Corneliu Constantinescu,
ETH, Mathematisches Seminar
8006 Zürich, Switzerland.