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SOME EXAMPLES
OF NONSINGULAR MORSE-SMALE

VECTOR FIELDS ON S3

by F. Wesley WILSON, Jr.

A vector field is called Morse-Smale if it has a finite set of
singular points ai, . . ., a^ and a finite set of periodic solutions
Pi, . . . , (B^ such that each of these elements is hyperbolic
(in the generic sense), such that the various invariant mani-
folds of these elements intersect transversely, and such that
the nonwandering set of the vector field consists entirely of
these elements, cf. [11]. Besides their relatively simple quali-
tative structure, one reason for interest in such vector fields
is that they are structurally stable [6]. Indeed, combining
this result with Morse Theory provides the easiest proof
that every compact manifold admits a structurally stable
vector field.

If M has Euler characteristic zero, then M has nonsin-
gular vector fields, and these vector fields can be partitioned
into their (nonsingular) homotopy classes. It seems natural
to ask whether each homotopy class contains a nonsingular
Morse-Smale vector field (or any structurally stable vector
field). D. Asimow [1] has shown that if dim > 3, then
each homotopy class contains a Morse-Smale vector field.
The analogous result for the torus and the Klein Bottle follows
from M. Peixoto's work on 2-dimensional structural stability
[7]. We shall illustrate some techniques for producing examples
of 3-dimensional Morse-Smale vector fields, and in particular
our examples will include representatives of all vector field
homotopy classes on S3 except for two.
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146 F. WESLEY WILSON, JR.

A related question is whether or not one can determine the
homotopy class of a nonsingular vector field by examining
some finite list of algebraic invariants which are associated
with the flow which the vector field generates. B. L.
Reinhart [10] has provided an affirmative answer for vector
fields on the 2-torus. In this case, the periodic solutions deter-
mine a 1-dimensional homology class, up to sign. This homology
class together with an integer D = P — N determines the
homotopy class of the vector field (P and N are determined
by judiciously choosing one of the homology classes of the
periodic solutions and determining that it contains P sources
and N sinks). Thus we can determine the homotopy class
from algebraic invariants which are associated with the periodic
solutions. The author [13] has given examples in dimensions
greater than two which indicate that algebraic invariants
associated with the nonwandering set of the flow will in general
not be sufficient to determine its homotopy class [8] or [13].
In these examples, the nonwandering set consists of a finite
collection of periodic solutions, they all have index zero, are
unknotted, are unlinked, and are the boundaries of embedded
2-disks. Moreover, these examples include representatives of
all homotopy classes. By bifurcations of these periodic solu-
tions into pairs of periodic solutions consisting of a saddle
and a source or a saddle and a sink, these examples can be
altered so that they are still nearly algebraically sterile and
yet are almost Morse-Smale (these examples have periodic
solutions with indices ± 1, but equally many of each, and
there will be some necessary degenerate intersections of the
invariant manifolds). The following question remains open :
Can one determine the homotopy class of a nonsingular Morse-
Smale vector field from a list of algebraic invariants which are
associated with the geometric structure of its flow? The
examples which we construct in this paper tend to make
us believe that the answer is no. Certainly they show that
algebraic properties associated just with the set of periodic
solutions is not sufficient. It remains possible that the set
which is the closure of the 2-dimensional invariant manifolds
may contain the information which we seek, but it will pro-
bably be very difficult to obtain such a result.

We should point wit that in our examples there do occur
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periodic solutions with various linking numbers and represen-
ting all toral knots. It is apparently unknown whether or not
arbitrary knots can occur as a periodic solution of a Morse-
Smale vector field.

1. Singular foliations and homotopy classes of vector fields.

A. Davis has introduced a notion of singular foliation and
proved some results which are useful for studying the homo-
topy classes of vector fields [2]. We shall include a brief review
of this approach. Let M be a compact manifold.

DEFINITION 1.1. — A singular foliation ^ for M consists
of a compact submanifold N of codimension two in M and
a foliation ^ of M-N of codimension one which satisfies
the following condition: There is a tubular neighborhood U
of N such that each fiber (2-disk) is transverse to ^, and
such that along each component N^ of N, the induced regular
curve families on the different fibers are topologically equivalent.
The leaves of ^ are called the regular leaves of ^ and the
components of N are called the singular leaves of ^. The
index H.̂ , N,) of a singular leaf N^ is the index of the line
field which is induced by ^ on the fibers of a tubular neighbor-
hood of that leaf.

THEOREM 1.2. (A. Davis). — Every compact manifold M
admits a singular foliation ^, and the following index formula
is satisfied

m

X(M) == S X(N.) I(^, N;)
m

where / denotes the Euler characteristic and N = [ IN,.

The reason that singular foliations have been introduced
here is that they are useful for describing certain vector fields
on manifolds and for computing their homotopy classes. This
approach is not necessary for this exposition, since the compu-
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tations which we actually need have been carried out in [12].
However, these specific examples are more easily understood
in this new setting.

Let ^ be a singular foliation of M, and suppose that ^ is
a nonsingular vector field on M which is tangent to the leaves
of ^. Note that ^ does not exist for every ^". A necessary
condition is that each component of N have zero Euler charac-
teristic. Even in this case, there are obstructions to the exis-
tence of ^. Since any ^|N has an extension to ^|U, where
U is a tubular neighborhood of N, then it follows that the
obstructions to the existence of an extension of ^|N to all
of ^ lie in {H^[M, N; ^^(S^)]}, cf. [3]. Similarly, the
obstructions to the uniqueness of extensions (up to homotopy
as nonsingular vector fields tangent to ^) lie in

{HWN^S'^)]}.

However, if we are only interested in the homotopy class as
nonsingular vector fields on M, then we have the following
interesting result.

THEOREM 1.3. (A. Davis). — Let ^, S be nonsingular vector
fields on M which are tangent to the transversely orientable
singular foliation ^. If ^|N^^[N as vector fields on N,
then ^ ̂  S ^s nonsingular vector fields on M.

Proof. — Both ^ and ^ are homotopic to a vector field f\
which coincides with ^ on N and which always has a non-
zero component transverse to ^ on M — N.

In [II], we gave the following description of the singular
Hopf fiberings of S3 over S2:

S2 coordinates : (z, 6) — 1 ^ z ^ 1, 0 ^ 6 ^ 2n

[\/i — z2 cos 6, \/1 — z2 sin 6, z] e S2

S3 coordinates : (r, [A, v) 0 ^ r ^ 1, 0 ^ p-, v < 2n

[r cos (A, r sin (JL, \/1 — r2 cos v, \/1 — r2 sin v] e S3

/^: S^S2: (r, ^ v) -——— (1 - 2r, p(Ji— ^).
Note that T^ = {(r, (JL, v)|r fixed} is a circle if r == 0

or 1 and a torus otherwise. For 0 < r < 1, Ap^(l — 2r, 6)
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is a circle of type (p, q) in T^. Thus the restriction of hp q
to a tubular neighborhood of To can be viewed as the compo-
sition of the projection D X S1 —> D and the branched p-fold
covering of D —> D given by (r, 6) -> (r, p, 6), and the res-
triction to a tubular neighborhood of Ti can be viewed as
the analogous composition of a projection and the branched
gr-fold covering. Now let ^ be a vector field on S2 which is
singular precisely at the poles. A singular foliation ^ is
defined on S3 by taking the hp^q preimage of the trajectories
of ^. Note that To and Ti are singular leaves of ^ and
that each elliptic (or hyperbolic) region for the singular point
at the south pole of S2 corresponds to p elliptic (or hyper-
bolic, respectively) regions for the induced curve family on a
disk transversal to To. Using the formula

Io(C) == 1+ -I- (e - h)

to compute the index of the south pole, we see that the index

of ^ along To is I(^, To) = 1 + J- (e — A). A similar
argument can be applied near Ti.

LEMMA 1.4

and

where

I ( ^ , T o ) = l + p [ I o ( ^ - l ]

I(^, T,) = 1 + q[W - I],

lo(^) - 1 = - [W - 1].

Proof. — The first two relationships follow by the argument
above. The last statement is just a special case of the Poincare
Index formula for S2.

Let S;, ^ be unit vector fields on S3. From obstruction
theory, we know that the homotopy difference between ^
and ^ is an element

d{^ ^ e H^S3; n,{S2)) ̂  ^(S2) ̂  Z

where the last isomorphism is given by the Hopf invariant.
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In [il], we developed a geometric interpretation of rf(^, ^)
which we shall now review. On S3, and nonsingular vector ^
field can be viewed as the first coordinate direction of a (unique
to homotopy) parallelization II. Expressing ^ in terms of
the II-coordinates, we obtain a mapping of S3 into S2 and
the homotopy class of this mapping depends only on the
homotopy classes of ^ and ^. Applying the Hopf invariant
to this mapping, we obtain the integer 6^, ^) which measures
the homotopy difference between ^ and ^. In practice, we
can evaluate d?(^, S) only if we can compute the Hopf inva-
riant of the induced mapping. The following lemma is useful
in this matter. Part (4) is due to H. Hopf [5], and parts (1),
(2), and (3) are proved in [12; § 2]. Let H+ and H_ denote
the respective homotopy classes of the unit vector fields which
are tangent to the fibers of the Hopf fiberings with positive
and negative fiber linkings.

LEMMA 1.5. — Let ^, ^ be unit vector fields on S3. Then
S ̂  ^ if ̂ d on^ if ^(S? ^) = 0. Moreover,

(1) d{^ ^) = 0 if ^) ^ - HX) for every x e S3,
(2) d{^ - ̂  = 0,
(3) d{H^ H-) = 1,
(4) If the induced mapping by ^ and ^ carries each T^

onto a lattitude circle of S2 with degree m on meri-
dian circles and degree I on longitude circles, then
d{^ ^)= - ml.

The third statement has an interesting interpretation. If
h: S3 -> S3 is a diffeomorphism which reverses orientation,
then D/i(H+) = H_. But by (3), there is no class between H+
and H_. Thus we can view the vector fields ^ on S3 as
being either above H+(d(S, H+) > 0) or as being the Dh-
image of a vector field which is above H+. For this reason,
it suffices to restrict our attention to the vector fields which
lie above H+.

Before completing our description of the examples of the
vector fields in the various homotopy classes, we take this
opportunity to point out that there is a sign error in [12].
The omission occured in
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PROPOSITION 4.6. — The correct formulas are

X(yo;Yi) =o4=^-
9 q

^ ( Y o ; F ) r ( Y i ; F ) = X ( y o , T i ) 2

^(Yo;F) =<^(Yo;y,)[^: F)- l ]

^(Ti : F) - <^(To; Ti)[^(To : F) - 1]

where o- == ± 1 ^ determined by the rule: c = + 1 ^/"
F|N ^ homotopic rel oN to ̂  pector /i^M on N which has
every trajectory periodic, and a == — 1 otherwise (only two
case are possible).

The proof which is given for Proposition 4.6 is correct,
provided that one is careful about the orientation of y
A consequence of this oversight is a sign change in the for-
mulas of Theorem 6.4. The correct formulas are : If

then
/^(Yo; Yi) < 0,

d{¥, H_) = ^(y,; F)^(y,; F) if X(yo; y,) > Q
J(F, H^) == ^(yo; F)^(y,; F) if X(yo; yj < 0.

These relatively minor changes culminate in a more substantial
change in

THEOREM 6.7. — There is a geometric vector field with two
periodic solutions representing every homotopy class of non-
singular vector fields on S3 except for the first class below H-
and the first class above H+.

This theorem can be proved by applying the (correct)
formulas from [12 : Theorem 6.4] in a spirit similar to the
previous proof. We omit this computation; instead we shall
give another proof using Davis'approach.

By Theorem 1.3 and Lemma 1.5 (2), there are only two
homotopy classes represented by vector fields tangent to the
singular foliation ^ which we constructed above. The vector
field H^ which is tangent to the ^,-fibering of S3 is
tangent to ^, and so we see that one of these two classes is
homotopic to H+ (if pq > 0) or to H_ (if pq < 0). Thus
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there is only one interesting homotopy class for each choice
of !: p, and q. Denote this class by ^. We note that ^
can be chosen to be of the form

Cp., = F + aH,,,

where FeD/^) is normal to the /^ fibers and a :
S3 ̂  [- 1, 1] has values +1 on To, - 1 on 1\ and
satisfies a|T, is constant for every r. Then the mapping ^
relative to a parallelization II which satisfies TlW = H^ ?

will satisfy the hypotheses of Lemma 1.5 (4). Thus it remains To
determine the values of the integers I and m. Note that
these values are the same for any choice of longitude and
meridian on any T, where 0 < r < 1. Since 11 is locally
nearly constant near a point of To, we can choose r to be
very small and deduce that m = I(^, To). Similarly, we can
choose r to be very near to one and compute I. In this case,
the direction of a longitude is critical, since the longitude must
be oriented as the boundary of a fiber in a tubular neighborhood
of TI in order to be useful for computing the index. With
the correct choice of orientation, I == sgn {pq)\(y, Ti). Thus
we have

^p,»; K/J = - sgn (py)Io^, To)I(^, Ti).

This formula is the analogue of [12; Theorem 6.4]. Using
Lemma 1.4, and letting k = L(!;) - 1, we see that

^P,?; ^,9} = — sgn {pq){l + pk){l — qk)

where (p, q) = 1 and k can be any integer (depending only
on the choice of ^). Recall that H^ ̂  H+ if pq > Q and
Hp_, ̂  H_ if pq < 0.

THEOREM 1.6. — There is a vector field of type ^ repre-
senting every homotopy class of nonsingular vector"'fields on
S3 except for the first class below H- and the first class above
H+.

Proof. - If pq > 0, then H,,,^ H+ and

d(^,,, H+) ̂  - (1 + pk){l - qk).
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Choosing k = 1, p = 1, q > 0, we obtain the positive even
classes, and choosing / c = 2 , g = = l , p > 0 we obtain all
positive odd classes except for rf(^p,^ H+) == 1. Indeed, this
class is not represented. To achieve a representation would
require the choice of p > 0, q > 0, k to satisfy

(1 + pk){l - qk) = - 1.

Thus k must be an integer which satisfies

2pqk = q - p ± \Jp2 + 6pq + f

For q ^ p ^ 2,

2pq ^ 4g = q + \/9?2 > q - p + y/p2 + 6pq + q2

and so no positive k works. Similarly, no positive k works if
p ^ q ^ 2. Choosing /c negative merely reverses the roles of
p and q in these arguments. The remaining cases

(p, q) = (1, 1), (1, 2), or (2, 1)

have an irrational radical term.

2. Breaking Links.

The tangent vector fields to the Hopf fiberings of S3 are
tangent to the singular foliation of S3 whose leaves are the
sets T^(0 ^ r ^ 1), i.e. two linked circles and a continuum
of nested toroidal shells. These vector fields belong to one of
the homotopy classes H+ or H_. Also in these classes, there
are vector fields which have two periodic solutions (To and
Ti), which are transverse to each other T^, and which have
the property that every other orbit has its a-limit at To
and its co-limit at Ti. We shall refer to these as the Max-Min
vector fields. The homotopy class (H+ or H_) is determined
by the linking number of the periodic solutions (H+ is the
class where the linking number is positive).

We shall now show that there are Morse-Smale vector fields
in these classes for which there is no linking of the periodic
solutions. Let Ko and Ki denote the solid tori with boun-
dary Ti/2 which are tubular neighborhoods of To and Ti,
respectively. Then Ko (with the flow reversed) and Ki
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contain flows similar to the flow which was the basis for the
construction in [9]. In that paper, our goal was to modify
this flow by a plug construction so that the resulting almost
Morse-Smale vector field was not near to any Morse-Smale
vector field. On the other hand we observed that by a different
placement of the plugs we would have obtained an almost
Morse-Smale vector field with the property that every nearby
generic vector field is Morse-Smale (cf. the comments which
conclude [8]). These Morse-Smale vector fields have the pro-
perty that they have eight periodic solutions, two sources, four
saddles, and two sinks, and that each of these periodic solu-
tions bounds a small disk which is pierced by no periodic
solution, i.e. these periodic solutions have linking number zero
with every other periodic solution of the vector field. In sepa-
rate oral communications, both Danial Asimov and John
Franks have pointed out to me that examples of this kind can
be constructed which have just two periodic solutions, one
saddle and one source or one sink. Their constructions are very
geometric. After some reflection on plug constructions [8]
and [13] and their use in deriving Fuller's example [4], it
became clear that the plug approach can also be used to sever
links between certain periodic solutions.

LEMMA 2.1. — Let K be a solid torus in M and let ^
be a Morse-Smale vector field on M which is nonsingular on
K, which is transverse to the boundary of K, and which has
a single periodic solution in K which attracts K in positive
time if ^ is directed into K or attracts K in negative time
if ^ is directed out of K. Then there is a Morse-Smale vector
field ^ on M which has the following properties.

1. ^ coincides with S on M-K and on a neighborhood
of OK,

2. ^ has two periodic solutions, one saddle and either one
sink (if t, is directed into K) or one source (if ^ is
directed out of K),

3. No periodic solutions of ^ links either of the periodic
solutions of ^ which lie in K.

Proof. — In [8; Section I], it is shown how Fuller's example
with exactly one periodic solution can be obtained by using a
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special plug construction where the plug is the three dimen-
sional analogue of the flow indicated in Figure l.a. Here, the
mirror-image property is sacrificed but the strong contraction
property of the attracting periodic solution is used to prevent
unwanted recurrence from being introduced during the plug
construction. For our present purposes, the same approach
can be used, except that we use the Morse-Smale plug of
Figure 1.&. Again, the strong contraction of the periodic solu-
tion of 2. is sufficient to compensate for the fact that the plug
which we are using does not satisfy the mirror-image property.
This situation is illustrated in Figure i.e. In order to insure
that ^ is a nonsingular vector field, we must be careful to
insert the plug so that the invariant manifolds of the saddle
orbit are transverse to the invariant manifold of the other
critical elements of ^. This can be arranged by an easy trans-
versality argument along ^K. Finally, to see that the two
periodic solutions of ^ in K cannot link any other periodic
solution of ^, we observe that every trajectory which crosses
OK has its o -limit in K if ^ is directed into K or else
has its a-limit in K if ^ is directed out of K. In either case,
no periodic solution of ^ can cross ^K. But by the plug

Fig. 1. — A special simple plug construction.



156 F. WESLEY WILSON, JR.

construction, the periodic solutions of ^ in K bound dis-
joint disks which lie in K$ hence no linking is possible.

Applying the constructions of this lemma to a Max-Min
vector field, first in Ko with W === 0, and then in Ki
with W taken as the union of the intersections of the 2-
dimensional invariant manifolds from Ko with ^K-o = ̂ K-i,
we obtain a Morse-Smale vector field on S3 which is homo-
topic to the Max-Min vector field (H+ or H_) and which
has four periodic solutions which bound four mutually disjoint
2-disks, i.e. the periodic solutions are unknotted and unlinked.
The sum of the indices of these periodic solutions is zero.
In this case, there is no local property of the set of periodic
solutions which reveals whether a particular example belongs
to H+ or H_. However, in this case we could determine the
homotopy class by combining our knowledge of the type of
example which we have in hand with certain observations
about the behavior of the 2-dimensional invariant manifolds.
While this result seems to raise as many questions as it answers,
we shall not pursue the matter at this time.

3« Examples from other homotopy classes.

We shall now show how the examples in section 1 can be
used to obtain nonsingular Morse-Smale vector fields in each
homotopy class of nonsingular vector field on S3 which is
represented by the vector fields ^p ^. By lemma 1.4,

I(^-, To) = 1 + pk and I(^, T\) = 1 — qk

where the integer k is determined by ^. Observe that if
/c == 0, then these indices are both one. Indeed, this case
would arise if we chose ^ to be the gradient flow on the stan-
dard 2-sphere, and then ^p ^ is a Max-Min vector field on S3.
This reflects the fact that the p-fold covering of an asympto-
tically stable singular point is still asymptotically stable.
Since this is the only case in which index is preserved, we see
that if we want to have the vector field ^ ^ to be Morse-
Smale, we had better choose ^ to be asymptotically stable
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( ± time) at the poles. We can achieve this with the following
bifurcations.
Now we note that if ^ is a vector field whose singularities
are generic and have the bifurcated form illustrated in Figure 2,

k>0

k<0

Fig. 2. — Bifurcations of the singularities of ^ at the poles.

then ^p ̂  will be Morse-Smale. For all of the saddles are near
To or TI, and there are no saddle connections for ^ for the
induced singular foliation. Thus we have proved.

THEOREM 3.1. — There is a nonsingular Morse-Smale vector
field in each homotopy class of nonsingular vector fields on S3

except for the class immediately above H+ and the class imme-
diately below H-.

Since we have hope that the understanding of these and
other examples may lead to the understanding of a relations"
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hip between the algebraic properties of the periodic solutions
of a nonsingular Morse-Smale vector field and its homotopy
class, we shall take the time to describe explicitly the para-
meters which describe the periodic solutions of these examples.
If a Morse-Smale vector field ^p ^ has been constructed on S3

by using a vector field ^ on S2 which has index 1 -\- k
at the South Pole and pq > 0, then the homotopy class of
^p ̂  is described by

d^ H,) = - (1 + pk){i - qk).

The vector field ^p ̂  has 2\k\ + 2 periodic solutions:
To and TI are sinks and are directed so that they have lin-
king number — 1; there are \k\ saddles and \k\ sources
each of which lies on some T^ with type (p, q); if k > 0,
then the saddles are near To and the sources are near Ti;
otherwise conversely. Since this example arises as a lifting
from S2, it should not be surprising that the sum of the
indices of the periodic solutions is x(S2) = 2.

When we observe the vector field ^p ̂  on S3 we can count
the number \k\ of saddle orbits and since the saddles have
linking number p with To and q with Ti, we can retrieve
the numbers p and q (the other periodic solutions have
linking numbers pq with each other). This is almost enough
information to determine the homotopy class. On the other
hand, we can alter ^p ^ by applying Lemma 2.1 along each
sink and source of ^p ^. Let ^^q denote this new vector field.
It is Morse-Smale and has \k\ -f~ 2 sinks and sources, and
2|/c| +2 saddles. All of the sinks and sources and |/c| + 2
of the saddles bound disjoint disks, and the indices of all of
this class of periodic solutions add to zero. The other \k\
saddles are the same as the saddles of ^p ̂ . They link each
other with linking number pq. Also, the sum of the indices
of the periodic solutions of ^q is — |/c|. It is not obvious
how to view this data so that the homotopy class of $p ^
can be determined. It seems that if there is a solution to this
problem, then some properties of the set which is the union
of all of the 2-dimensional invariant manifolds will also have
to be taken into consideration.
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