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HOMOGENEOUS SELF DUAL CONES,
VERSUS JORDAN ALGEBRAS.

THE THEORY REVISITED

by J. BELLISSARD* and B. IOCHUM

Introduction.

The study of ordered linear spaces has a very long history. We
know that ordered structures are closely related to measure theory.
In fact many Banach lattices are known to be If spaces for a suitable
Borel measure [12, 35, 36, 40, 49].

On the other hand we know how to extend the integration theory
to non commutative algebras by studying the states on C*-algebras
(for instance [20, 46]). Therefore, it is not surprising to find connec-
tions between algebras and ordered linear spaces.

Two years ago A. Connes [19] made this relation very precise
in the case of von Neumann algebras, using the results of the Tomita-
Takesaki theory [53]. Let JIt be a von Neumann algebra on the
Hilbert space H, fo be a cyclic and separating vector for OTZ-, A^
the modular operator of the triplet (3Tl,H, ^o). A Connes [18],
H. Araki [8] and U. Haagerup [25] introduced the cone

9\ == {A174^^}"-" (See also [58, 59])^o ^o
and in [19] Connes proved that 9" is characterized by three pro-
perties : self duality, facial homogeneity, and orientability.

A cone H+ is self dual in H if HT = {^ G H/<$, t?> > 0 VT? G H^.
H'1' is orientable when the quotient of the Lie algebra of the cone

* On leave from: "Universite de Provence" and "Centre de Physique Theo-
rique, CNRS, Marseille".
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by its center, is a Complex Lie algebra. V^ is facially homogeneous
if for any face F the operator Pp — P ^ belongs to the Lie algebra
of H+ , PF being the orthogonal projection on the closed linear space
spanned by F.

This last property was very novel, and an interesting question
was to characterize facially homogeneous self dual cones in a finite
dimensional space. It was proved [1, 11, 24] that this class of cone
is exactly the class of transitively homogeneous cones. A finite di-
mensional self dual cone is transitively homogeneous if its group
acts transitively in its topological interior ([37, 38, 44, 45, 55, 56]).

Therefore the 15-years old papers of E.B. Vinberg (see [55, 56])
gave a classification of such objects by constructing a one-to-one
correspondance between this class of cones and the class of formally
real Jordan algebras.

Recall that a commutative (but not associative) real algebra
Oil is Jordan if the product satisfies a(a2b) = a2(ab), a , b G OTI.

n

A Jordan algebra is formally real if ^ a? == 0 implies a^ = 0 for
alii (see [16,28]). I = l

The classical representation theorem proved by P. Jordan, J. von
Neumann and E. Wigner [33] says that there are five classes of irre-
ducible such algebras: M^(R), M^(C), M^(H), V^, and M^. Here,
M^(K) is the set of self adjoints nxn matrices with elements in the
field K ; R , C, and H are respectively the real, complex and qua-
temionic fields. V^ is the algebra of spin factors, generated by
a\ 4- b(f) with /G FT and b(f) b(g) 4- b(g) b(f) = 2 </, g ) 1
[54]. M^ is the exceptional algebra of 3x3 self adjoint matrices
with coefficients in the Cayley algebra (see [16, 23, 28]).

The transitively homogeneous self dual cone associated to a
given class is then the set of positive elements of the Jordan algebra,
with the Hilbert structure given by the natural trace.

The question arises of generalizing these results in the infinite
dimensional case. In this direction the work of A. Connes is a precise
guide. The paper of E.M. Alfsen, F.W. Shultz and E. St^rmer [7]
defines and investigates a "good" class of Jordan Banach algebras,
whose norm satisfies, for arbitrary a, b:

i) IÎ H < \\a\\ ||6||,
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ii) lla2!! = Ml2

iii) Ha2!! < \\a1 + b^\\

which these authors propose to call JB algebras in analogy with B*-
algebras. The analogue of a C^-CW*-) algebra was called by D.
Topping [54] a JC (JW)-algebra and is a norm (weakly) closed Jordan
algebra of self adjoints operator on a complex Hilbert space. As a
consequence [2], M^ is excluded from the class of JC algebras.
This special class is in fact very well known [21, 29, 30, 31, 50, 51,
52].

In the work we present here we have restricted ourselves to the
simplest case of a JB algebra 3TC, with a finite faithful normal trace.
A trace is defined to be a state ^ on OR. such that ^p((ab)c) =
= (p(a(bc)), a, b E j]̂ ,. We characterize the cone associated with
positive elements of 3TI by three properties: self duality, facial homo-
geneity, and the existence of a trace vector (see definition 3.1). In
fact we expect that the presence of a trace is useless. But for technical
reasons, due to the absence of Tomita's theory for JB algebras, we
prefered at first stage to assume the existence of a trace vector.

We must indicate that the connection between formally real
Jordan algebra with a trace and cones in a infinite dimensional Hilbert
space, was already given by G. Janssen in 1971 [29]. Therefore the
ideas developed here are already known. However, since it seems to
us that facial homogeneity is a very crucial property in the category
of cones, we prefer to give a self consistent exposition of the results.

In the first section we recall some elementary facts about self
dual cones: faces, group and Lie algebra of the cone, the ideal center
introduced by W. Wils [57], the direct integral decomposition theory
[14,42].

In section 2, we give useful information about facially homo-
geneous self dual cones. In particular we give a detailed analysis of the
set of faces. The most important difficulty comes from the fact that
the closure of a face is not known to be a face, although this is known
to hold for any example constructed. However we show that it is
enough to restrict our attention to "completed" faces F such that
F = F11.

Section 3 is devoted to the study of trace vectors. The main
result is that a trace vector is an element of F © F1 for any completed
face F.
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Section 4 gives a spectral theorem for hermitian elements belong- ?
ing to the Lie algebra of the cone. This is the main tool used in the
sequel. Unfbrtunatly the existence of a trace is crucial for the proof,
for technical reasons. However we believe this theorem to be true
in any facially homogeneous self dual cone (it holds for orientable
cones).

The techniques used in this theorem have been known for a
long time. The spectral theorem can be found in essence in the classical
book of F. Riesz and B. Sz.Nagy [43]. It can also be found in H.
Freudenthal [22, 39]. The idea of the crucial theorem 4.1 is due
to W. Bos [15] and the essential steps in the proof can be found in
G. Janssen [29]. The consequences for the Lie algebra of the cone
(theorem 4.6) and for the transitive homogeneity (corollary 4.8)
are due to the authors, and generalize the techniques previously deve-
loped in [11].

Section 5 is devoted to the construction of the JB algebra of
a homogeneous self dual cone with a finite trace. We adopt the for-
malism of [7]. The main original idea of this chapter is to use the
property of the trace vector which is cyclic and separating for the
hermitian part of the Lie algebra of the cone.

Section 6 proves the converse theorem. Given a monotone
closed JB algebra JK with a faithful finite trace, we construct a
self dual cone canonically associated with 3TI. The main difficulty
comes from the characterization of the faces, (necessary in order
to get facial homogeneity).

In the last section we give additional information. We prove
that any unitary operator leaving the cone invariant is given by a
Jordan isomorphism of the associated Jordan algebra. We give also
without proof a representation of J1Z as a direct integral of JB-
factors, in analogy with the von Neumann case. In fact the most
useful property comes from the fact that OTI can be represented
as a subspace (not a subalgebra) of the hermitian operators on a Hilbert
space.
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1. Self dual cones.

Let H be a Hilbert space. With F a subset of H, let F* be
the dual set of F defined by

F* = { $ e H / < ^ 7 ? » 0 Vr? G F} (1.1)

F* is a weakly closed convex cone in H. A subset H4^ is a self dual
cone if it coincides with its dual. There is a useful characterization
of self dual cones:

LEMMA 1.0. — Let H+ be a closed convex cone in the real Hilbert
space H. The following are equivalent:

i) H-' is self dual in H.
ii) For all $ m H there exists a unique decomposition called

the Jordan decomposition of ^ such that

s = r - r , r^H^rir^o (1.2)
Proof. — i) =» ii) : let ^ be in H and ^+ b6 the projec-

tion of ^ °i1 H"^. Then by a classical argument ([26], [41]),
r = y - $ E (H^* = H4 and <^, f-> = 0. If ^ - F and
rf — 77" are two decompositions of ^ then

nr - ̂ ii2 = <r - ̂ +, r - rr> = - <r,T?-> - (r^, r> < o.
Hence ^+ = ff and S~ = '*?"'•

ii) => i) : Suppose that S = F - F ^ (H^* and g ^ H^
Then 0 «r , £> = <F , F - F> = - lini2 Hence S; = ^ ̂  H+,
a contradiction. Suppose that S^H"" and $ ̂  (H"^)*. If 77 is the pro-
jection of { on (H^)* by the same argument as above 77 - ̂  E (H^)**
and < 7 7 - ^ , 7 y > = 0. By Hahn Banach's theorem (H')** = H^,
then ̂  == T? - (77 - f) is a decomposition of ^ and by hypothesis
77 — $ = 0 hence a contradiction. D

From now on let H'' be a self dual cone in the complex Hilbert
space H. The following proposition is well known (see for instance
[8],[19]).

PROPOSITION 1.1. - Let H3 be the space H+ - H^
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i) H1 is a real Hilbert space and H+ is self dual in tf.

ii) H = tf © f H1 ^d rte map J : Si + ^2 —" Si - ̂ 2 ^ ^ H1

^ a^ antiunitary involution in H.
iii) For any face F o/ H^ the set

F^^CH-^ ; < S , r ? > = = 0 Vr?GF} (1.3)

is a weakly closed face of H"^, called the orthogonal face of F.
Let < be the ordering defined by HT^ in H1. We recall that F is

a face in the convex cone HT^ if and only if F is a cone and 0 < rf < ^,
$ E F implies T? E F. Such a set satisfies F = (F - H^ H H^ For F
a face, let Pp be the orthogonal projection on the closed subspace
spanned by F. Clearly since H1 is closed, Pp commutes with J.
Therefore Pp can be restricted to rf.

LEMMA 1.2. - Let F be a face. Then

a) Fu= (F-H^HH^
b) The following are equivalent:

i) 7?GF 1

ii) 77 E H+ and PpT? = 0
iii) 77 G H"^ a^rf Ppiry = 17

Proo/ - a) By definition (F-H^* = - F1 and if o denotes
the polar then
F-^ = (F - H^00 = (F - H^** = (- F1)* = {{ E H ; <$, F1) < 0}
Therefore (F-H^) 0 H"^ = F11.

b) i ^ ii): If $ E tf , Ppf G F~F. Therefore there is a
sequence (.^n m F-F, converging to Pp^. Since r? G F1

(PF^, r?) = lim <$„, r?) == 0«
Because { is arbitrary, PpT? = 0.

ii) ^ i ) : I f ^ G F < 7 ? , ^ = < 7 ? , P ^ > = ( P p 7 ? , $ > = 0

i) ==^ iii) : immediate.

iii) =» i): If $ E F then ^ E F11. Using the equivalence of
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i) and ii) we have PpiS == 0- Therefore

<^>= <£,(Ppi7?>= 0 and T? G F1 n

COROLLARY 1.3. — For any face F m H^

F1 -Pp^ HH^ (1.4)

DEFINITION 1.4.
i) // A is a subset of H^ the smallest face containing A

is denoted by <A>.
ii) ^ G HT^ (5 a ^Mfl^f interior point if <^>1 = 0.

iii) $ £ H+ f5 a w^afc unit order if <^> = H+.

Remarks. — The definition i) is meaningful because any inter-
section of faces is a face.

— It is clear that any weak order unit is a quasi interior
point. It is not known if the converse is true at least in self dual cones.
However we have that:

— The existence of a quasi interior point in H+ is equi-
valent to H4^ is of denumerable type (see [19] def. 5.6).

- In a finite dimensional Hilbert space, a quasi interior
point is a weak order unit, (and also an order unit, or an interior
point).

PROPOSITION 1.5. — // H is separable, the set of weak order
units is dense in H^

Proof. — Since H is a separable metric space, H'1' is also a
separable and metric subset. Let thus (^)^eN ^e a dense countable
subset of the unit ball in H"". Then

S = S 2-" S. ^ H+

n

and 0 < ^ < 2" S . V n G N

Therefore {^}^C < g > and < $ > is dense.
Now let S bs a weak order unit in H^ and for n £ N* put

[^."S = ^GH^-^ < i ? < « $ j (1.5)
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Any element 17 in this order interval is also a weak order unit, since
(77) == < f > . Therefore the set

Y = = U -^.^l" I n J

contains only weak order units, and is dense in H4', because < ^ >

is dense in H'1' and for any 77 E < ^ > , 17,, = 77 4--^ E Y and. 77,,-̂  77.
D

Remark. — There exist non separable self dual cones in which
there is an order unit. Indeed, choose tf = R © h where A is a non
separable real Hilbert space, and H4-= {(^, S) E tf/^o > 11^11}.
Then, (1,0) G H3 is an order unit of H-".
However, any maximal family of mutually orthogonal vectors of
I-T has only two elements. Therefore f^ is of "denumerable type"
([19]).

LEMMA 1.6 ([13]).- Let f be a quasi interior point in H4'. Then
the set 0^ = {(PF - Ppi) $ ; F a face of H^ is total in tf.

Proof. — Let 77 be a vector in tf orthogonal to 0^ and let
i? = ̂  — 17" be its decomposition. If F = <77+>, then by the
lemma 1.2

( P F - P F l ) ^ = ^ + + ^ E H +

^d 0 = (77, (Pp - P^) ^> = (^+ + n- , f>

Since <$>1 = 0 , if = 77- = 0 and 77 == 0. D

If there exist non trivial closed subcones K,L of H4' such
that V^ == K © L, then it is easy to see that K and L are faces
satisfying K1 = L. We say that H+ is decomposable (resp. inde-
composable) if there exists (does not exist) a face F ̂  {OLH^
such that H^ = F ® F1. If such a face exists we call it a split face
of H4^ ([4]).

The set of bounded operators J?(H) leaving ^ invariant is
denoted by W).

For AE^H^, A* E W) and if F is a face, A-^F) is
also a face.
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LEMMA 1 .7 .— Let P be an orthogonal projection in ^(H4^).
Then P commutes with J and PHT^ is a self dual cone in PH.
Moreover

PH^PHr^ (1.6)

Proof. — Immediate. D

We define GHH4) to be the group of bounded invertible ope-
rators A on H, such that A and A~1 are elements of ^(H^)
and ^(H^ to be the subgroup of GLCH^ whose elements are uni-
tary operators.

PROPOSITION 1.8. -Let UEZKH-") be such that U < S > C < ^ > ,
§ E H^ Then U = 1

Proof. - (see [19] lemme 5.4). a

Let (W) = {§ E^(H)/^6 C GLOI^.WC R}. The elements
of (D(H4') are called derivations of H'1'. The following characteri-
zation of (SXft^) can be found in [19]; although the proof is made
for facially homogeneous cone, it works in any self dual cone. (see
[17] and also [47]).

PROPOSITION 1.9.
i) (D^) is a weakly closed Lie algebra in J?(H).

ii) 5 e fiXH"') if and only if

< S , r ? > = 0 S^^H^ implies < § S , T ? > = 0 (1.7)
The following definition is needed (see [5,57]).

DEFINITION 1.10. - The ideal-center Z_+ of (H.H^ is the
H

set of bounded operators T such that

3 c ^ > 0 , -a^<TS<o^ V ^ e H + (1.8)

We have then the following results ([13], [57]) where [ , ] denote
the commutator.

THEOREM 1 . 1 1 . — For an orthogonal projection P in -@(H),
the following are equivalent:
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i) Pez^.
ii) PH+ C H+ and (1 -P) H+ C H+.

iii) [P, J] = 0 and [P, P^] = 0 V^ e H+.
iv) PEC^ED.
v) P G Center of (DOf).

vi) F = PH+ is a split face.
vii) P ^ extremal in Z^. = {T G Z^+/ 0 < T$ < S , S ̂  H^.

COROLLARY 1.12 ([13,42]).

i) T E Z^. wzp&?5 T = T*.

ii) T G Z^+ y and only if any spectral projection of T is in
z^

iii) Z^ = {P^^ , { ^ H^'n {J}' where ' denotes the commu-
tant. In particular Z.-+ C fi)^).H

iv) Z^+ ^ ^A^ real part of an abelian von Neumann algebra.
v) I^ is indecomposable if and only if Z + = R1.

H

vi) rf is a lattice (for the ordering defined by H^ if and only
if Z + is maximal abelian.

n

Associated with the abelian von Neumann algebra generated by Z^+
there are direct integral decompositions of H, and also, of H^ (see
[42] for the definition).

THEOREM 1.13 ([42]). - Let H be a separable Hilbert space, H+

be a self dual cone in H. Then there exists a standard Borel space g,
a Borel positive measure v on g, v-integrable fields H(?) of Hilbert
spaces, H^?) of seld dual indecomposable cones, J(^) ofantiunitary
involutions and an isomorphism a of Hilbert spaces such that:

i) a(H) ==/^ H(?) dK?)

ii) aOT = f'H^n A/0)
^

iii) aja-1 = f J(?) ^(U
(1.9)

iv) aZ +a~1 ^ ^^ multiplicative algebra

^eal^'1')
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COROLLARY 1.14 ([40]). - // H+ defines a separable lattice order-
ing then H+ is isomorphic to L^(g , v) for a suitable standard Borel
space g, and Borel measure v.

In the sequel we will need only transformations of H"^ which
commute with Z , + . Therefore we call symmetry any element of

H
^UCH ) commuting with Z +, and the set of symmetries is denoted
by S^). In the same way, we denote by GL^tT) the subgroup
of elements of GLQff^) commuting with Z , + .

H

2. Homogeneous self dual cones.

For simplicity, H will be a separable Hilbert space in what
follows. In [19], A. Connes introduced the following definition.

DEFINITION 2.1. — Let H be a Hilbert space and H^ be a self
dual cone in H: H"1' is called facially homogeneous if for any face
F, the operator

NF = PF - Ppi (2.1)
is a derivation of H^

Note that a self dual cone H4, such that H3 is a lattice, is
facially homogeneous by corollary 1.12. So all L^(g, v) are facially
homogeneous. In the finite dimensional case, a self dual cone is fa-
cially homogeneous if and only if it is homogeneous in the ordinary
sense [11] (see [55, 56] and our introduction for the definition of
homogeneity). For this reason we will in the sequel write homogeneous
for facially homogeneous.

LEMMA 2.2. — Let FT be a homogeneous self dual cone, and
F be a face. Then :

i) PpH^ C W
ii) F^P^
iii) Pp =P^i and F11 = P F H +

Proof. - i) [1] e^F-^Ej?^) for all r E R and

Pp = s - lim e^^ E ^(H^ (JW) is weakly closed).
t —> 00
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ii) follows from the corollary 1.3.
iii) [13] P = P^j. - P^ = N^j. - N^ CCDCH^ and P is a

projector. Therefore W C H+ and if ^ C HT", { = P$, Pp^ = 0
and P i S = 0 thus { == 0 (Lemma 1.2). Since H4^ is generating,
P = 0. a

Remarks. — As far as we are concerned with facial projections
the previous result allows us to restrict ourselves to the faces F such
that F = F11. We called them completed faces and we denoted by
^(H^ the set of such faces. Therefore one has F G ^(H^ if and
only if

PFH+ = F (2.2)

Clearly a completed face is closed.
It is not known whether every closed face is complete in a homo-

geneous self dual cone but in the finite case it is known that:
A face F satisfies F = F11 if and only if the natural order induced
on H/p_F == {x 4- F—F/xEH} is archimedean. There are conter-
examples in three dimensions (See [32]).

The previous result shows that if $ is a quasi interior point in
H^ then <^> is a total set in H.

PROPOSITION 2.3. — Let H^ be a homogeneous self dual cone.
Then either dim H = 1 or ^(f^) is not reduced to {0} and Hr\

Proof. - Let $ be in tf and £ == ^+ - ̂ ~ be its Jordan de-
composition. If SiOf) is trivial then either <$+>ii is {0} or it is
H^ Therefore, either {+ == 0 or ^~ = 0, and consequently the
order in H3 is total.

Let now ^ and ^2 be two linearly independent vectors in
H1. Then, without loss of generality we can choose $ > { - > 0
and ||$j| = 11^11, since the order is total. Therefore

o-ii^ii'-iiy2- <^ -£2^+^>
and ^ - ̂  G (^ 4- ^>1. On the other hand 0 < ̂  - ̂  < ̂  + ^
This implies ^ = ^ which contradict our hypothesis. Therefore
dim-, H = 1. au
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LEMMA 2.4 ([27]). - Let H4^ be a homogeneous self dual cone.
If F G ^(H^ rt^z F is a self dual homogeneous cone in PpH.

Proof. - F == PpHT" C^ proves that F is self dual (Lemma
1.7). In order to prove the homogeneity we need the following lemma :

LEMMA 2.5. - Let }f be as above. Let F and G be faces
of H\ such that [Pp , PJ = 0. Then [Pp , P^i] = 0.

Proof. - If $ G PpP^iH"^ then P^f = 0 by hypothesis. Since
H+ is homogeneous the lemma 2.2 shows that ^ is also in H\ There-
fore (lemma 1.2) {; = P..J.S. H^ being generating:

PF P^i = P^i Pp^i and P, P^i = P^ P,.

Proo/ o/ the Lemma 2.4 (end). — Let G be a face in F. Then
G is also a face in H^ and N^^CD^); moreover P^ commutes
with Pp. Therefore by lemma 2.5, N^ commutes with Pp, and

N^ (F - F) C F - F , ^NG F C F \/t G R

(Note that F-F is closed because F is self dual in PpH).

In particular N^Pp = N^/p ^ ®(F). Now let G^F be the
orthogonal face of G in the cone F. We have that

G^F = G1 0 F
because { G G^F implies ^ G F and < { , G > = 0 . Since G1 and F
are completed faces, then G1 and F are self dual cones in the closed
subspaces they span. Thus (use Proposition 1.0):

G1 H F - G1 H F = (G1 - G1) 0 (F - F)

and consequently, P^ = P^ = P^ A P^ = P^ p^
which proves that F is homogeneous because

N / = = N P = P — P i Q^G/F "G'F ^ F G^F"
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COROLLARY 2.6. - Let H^ be as above. If H is separable, for
any face F e g^) there exists ^ E H" such that <S> = F.

Proof. - Apply the Proposition 1.5 to F. D

LEMMA 2.7. — Let H^ 6^ a homogeneous self dual cone and
{F^ be any family of completed faces in H^ Then F = n F is
also a completed face.

Proof. - Clearly F is a closed face, and F C F11. On the other
hand, FT being homogeneous, Pp = P 11. Therefore

^^Fll-^i va

and { E F11 implies Pp^ = S, hence $ e F^ == F^.Va. Thus:
F11 C n F^ = F. a D

DEFINITION 2.8. — Let V^ be a homogeneous cone and {F^J
be any family of completed faces in H^. Then A F^ is defined
to be n F^, a^d V F^ ro 6^ the smallest completed face containing
all the F^.

LEMMA 2.9. — Z^ HT^ 6^ fl5 above. For any family of completed
faces {F^}^ m H'1' rt^/i

Y(F^) = (A F,)1 (2.3)

In particular F v F1 = H^

Proo/ - Clearly
(UF^ { T ^ e H ^ a ^ e C o n v C U F 1 ) , 0 < T 7 < ^ }

a " a "

Therefore V F1 = (UF1)11.
a a a a

Now ^(UF^ is equivalent to: f E H+ and < $ , ^ > = 0 Va,
V^ C F^ a and to: ^E F^ == F^ Va.

Therefore <U F1)1 = A F . Da a a

The following is a generalisation of [9]. Theorem 4.1. for homo-
geneous self dual cones.
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COROLLARY 2.10. - The set ^(H^, ordered by inclusion, and
with the operations A , v , 1 is an orthocomplemented lattice. This
lattice is distributive if and only if H1 is a lattice.

Proof.- Clearly ^(W) is an orthocomplemented lattice. Suppose
that H1 is a lattice, then the algebra generated by (PF^FGS^H^ ls

abelian by corollary 1.12. Let F, G e g?^) then F = F A G ® F A G 1

because all faces are split faces. Thus F + G = F A G ® F A G 1 ® F 1 A G
and PF^ = Pp PG + PF P^i 4- Pp,i Pc == PF + PG - PF PG . So
I-PF^G -(I-PFKI-PG)^^ and FVG^F^G^F+G.
The application F —> Pp is an isomorphism between ^(H^ and
the projectors of Z,.+ which are distributive lattices.

Suppose tf is not a lattice, then there exists a face F in
^(H^ such that FeF^H^ Let ^ W and S^FeF 1 ,
(1 - N^,) f = ^+ - S~ the Jordan decomposition of (1 - N^) ^
(cf. 2.1) and G = ^+)11. If 77 € F A G then PpT? = T? and
(77, F> = 0. Hence <r? , r> == <^ (1 - N^) $> = 0 and
T? G <^>1 0 (S4-)11 = {0}. In the same way F AG1 = {0}. Thus
(FAGmFAG^ {0} and FA(GvG1) = F A H + = F so ^(H^
is not distributive, n

PROPOsmoN2.11.-Zer H4^ be a homogeneous self dual
cone. H^ is no lattice if and only if there exists two non trivial com-
plemented faces F and G such that [Pp,, P/J ^ 0.

Proo/ - Using theorem 1.11 and corollary 1.12, if H is not
a lattice, we can find ^ G }^ such that P<^ ^ Z^+. Since H'1' is
homogeneous, P^n = P^^ ^ Z^+ and therefore F == (^e ^(H""),
H'^^FeF1 . Let r? be a vector in ^ such that 7 ? ^ F © F 1 . That
means: N^77 = (Pp, 4- Pp,i) 17 ̂  17.
Let ^ — r?" be the Jordan decomposition of (1 — N^77, and G be
the face (r?'1')11. Then G is completed and P^ does not commute
with F; for, in the other case we would have (lemma 2.5)

0 = N^ N2^ (1 -N> = N^N^^ - rr) = N2^^ + r?-)

and lemma 2.2 implies rf == rf~ = 0.


