SURJIT SINGH KHURANA

Radon-Nikodym property for vector-valued integrable functions

<http://www.numdam.org/item?id=AIF_1978__28_3_203_0>
RADON-NIKODYM PROPERTY
FOR VECTOR-VALUED INTEGRABLE FUNCTIONS

by Surjit Singh KHURANA

It is proved in ([6], Theorem 1) that if a Banach space E possesses Radon-Nikodym ($R-N$) property, then the Banach space $L_p(E, \lambda)$, $1 < p < \infty$, of Bochner p-integrable functions also possesses this property. In this paper we give a new proof of the corresponding result when E is a Frechet space (i.e. a complete metrizable locally convex space [5]).

Let (Y, \mathcal{B}, ν) be a positive measure which is non-trivial (i.e., there exists a $B \in \mathcal{B}$ such that $0 < \nu(B) < \infty$) with $\mathcal{R} = \{A \in \mathcal{B}: (2(A)) < \infty\}$, E a Frechet space with $\{P_i\}$ an increasing sequence of semi-norms on E generating the topology of E, and $L_p(E, \lambda)$ the equivalence classes of strongly p-power integrable functions $Y \rightarrow E$, $1 < p < \infty$. (A function $f: X \rightarrow E$ is called strongly p-power integrable if there exists a sequence $\{f_n\}$ of \mathcal{R}-simple E-valued functions of Y such that (i) $f_n \rightarrow f$ a.e. $[\nu]$, and (ii) $\int [P_i(f_n - f)]^p \, d\nu \rightarrow 0$, $\forall i$. The increasing sequence of semi-norms

$$N_{i,p}, N_{i,p}(f) = \left[\int [P_i(f)]^p \, d\nu \right]^{1/p}$$

makes $L_p(E, \lambda)$ a Frechet space. We use the definition of [4] for a Frechet space to have $R-N$ property.

$E = K$, we denote $L_p(E, \nu)$ by $L_p(\nu)$ and the corresponding norm by $\| \cdot \|_p$.

Theorem. — *Suppose E is a Frechet space with $R-N$ property and (Y, \mathcal{B}, ν) a non-trivial positive measure space. Then $L_p(E, \nu)$ has $R-N$ property for $1 < p < \infty$.
Proof. — Using ([3], Theorem 5 (iv)) it is sufficient to prove the $R - N$ property for every separable closed subspace; this means we can assume that E is separable ([3], Theorem 5). Let $(X, \mathcal{U}, \lambda)$ be a finite measure space, $\mu : \mathcal{U} \rightarrow L_p(E, \nu)$ a measure of finite variation (i.e., $\forall i$, the variation of μ relative to $N_{p,i}$ is finite, [4]), absolutely continuous with respect to λ. Assume first that $\nu(Y) < \infty$ and let $\lambda \times \nu$ be the product of λ and ν on the σ-algebra $\mathcal{U} \times \mathcal{B}$.

For an $A \in \mathcal{U}, B \in \mathcal{B}$, define $\omega(A \times B) = \int_B \mu(A) \, d\nu \in E$
(since $\nu(Y) < \infty$, $P_i(\mu(A)) \in L_p(\nu), \forall i$, implies $P_i(\mu(A)) \in L_1(\nu)$). Take $\{A_i \times B_i\}$ a disjoint sequence in $X \times Y$ ($A_i \in \mathcal{U}, B_i \in \mathcal{B}$) and let $\bigcup A_i \times B_i = A \times B$ ($A \in \mathcal{U}, B \in \mathcal{B}$). Fix an $f \in E'$. $f \circ \mu : \mathcal{U} \rightarrow L_p(\nu)$ is of bounded variation and absolutely continuous relative to λ. Since $L_p(\nu)$ has $R - N$ property, there exists a function $\phi : X \times Y \rightarrow K$ such that

$$f \circ \mu(A) = \int_A \phi(x, y) \, d\lambda(x), \forall A \in \mathcal{U};$$

it is routine verification that $\phi(x, y) \in L_1(\lambda \times \nu)$. Thus

$$\int_{B_i} f \circ \mu(A_i) \, d\nu = \int_{A_i \times B_i} \phi(x, y) \, d(\lambda \times \nu)$$
(Fubini's theorem) and so

$$\sum \int_{B_i} f \circ \mu(A_i) \, d\nu = \int_B f \circ \mu(A) \, d\nu$$
(unconditional convergence). Since $\langle f, \int_{B_i} \mu(A_i) \, d\nu \rangle = \int_{B_i} f \circ \mu(A_i) \, d\nu$, (simple verification), $\forall f \in E'$, by Pettis-Orlicz theorem,

$$\sum \int_{B_i} \mu(A_i) \, d\nu = \int_B \mu(A) \, d\nu.$$

Also for a finite disjoint collection $\{C_i \times D_i\}$ in $X \times Y$ ($C_i \in \mathcal{U}, D_i \in \mathcal{B}$),

$$\sum \int_{D_i} f \circ \mu(C_i) \, d\nu = \int_{\bigcup C_i \times D_i} \phi(x, y) \, d(\lambda \times \nu)$$
(previous notation) and so

$$\left| f \circ \sum \int_{D_i} \mu(C_i) \, d\nu \right| \leq \int |\phi(x, y)| \, d(\lambda \times \nu).$$
Combining these results we see that ω can be uniquely extended to a finitely additive set function $\omega : \theta \rightarrow E$, θ being the algebra generated by $\{A \times B : A \in \mathcal{U}, B \in \mathcal{B}\}$. ω is countably additive, and $\omega(\theta)$ is bounded in E. Since E has $R - N$ property it cannot contain a subspace isomorphic to c_0 ([11]; [3], Theorem 5). From this it easily follows that ω is exhaustive ([2], II; [7], Theorem 4). Thus ω can be uniquely extended to a countably additive measure on the σ-algebra $\mathcal{U} \times \mathcal{B}$ ([2], III). We claim that $\omega \ll \lambda \times \nu$. For an $f \in E'$, $A \in \mathcal{U}, B \in \mathcal{B}$, $f \circ \omega(A \times B) = \int_{A \times B} \phi(x, y) \, d(\lambda \times \nu)$ (pre-
vious notations) and so \(f \circ \omega(H) = \int_H \phi d(\lambda \times \nu) \), \(\forall H \in \mathcal{U} \times \mathcal{B} \).

If \(\lambda \times \nu \) \((H) = 0 \) we get \(f \circ \omega(H) = 0 \) and so \(\omega(H) = 0 \).

We now prove that \(\omega \) is of finite variation. Fix \(i \in \mathbb{N} \) and let \(\lambda_0 = \) the finite variation of \(\mu \) relative to the semi-norm \(N_{i,p} \).

\(H = \{ f \in E', |f(x)| \leq P_i(x), \forall x \in E \} \)
is a metrizable compact subset of \((E', \sigma(E', E)) \) and so have a countable dense subset \(\{ f_j \} \). Let \(\phi_j \in L_1(\lambda_0 \times \nu) \) such that

\[f_j \circ \mu(A) = \int_A \phi_j(x, \nu) d\lambda_0(x) \]

(same reasoning as before).

Let \(\varphi_0 = \sup (|\varphi_1|, |\varphi_2|) \) and fix \(x \in X \). Take

\[B_1 = \{ y \in Y : |\varphi_1(x, y)| = \varphi_0(x, y) \} \text{ and } B_2 = Y \setminus B_1. \]

We claim the variation of \(\xi = \chi_{B_1} f_1 \circ \mu + \chi_{B_2} f_2 \circ \mu \), in \(L_p(\nu) \), does not exceed \(\lambda_0 \). From

\[|\xi(A)|^p = |(\chi_{B_1} f_1 \circ \mu + \chi_{B_2} f_2 \circ \mu)(A)|^p \]

we get \(\|\xi(A)\|_p \leq N_{i,p}(\mu(A)) \leq \lambda_0(A) \) and so the claim is established.

Now \(\xi(A) = \int_A (\chi_{B_1} \varphi_1 + \chi_{B_2} \varphi_2) d\lambda_0 \). If \(|\xi| \) is the variation of \(\xi \) relative to \(L_p(\nu) \), then \(|\xi|(A) = \int_A \|\chi_{B_1} \varphi_1 + \chi_{B_2} \varphi_2\|_p d\lambda_0 \).

If \(\|\chi_{B_1} \varphi_1 + \chi_{B_2} \varphi_2\|_p \geq 1 + \eta \) for some \(\eta > 0 \) on \(A \in \mathcal{U} \), then \(\lambda_0(A) \geq |\xi|(A) \geq (1 + \eta)\lambda_0(A) \) which means \(\lambda_0(A) = 0 \) and so \(\|\chi_{B_1} \varphi_1 + \chi_{B_2} \varphi_2\|_p \leq 1 \) a.e. \([\lambda_0] \). Now

\[\|\chi_{B_1} \varphi_1 + \chi_{B_2} \varphi_2\|_1 = \|\chi_{B_1} \varphi_1 + \chi_{B_2} \varphi_2\|_p (\lambda_0(X))^{1/q} \leq (\lambda_0(X))^{1/q} \]

(Holder's inequality with \(\frac{1}{p} + \frac{1}{q} = 1 \)) means

\[\int \varphi_0(x, \nu) d\nu(y) \leq (\lambda_0(X))^{1/q}, \text{ a.e. } [\lambda_0]. \]

Since \(x \in X \) was arbitrary we see \(\varphi_0(x, \nu) \in L_1(X \times Y, \lambda_0 \times \nu) \). If \(\varphi = \sup (|\varphi_1|, |\varphi_2|, \ldots) \), then proceeding in the same way we prove that \(\int \varphi(x, \nu) d\nu(y) \leq (\lambda_0(X))^{1/q}, \text{ a.e. } [\lambda_0] \) and so \(\varphi \in L_1(X \times Y, \lambda_0 \times \nu) \) (the set where \(\varphi \) takes values \(+\infty \) has measure zero; we put \(\varphi \equiv 0 \) on that set). Fix \(\epsilon > 0 \) and let \(\{ H_j \} \)
be a finite disjoint collection in \(\mathcal{U} \times \mathcal{B} \).

\[
\sum_j P_i(\omega(H_j)) - \epsilon \leq \sum_j |f_{k(j)} \circ \omega(H_j)| \leq \sum_j \int_{H_j} |f_{k(j)}| d(\lambda_0 \times \nu) \leq \sum_j \int_{H_j} \varphi d(\lambda_0 \times \nu) \leq \int \varphi d(\lambda_0 \times \nu)
\]
for some finite sequence \(\{k(j)\} \subset \mathbb{N} \). This proves \(\omega \) is of finite variation. Since \(E \) has \(R - N \) property we get a \(g \in L_1(E, \lambda \times \nu) \) such that
\[
\int_B \mu(A) d\nu = \int_B \int_A g(x, y) d\lambda(x) d\nu(y).
\]

Put \(\psi = \mu(A) - \int_A g(x, y) d\lambda(x) \). We get \(\int_B \psi d\nu = 0, \forall B \in \mathcal{B} \). Fix \(i \in \mathbb{N} \) and let \(\{f_i\} \) be a countable dense set in the compact metric space
\[
H = \{f \in E' : |f(x)| \leq P_i(x), \forall x \in E \} \subset (E', \sigma(E', E))
\]
We get \(\int_B f_i \circ \psi = 0, \forall B \in \mathcal{B} \) and so \(P_i(\psi) = 0 \) a.e. \([\nu] \). Thus \(\psi = 0 \) a.e. \([\nu] \). Thus \(\mu(A) = \int_A g(x, y) d\lambda(x) \). It is easy to verify that \(g(\cdot, x) \in L_1(L_p(E, \nu), \lambda) \).

Now we consider the case when \(\nu(Y) = +\infty \). By ([3], Theorem 5) it is enough to prove the result for every closed separable subspace of \(L_p(E, \nu) \). Let \(F \) be a closed separable subspace of \(L_p(E, \nu) \). It is a simple verification that there exists a \(B \in \mathcal{B} \) with \(\sigma \)-finite \(\nu \)-measure such that \(f = 0 \) a.e. \([\nu] \) outside \(B \), \(\forall f \in F \). Thus ([3], Theorem 5) we can assume that \(\nu \) is \(\sigma \)-finite. Let \(\{K_n\} \) be a \(\mathcal{B} \)-measurable partition of \(Y \), such that \(0 < \nu(K_n) < \infty, \forall n \). Define \(\nu_n = \chi_{K_n} \nu, \nu_n : \mathcal{B}_n \rightarrow [0, \infty), \mathcal{B}_n = \mathcal{B} \cap K_n \). Given \(\mu \) as before, we get \(\mu_n : \mathcal{U} \rightarrow L_p(E, \nu_n), \mu_n(A) = \chi_{K_n} \mu(A) \in L_p(E, \nu_n) \).
It is easy to verify that \(\mu_n \) is of finite variation relative to \(L_p(E, \nu_n) \) and absolutely continuous relative to \(\lambda \). Proceeding as before we get \(g_n : X \times K_n \rightarrow E \) such that
\[
\mu_n(A) = \int_A g_n(x, y) d\lambda(x) = \int_A \chi_{K_n} g_n(x, y) d\lambda(x).
\]
Define \(g(x, y) = g_n(x, y), y \in K_n, \) we claim
\[
\mu(A) = \int_A g(x, y) d\lambda(x).
\]
If \(\mu(A) = f \in L_p(E, \nu) \), then
\[
(P_i(\mu(A) - \sum_{j=1}^{k} \mu_j(A)))^p \leq (P_i(f))^p
\]
and so by dominated convergence theorem \(\sum_{j=1}^{k} \mu_j(A) \) converges to \(\mu(A) \) in \(L_p(E, \nu) \). Let \(|\mu| \) and \(\left| \sum_{j=1}^{k} \mu_j \right| \) be the variations of \(\mu \) and \(\sum_{j=1}^{k} \mu_j \) relative to \(N_{t,p} \). Then
\[|\mu|(A) \geq \left| \sum_{j=1}^{n} \mu_j \right|(A) = \int_{\mathcal{A}} N_{i,p} \left(\sum_{j} \chi_{K_j} g_j \right) d\lambda. \]

By monotone convergence theorem \(N_{i,p}(g) < \infty \), a.e. \([\lambda]\) and \(\int N_{i,p}(g) d\lambda < \infty \). On the set where \(N_{i,p}(g) = +\infty \) we change its value and the value of each of \(g_n \) to 0 and so \(g(\cdot, x) \in L_p(\mathcal{E}, \nu) \), \(\forall x \in X \). Now it is easy to verify that \(h_n = \sum_{j=1}^{n} \chi_{K_j} g_j \) converges to \(g \) in \(L_p(\mathcal{E}, \nu) \), a.e. \([\lambda]\) and \(N_{i,p}(g - h_n) \), as a function of \(x \), is decreasing as \(n \) increases. By monotone convergence theorem, \(\int N_{i,p}(g - h_n) d\lambda \to 0 \). Thus
\[
N_{i,p} \left(\int \chi_{\mathcal{A}} g d\lambda - \int \chi_{\mathcal{A}} h_n d\lambda \right) \leq \int N_{i,p}(g - h_n) d\lambda \to 0
\]
and so \(\int \chi_{\mathcal{A}} h_n d\lambda \to \int \chi_{\mathcal{A}} g d\lambda \) in \(L_p(\mathcal{E}, \lambda) \). But
\[
\int \chi_{\mathcal{A}} h_n d\lambda = \sum_{j=1}^{n} \mu_j(A) \to \mu(A)
\]
and so \(\mu(A) = \int \chi_{\mathcal{A}} g d\lambda \). The result now follows easily.

BIBLIOGRAPHY

Manuscrit reçu le 21 septembre 1977
Proposé par G. Choquet.

Surjit Singh Khurana,
Department of Mathematics
University of Iowa
Iowa City, Iowa 52242 (USA).