CHARLES J. K. BATTY

On some ergodic properties for continuous and affine functions

<http://www.numdam.org/item?id=AIF_1978__28_3_209_0>
ON SOME ERGODIC PROPERTIES
FOR CONTINUOUS AND AFFINE FUNCTIONS

by C.J.K. BATTY

1. Introduction.

Let \(X \) be a compact Hausdorff space, let \(C(X) \) denote the space of continuous real-valued functions on \(X \), and let \(T \) be a positive linear operator of \(C(X) \) into itself. Choquet and Foias [1] have considered convergence properties of the iterates \(T^n \) of \(T \) and the associated arithmetic means \(S_n = n^{-1} \sum_{r=0}^{n-1} T^r \). In particular, they obtained the following two results [1, Théorèmes 13, 1]:

Theorem 1.1. — *If, for some non-negative function \(f \) in \(C(X) \), \(S_n f \) converges pointwise to a continuous strictly positive function, then the convergence is uniform on \(X \).*

Theorem 1.2. — *If, for each \(x \) in \(X \), \(\inf \{(T^n 1) (x) \colon n \geq 1\} < 1 \), then \(T^n 1 \) converges to 0 uniformly on \(X \).*

Choquet and Foias showed that the condition that the limit in theorem 1.1 is strictly positive cannot be removed [1, Exemple 11]. They then raised the following problem:

Problem 1. — *Suppose that \(S_n 1 \) converges pointwise to a continuous limit. Is the convergence necessarily uniform?*

If \(M(X) \) denotes the set of Radon measures on \(X \), identified with \(C(X)^* \), and \(P(X) \) is the set of probability measures in \(M(X) \), then \(P(X) \) is weak*-compact and convex, its extreme boundary \(\partial^* P(X) \) consists of the measures \(\epsilon_x \) concentrated at one point \(x \)
of X, and there is an isometric order-isomorphism $f \mapsto \hat{f}$ of $C(X)$ onto the space $A(P(X))$ of continuous affine real-valued functions on $P(X)$, given by $\hat{f}(\mu) = \int f \, d\mu$. This raises a second problem.

Problem 2. Suppose that K is a compact convex subset of a locally convex space, and T is a positive linear operator on $A(K)$ such that for each x in $\partial_\varepsilon K$, $\inf \{(T^n)^{-1}\chi(x): n \geq 1\} < 1$. Does it necessarily follow that $\|T^n\| \to 0$?

In § 2 we shall show (corollary 2.5) that the answer to problem 1 is affirmative, and in § 3 we shall give an example to show that the answer to problem 2 is negative, although it becomes affirmative if $\partial_\varepsilon K$ is replaced by its closure $\overline{\partial_\varepsilon K}$ in K.

2. Uniform convergence of arithmetic means.

Let T be a positive linear operator on $C(X)$, and σ be a non-negative function in $C(X)$. Let $F_\sigma = \sigma^{-1}(0)$ and G_σ be the complement of F_σ in X. For x in G_σ and $n \geq 1$ there is a bounded Radon measure $\mu^n_{x,\sigma}$ on G_σ such that

$$\int g \, d\mu^n_{x,\sigma} = \sigma(x)^{-1} T^n(g \cdot \sigma)(x)$$

for all functions g in the space $C^b(G_\sigma)$ of continuous bounded real-valued functions on G_σ. For a Borel-measurable function f defined $\mu^n_{x,\sigma}$-a.e. in G_σ, put $(T^{(n)}_\sigma f)(x) = \int f \, d\mu^n_{x,\sigma}$ if the integral exists.

Lemma 2.1. For x in G_σ, $n \geq 1$ and any bounded Borel function f on G_σ, $T^{(n)}_\sigma (f \cdot \sigma^{-1})(x) = \sigma(x)^{-1} T^{(n)}_1(\chi_{G_\sigma} \cdot f)(x)$, where χ_{G_σ} is the characteristic function of G_σ, and both sides of the equality exist.

Proof. Suppose that f is continuous and non-negative. Let (g_λ) be an increasing net of continuous non-negative functions on X with support in G_σ and converging pointwise to χ_{G_σ}. Then $g_\lambda \cdot f \cdot \sigma^{-1} \in C^b(G_\sigma)$, and

$$\sigma(x) \int g_\lambda \cdot f \cdot \sigma^{-1} \, d\mu^n_{x,\sigma} = T^n(g_\lambda \cdot f)(x) = \int g_\lambda \cdot f \, d\mu^n_{x,1}.$$

The right-hand integral increases to the finite integral $\int \chi_{G_\sigma} \cdot f \, d\mu^n_{x,1}$, so the result follows immediately in this special case.
The case when \(f \) is lower semi-continuous follows by approximating \(f \) from below by continuous functions, and the general case from the fact that the bounded Borel functions form the smallest linear space containing the lower semi-continuous functions and closed under bounded monotone sequential limits.

Now suppose that \(T_\sigma \leq \beta \sigma \) for some real number \(\beta \). Then \(T^{(n)}_\sigma \leq \beta^n \), so \(T^{(n)}_\sigma \) maps \(C^b(G_\sigma) \) into itself. It follows immediately from the definitions that the following identity is valid for \(f \) in \(C^b(G_\sigma) \):
\[
T^{(m)}_\sigma(T^{(n)}_\sigma f)(x) = (T^{(m+n)}_\sigma f)(x).
\]
Elementary integration theory shows that this identity is valid for any Borel function \(f \) on \(G \), in the sense that if either expression exists then so does the other and they are equal. We shall therefore write \(T^n_\sigma \) instead of \(T^{(n)}_\sigma \). This discussion applies in particular to the case \(\sigma = 1 \) when it is consistent to write \(T \) instead of \(T_1 \).

For \(x \) in \(F_\sigma \), \(0 \leq (T^n_\sigma a)(x) \leq \beta^n \sigma(x) = 0 \) so \(\mu^n_{x,1}(G_\sigma) = 0 \). Thus \(T^n(x_\sigma \cdot f) = 0 \) on \(F_\sigma \). Note that this is consistent with lemma 2.1 which gives
\[
T^m_\sigma(T^n_\sigma(f \cdot \sigma^{-1})) = \sigma^{-1}T^m_\sigma(x_\sigma \cdot T^n_\sigma(x_\sigma \cdot f))
\]
\[
T^{m+n}_\sigma(f \cdot \sigma^{-1}) = \sigma^{-1}T^{m+n}_\sigma(x_\sigma \cdot f).
\]

Lemma 2.2. – Suppose that \(T_\sigma \leq \sigma \) and \((T_1)(x) < 1 \) for all \(x \) in \(F_\sigma \). Then there is a real number \(\alpha \) such that \((T^n_\sigma \chi_\sigma)(x) \leq \alpha \) for all \(n \geq 1 \) and \(x \) in \(G_\sigma \).

Proof. – By continuity and compactness, there is a neighbourhood \(U \) of \(F_\sigma \) and real numbers \(\beta_1 < 1 \) and \(\beta_2 \geq \beta_1 \) such that
\[
T_1(x) \leq \beta_1 \quad \text{(} x \in U \text{)}
\]
\[
T_1(x) \leq \beta_2 \sigma(x) \quad \text{(} x \in K \setminus U \text{)}.
\]
Let \(\alpha = (1 - \beta_1)^{-1} \beta_2 \|\sigma\| \). Then \(T_1 \leq \alpha \) and \(T_1 \leq \beta_1 + \beta_2 \sigma \).

In particular, \(T_\sigma \chi_\sigma \leq T_1 \leq \alpha \). Now suppose that \(T^n_\sigma \chi_\sigma \leq \alpha \) on \(G_\sigma \), and take \(x \) in \(G_\sigma \). Using lemma 2.1 and the fact that \(T_0 \mu_1 \leq 1 \),
\[
(T^{n+1}_\sigma \chi_\sigma)(x) = T^n(T_\sigma \chi_\sigma)(x) = \sigma(x) T^n_\sigma(\sigma^{-1} \cdot T_\sigma \chi_\sigma)(x)
\]
\[
\leq \sigma(x) T^n_\sigma(\beta_1 \sigma^{-1} + \beta_2)(x)
\]
\[
\leq \beta_1(T^n_\sigma \chi_\sigma)(x) + \beta_2 \sigma(x)
\]
\[
\leq \beta_1 \alpha + \beta_2 \sigma(x)
\]
\[
\leq \alpha.
\]
Lemma 2.3. — Let F be a Borel subset of X, χ be the characteristic function of the complement of F in X, and

$\delta = \sup \{ (T1) (x) : x \in F \}.$

Then

$$T^n 1 \leq \delta^n + \sum_{r=1}^{n} \delta^{r-1} T^{n-r} (\chi \cdot T1).$$

Proof. — It is trivial that $T1 \leq \delta + \chi \cdot T1$. Suppose the lemma holds for some integer n. Then since T is positive,

$$T^{n+1} \leq \delta^n T1 + \sum_{r=1}^{n} \delta^{r-1} T^{n+1-r} (\chi \cdot T1) \leq \delta^{n+1} + \sum_{r=1}^{n+1} \delta^{r-1} T^{n+1-r} (\chi \cdot T1).$$

Theorem 2.4. — Let T be a positive linear operator on $C(X)$ and suppose that there is a non-negative continuous function σ on X such that $T \sigma \leq \sigma$ and $(T1) (x) < 1$ whenever $\sigma(x) = 0$. Then

$\{T^n 1 : n \geq 1\}$ is uniformly bounded.

Proof. — Take α as in lemma 2.2 and

$$\delta = \sup \{ (T1) (x) : x \in F_\alpha \} < 1.$$

By lemma 2.3, for x in G_α,

$$(T^n 1) (x) \leq \delta^n + \alpha \|T1\| \sum_{r=1}^{n} \delta^{r-1} \leq \delta^n + (1 - \delta)^{-1} \alpha \|T1\|.$$

Also $T^n 1 = T((1 - x\sigma) T^{-1} 1)$ on F_α, so a simple inductive argument shows that $T^n 1 \leq 1$ on F_α.

Corollary 2.5. — Suppose that $S_{n,1}$ converges pointwise to a continuous limit σ. Then the convergence is uniform.

Proof. — It is shown in the proof of [1, Lemme 12] that $T \sigma \leq \sigma$. Hence $\mu_{x,1}^1 (G_\sigma) = 0$ for x in F_σ, so T induces a positive linear operator \tilde{T} on $C(F_\sigma)$ given by

$$(\tilde{T}f) (x) = \int_{F_\sigma} f \, d\mu_{x,1}^1.$$

Now $\tilde{T}^n 1$ is the restriction of $T^n 1$ to $F_\sigma = \sigma^{-1} (0)$, so $\inf \{ \tilde{T}^n 1 : n \geq 1 \} = 0$. By theorem 1.2 there is an integer m such that $T^m 1 < 1$ on F_σ. Applying theorem 2.4 to T^m, it follows that $\{T^m n : n \geq 1\}$ is uniformly bounded. Hence $\{T^n 1 : n \geq 1\}$ is uniformly bounded. The result now follows from [1, Théorème 10].
3. Affine functions.

We shall now give an example to show that the answer to problem 2 is negative in general, even if K is a simplex.

Example 3.1. - Let N be the linear span in $M[0,1]$ of $\lambda - \varepsilon_0$, where λ is Lebesgue measure on $[0,1]$, let $\pi: M[0,1] \rightarrow M[0,1]/N$ be the quotient map, and let $K = \pi(P[0,1])$. Then K is a simplex with extreme boundary $\partial_\varepsilon K = \{\pi(\varepsilon_x): x \in (0,1]\}$, and there is an isometric isomorphism Φ between $A(K)$ and the space $C_0[0,1]$ of functions f in $C[0,1]$ satisfying $f(0) = \int_0^1 f(x) \, dx$, given by $\Phi^{-1}(f) \circ \pi = \hat{f}$ ($f \in C_0[0,1]$). We shall identify these spaces.

Let g be any continuously differentiable function of $[0,1]$ into itself (in the sense of one-sided derivatives at the end-points) such that

$$
g(0) = 0, \quad g'(0) = 1$$

$$g(x) > x, \quad g'(x) \geq 0 \quad (x \in (0,1))$$

$$g(1) = 1, \quad g'(1) = 0.$$

Define the operator T by $(Tf)(x) = g'(x) f(g(x))$. Then T is a positive linear operator of $C_0[0,1]$ into itself.

For any x in $(0,1]$, let $x_0 = x$, $x_r = g(x_{r-1})$. Then x_r increases to the limit 1, so $g'(x_r) \rightarrow 0$. Now

$$(T^n)(x) = \prod_{r=0}^{n-1} g'(x_r) \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty.$$

Thus T satisfies all the required properties. However

$$||T^n|| \geq |(T^n)(0)| = 1.$$

It is noted in [1] that Mokobodzki has shown that problem 2 has an affirmative answer if $\partial_\varepsilon K$ is closed. This is a special case of the following result, which deals with a general K, but assumes a strengthened condition on T. The proof is based on one of those given in [1].

Theorem 3.2. - Let K be a compact convex set, let $\overline{\partial_\varepsilon K}$ be the closure of its extreme boundary, and let T be a positive linear operator on $A(K)$. If, for each x in $\overline{\partial_\varepsilon K}$, $\inf \{(T^n)(x): n \geq 1\} < 1$, then $||T^n|| \rightarrow 0.$
Proof. — For a bounded real-valued function g on K, and x in K, put $(\tilde{T}g)(x) = \inf \{(Ta)(x): a \in A(K), a \geq g \text{ on } \partial_e K\}$. Then $\tilde{T}(\lambda g) = \lambda \tilde{T}g$, $\tilde{T}g_1 \leq \tilde{T}g_2$ if $g_1 \leq g_2$ on $\partial_e K$, and $\tilde{T}a = Ta$ for a in $A(K)$.

By compactness of $\overline{\partial_e K}$, there is an integer r and constant $\alpha > 0$ such that if $g_0(x) = \min \{((T + a)^n)(x): 1 \leq n \leq r\}$, then $g_0 \leq 1$ on $\overline{\partial_e K}$. Then $(\tilde{T} + \alpha)g_0 \leq (T + \alpha)1$ on $\partial_e K$. Also $g_0 \leq (T + \alpha)^n 1$, so $(\tilde{T} + \alpha)g_0 \leq (T + \alpha)^{(n+1)} 1$ $(1 \leq n \leq r)$. Hence, on $\partial_e K$, $(\tilde{T} + \alpha)g_0 \leq g_0$, so $\tilde{T}g_0 \leq (1 - \alpha)g_0$.

Now $g_0 \geq \alpha^r$, so $T^n 1 \leq \alpha^{-r} \tilde{T}g_0 \leq \alpha^{-r}(1 - \alpha)^n g_0$ on $\partial_e K$. The result now follows.

Similarly one may modify the proof of Théorème 2 of [1] to show that if, under the conditions of theorem 3.2,

$$\sup \{((T^n 1)(x): n \geq 1}\} > 1$$

for each x in $\overline{\partial_e K}$, then $\|T^n\| \to \infty$.

Example 3.3. — Let H be a complex Hilbert space, and x be an operator on H such that $x - \alpha$ is compact for some scalar α with $|\alpha| < 1$. Suppose that for each unit vector ξ in H, $\|x^n\| < 1$ for some n (possibly dependent on ξ). If x is self-adjoint, the spectral theorem may be used to deduce that $\|x\| < 1$. However it is easily verified for example that any non-self-adjoint operator x of rank 1 and norm 1 also satisfies $\|x^n\| < 1$.

Let A be the C^*-algebra spanned by the identity and the compact operators on H, and let K be its state space. It is well-known that the evaluation map is an isometric order-isomorphism of the self-adjoint part A^s of A onto $A(K)$, and that $\partial_e K$ consists of the vector states ω_ξ $(\xi \in H, \|\xi\| = 1)$ given by $\omega_\xi(a) = \langle a\xi, \xi \rangle$ together with the unique state ϕ_0 annihilating the compacts [2, Corollaire 4.1.4]. Using the weak compactness of the unit ball of H it is easy to see that $\partial_e K$ consists of states of the form $\beta \omega_\xi + (1 - \beta) \phi_0$ $(\beta \in [0,1])$.

If x satisfies the above conditions, and T is defined by $Ta = x^* ax$ then T is a positive linear operator on A^s, and

$$(\beta \omega_\xi + (1 - \beta) \phi_0)(T^n 1) = \beta \|x^n \xi\|^2 + (1 - \beta) |\alpha|^{2n} < 1$$

for some n. Theorem 3.2 now shows that $\|T^n 1\| \to 0$, so $\|x^n\| \to 0$.
Acknowledgements.

I am grateful to Professor Choquet and to Dr G.F. Vincent-Smith for helpful discussions on this paper, and to the Science Research Council for their financial support.

BIBLIOGRAPHY
