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PROPERTIES
OF ORLICZ-PETTIS OR NIKODYM TYPE

AND BARRELLEDNESS CONDITIONS

by Philippe TURPIN

1. Introduction.

1.1. The following result is known (it is an easy consequence of [7],
[21] (proposition 0.5)).

THEOREM 1 .1 .— Let a vector space F be locally convex metrizable
and complete for a linear topology y . Let ̂  be a Hausdorff linear
topology on E , coarser than ST . Let ^ be a o-ring of subsets of a
set T and /z :^f——> F an additive set function.

Then, p.(^f) is bounded for ST if the convex hull of JLI(^) is
bounded for ST^ .

Proof. — The space S(T,^f) of ^ -simple functions is barrelled
for the topology y^ of uniform convergence on T ([7 ] (lemma 2.4).
[13] (proposition 6) and references of [13] ; see also [10] (pp. 145 and
217)). The assumption on jn implies that the mapping x ——^ fx dp. of
S(T,.?f) into F is continuous for ST^ and therefore for ^(closed
graph theorem, [11] p. 40).

The barrelledness of (S(T,^f),5^J gives also the following gene-
ralization of the Nikodym uniform boundedness principle ([5], [20],
[21] (lemma 0.6)).

THEOREM 1.2. — Let G be a locally convex topological vector
space, ^ a o-ring : every pointwise bounded set M of bounded addi-
tive set functions ^ ——^ G is equibounded on ^ .
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The following Orlicz-Pettis type theorem 1.3 ([7], [21]) is an easy
consequence of theorem 1.1; a-exhaustive spaces are defined in defi-
nition 1.5 below.

THEOREM 1.3. — Let a vector space F be locally convex, com-
plete, metrizable and a-exhaustive for a linear topology y, let ^ be
a a-ring.

Then, if a set function jn : jf —^ F is a-additive for some
convex Hausdorff linear topology ^ on F coarser than ^ , p. is
a-additive for ST .

1.2. In section 2 below, the theorem 2.3 shows (via the proposi-
tion 2.2) that theorems 1.1 and 1.3 are false if F is a suitable (non
locally convex) Orlicz space of generalized sequences.

And in section 3 the theorem 3.2 shows that the uniform boun-
dedness principle (theorem 1.2 above) is not verified by some non
locally convex space G .

One may ask whether these theorems remain true under suitable
hypotheses of generalized convexity ("galb" hypotheses [22]). In
section 5 the problems of extending theorems 1.1 or 1.2 are reduced to
the study of certain barrelledness conditions (introduced in section 4)
related to the notion of galb. This shows that these problems are
equivalent. A (very small) galb is evaluated for which the corresponding
barrelledness condition is not fulfilled : this refines the sections 2 and
3. A positive result for the galb of p-convexity, 0 <p < 1, would
permit to generalize a theorem of Bennett and Kalton to Hardy classes
W , p > 0 .

In theorem 3.1 we mention a little extension of theorem 1.2, of an
other kind.

1.3. Let us make precise our terminology and notations.
R, R.(_ , N are the sets of real numbers, non negative real numbers,

non negative integers.
An F-seminorm of a (real) linear space E is a function

v : E ——> R^ verifying, for

x E E, y C E, r G R, v(x 4- y ) < v(x) 4- v(y), v(rx) < v(x) if \r\ < 1

and v(rx)——> 0 when r——^ 0. An F-seminorm v [smF-norm when
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v(x) = 0 ==> x = 0 . An F-seminormed (resp. F-normed) space
(E, v) is a vector space endowed with an F-seminorm (resp F-norm) v
and with the associated linear topology.

A subset B of a topological vector space E (resp of an F-
seminormed vector space (E, v)) is said to be bounded (resp metrically
bounded) when B is absorbed by every neighbourhood of 0 (resp
when sup{v(x) \x G B} < oo).

If ^f is a ring of subsets of a set T, S(T, J»f) is the vector
subspace of ^ generated by the set of the characteristic functions
XH , H € ^ .

If ^ is a ring and E a vector space, a fonction ^t : ^f—> E is
additive when JLI(H U K) = JLI(H) + ju(K) as soon as H € jP and
K E jf are disjoint.

If E is endowed with a linear topology 3' (resp with an F-
seminorm v) ^ : ^ —> E is bounded (resp metrically bounded)
when iJi(J^) is bounded (resp metrically bounded). A set M of func-
tions ^f——^ E is equibounded (resp metrically equibounded) when
{JLI(H) I j L i G M , H G ^f} is bounded (resp metrically bounded), point-
wise bounded when {^(H) | /A G M} is bounded for every H E Jf .

DEFINITION 1.4 ([3]). - An additive set function JLI : X"—^E ^
exhaustive when M(H^)—^ 0 for every disjoint sequence (H^) C ^f .

DEFINITION 1.5. - We say that a topological vector space E is
exhaustive (resp a-exhaustive) when, for every ring (resp a-ring) ^ ,
every bounded additive set function fJi : ^ ——> E is exhaustive.

1.4. Every bounded subset of a topological vector space E is
metrically bounded for every continuous F-seminorm of E . The
converse is generally false but ([23]) it is true if E is galbed by some
sequence (a^) with a^ > 0 for every n (definition 4.1 infra).

Every exhaustive additive set function with values in an F-
seminormed space is metrically bounded ([3]), but it may be unboun-
ded ([24]).

A metrically bounded additive set function with values in a
Musielak-Orlicz space L^(ft) is bounded (and even with bounded
convex hull) if sup ^(r, cj) = °° for almost every a? E t2 (see [8],

r>o
generalized in [16], [25], [9]).
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2. Counterexample to the Orlicz-Pettis property.

2.1. For every integer n > 1, let us define a constant d^ in the
following way. If N = 2"4'1, let SN = {O,!}1^ be the set of points
of R1^ with coordinates equal to 0 or 1 ; let ^n be the (finite) set
of the affme subspaces L of R1^ generated by n 4- 1 points of S^
and verifying 0 ^ L. If |;cL = sup|x,| for x = (x,) E R1^, we let

^ =inf{ | ;cL | jcE u L } . (1)
L€^

The ^'^ will be used via the following lemma. B(T) is the space
of bounded functions T ——> R .

LEMMA 2.1. - Let H, , 0 < I < n, be n+ 1 subsets of a set T
and suppose that XH() does not belong to the vector subspace V of
B(T) generated by { X H . I 1 ̂  l<t n}' Then we have the inequality

inf IXHo-^l-^
xev

where |xL = sup |x(r)| for every x ^ B(T) .
f€T

Indeed, let ^ be the ring generated by the H/5, 0 < i < n, and
let ^ be the partition of U H, associated to (H,). Endowing the

vector space S(T, 3t ) with the basis {XH I H € ^}, we construct an
affme isometry a of (S(T, m ), |.L) onto a subspace of (R1^, I . l o o ) ,
with N^"-^, verifying O^XH^SN for every H G ^ and
^ ( X H o ) " 0 ' Hence ^(V)^^ and \\^-x\^-= \oi(x')\^> d^ if
x C V .

Let us establish the following minoration of d^ (which can cer-
tainly be improved).

log^^ >-(n + 1)2" . (2)

If L €^ and N = 2"4'1 , L is contained in an affine hyperplan
P of R1^ which is generated by N linearly independent points
s^ C SN , 1 < / < N . We have P = {x E R^ |/(x) = 1} for some linear

N
form / : x —> ^ a, x, of R^ . The a / s are solutions of the Cramer
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N

system ^ a, ^., = 1 , 1 < / < N , with s^ , C {0 , 1} . ̂ . = D,/D , D,
1=1

and D being determinants of matrices of order N with entries equal
to 0 or 1 . Hence |DJ < 21-N N^2 ([2]), |D| > 1 and

N N

^ |a,| < N^2 . So, for every x G L, |xL>(^ |a,l)-1 > N-^2

/=! \'=1 /

and (2) follows.

2.2. Let <^ be a subadditive Orlicz function, that is an increasing
and continuous map < / ? : R^—> R^ verifying </?(0) = 0, ^(r) > 0 for
r > 0 and ^(r, -{- r ^ ) < ^(^1) 4- (p(^) for ^1 and ^ in R + .

If S2 is a set we consider the Orlicz space l^(ft) of generalized
real sequences x = 0^)^e.n defined by

l^(i2) ={^E R" ||x|^ = ^ ^J) <00}'
cjen

PROPOSITION 2.2. - 1^(?2) /5' a^ exhaustive complete metrizable
topological vector space for the F-norm |. |

For the exhaustivity, see [15] (theorem 4).
The proposition 2.2 and the following theorem show that

theorems 1.1 and 1.3 are false if Sf is not assumed to be locally convex.

THEOREM 2.3. - Let ^f be an infinite ring of subsets of a set T ,
let ft be a set having the cardinality of the continuum, and let ^ be
a subadditive Orlicz function verifying the condition

00

\fs < oo , ^ ^-1 (5/0 = a(d^) when n —^ oo, (3)
i=n

v^here d^ is defined by ( I ) .
Then, there exists an additive set function IJL : ^—^ 1^ (S2)

which is a-additive and bounded for some Hausdorff locally convex
topology y^ on l^^) coarser than the topology of the F-norm \. \^ ,
but which verifies

sup |^i(H)| = oo
He^f

(and consequently [3], which is not exhaustive for the F-norm \.\^) .
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Owing to (2), the condition (3) is verified if
log^ (|log r\) = 0 ^p(r)) when r —> 0 for some p > - 1.

In (3) ^-1 is defined by ^~1 (r) = sup [r > 0 |<^(r) < t}.
Let Jf be the a-algebra of all subsets of N .
We take for Sl a subset of ^ containing {{h]\h G N} and such

that (x^)o;en is a Hamel basis of the vector space S(N , cC).

If x G l^ft) the series ^ ^c^ XG, converges in the Banach
o>en

space l0'^ l^CN)) of the bounded sequences (for the supnorm I . loo).
Indeed, < ^ , being sub additive, verifies ' '=^(<^M) when r—>-0

and (x^ I a? G ^2} is bounded in I00.
This allows to define a continuous linear map u : ^(Sl)—> \°°

by

u(x) == ^ ^c. Xo,- (4)
o»en

LEMMA 2.4. — 77?^ condition ( 3 ) implies that u is infective.
Indeed, let x E u~1 (0). There exists an injective sequence

(<^),eN °^ ^ verifying

^(x) =S ^Xo., = 0, (5)
<=o

00

with r^ = .y^. , ^ ^(1^1) = ^ < 00 and |^.| decreasing, whence,
1=0

for / > 1,

|r,| < <^-1 (5/0 . (6)
Suppose x =/= 0 ; then rQ ^ 0 and, by (3), the condition

^ ̂ (s/iX^d, (7)
n+i

holds for n large enough. From (5), (6) and (7) we deduce

l^oX- + f r ^ L < i kj < l ^ o l ^ .•<^o ^ l "-^f
i=l n+l
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This contradicts the lemma 2.1 since \ is not algebraically
spanned by {x^, I ^ > 1} : the lemma 2.4 is proved.

The range of u contains S(N ,jf), so we can define an additive
set function m : jf —^ 1^(S2) by

m(K) = ^(XK) , K C .<

There exists a sequence (H^)^^N of non empty pairwise disjoint
elements of ^ and a map 7 : N —> T such that j(n) € H^ for
every n € N . Let ^ = j(m) :^f—> l^(^) . In other words,

^(H)=m(T 1 (H)) , H € ^f

Let Jo be the inverse image by u of the product topology of
R"^ . ^o is a Hausdorff locally convex topology on ^(Sl), coarser
than the topology defined by |. \^ .

Then m , and therefore jn , are a-additive and bounded for Sf^ .
But ^ is not metrically bounded for I |^. The following lemma

gives a slightly stronger result, which we shall use in theorem 3.2.
Let ST ^ be the topology on 1^ (R) defined by the norm |^(.)L.

LEMMA 2.5. — // the subadditive Orlicz function ^ verifies ( 3 ) ,
then, for every js € R^ ,jLi(j»f) ^ «o^ included in the ST^-closure
B(7) o/ B(5) = {x G l^(ft) | |x|^ < s}.

It is sufficient to prove that m(:?fo) (jt B(5), if ̂  is the ring
of the finite subsets of N .

Let s^. R^. . By (3) there exists an integer n verifying
00

î -1 (s/i)<dj2. (8)
n+i

If K e Jfo and w(K) e B(s), we have
•oo

^(w(K)) = XK = ^ + S 'i Xo,. ,
1=1 '

where a?, € n , r, satisfies (6) and |z|oo<^/2 : from this and
(8) we get
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IXK -S ^X^,L<^

and, by lemma 2.1, XK ls generated by the ^ elements Xo,., 1 < '̂ < ^,
of our Hamel basis. Hence K has at most n elements since K is finite
and XK = S X^i , with {h} G ft for every / z .

HGK
The lemma 2.5 and the theorem 2.3 are proved.

Problem 1. — If R has the continuum cardinality, for what
subadditive Orlicz functions (p is it true that every l^(i2)-valued addi-
tive set function defined on a a-ring is a-additive for |.|^ if it is a-
additive for some Hausdorff locally convex linear topology ^o on

1^(R) coarser than the topology defined by 1 . 1 ?
By theorem 1.3 and proposition 2.2 this is true if ^p(r) = r .
By a theorem of Kalton ([6] or [13]), this would be always true if

ft was countable (even without assuming ^ locally convex).

3. Counterexample to the uniform boundedness principle.

First, let us give the announced slight generalization of theorem
1.2.

A subset B of a topological vector space E is said to be additi-
vely bounded when sup v(x) < °° for every continuous F-seminorm v

JCGB
Of £ .

THEOREME 3.1. — Let (E,J") be a topological vector space, and
suppose that there exists some o-exhaustive linear topology ST f on E
such that (E ,3T) and (E,^) have the same bounded subsets.

Then, if ^ is a a-ring, every pointwise bounded set M of
bounded measures jf —> (E,^) is "additively equfbounded" (i.e.
{/x(H) | AI € M, H G ^} isadditively bounded in (E,J')).

If y is locally convex we can take for ST f the weak topology
o(E ,E ' ) .

An imitation of the second proof of theorem 2 in [5] gives
this theorem. Let Wn\>o be a disjoint sequence of ^ . If
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{^i(H^) | jn E M , n > 0} is not bounded, there exist scalars
e^ —^ 0 , €„ > 0 , a subsequence (K^) of (H^) and a sequence (^)
of M such that e^ (K^) does not tend to 0 for f\ But, for^' ,
the additive set functions e^ are exhaustive and e^^ (H) —^ 0 for
every H € ^f. So they are equiexhaustive (theorem of Brooks and
Jewett : [4], [14]), which is a contradiction. Therefore,

O A ( H J I ^ G M , n > 0 }
is bounded and (lemma of [4]) M is additively equibounded for ^ .

Now let us show that the conclusion of theorem 3.1 does not hold
in general.

Take the space l^(ft) and the operator u : l^(ft)—> I00 of
section 2 (<^ is a subadditive Orlicz function). Since u is continuous
we define an F-norm I . L / , on I00 topologically equivalent to the
norm |.L if we let, for h € N , x E I00,

1x1^ =inf{|xJ^ -^-l^x^Ux =u(x,) 4-x, , x , G l^(n),^ei00}

Now let G be the F-normed space consisting of the sequences
(x^\^ such that x^ G I00 for every h and kj^ —^0 when
h —> oo^ endowed with the F-norm

11(^)11^ = sup |x,J^.
/j€N

THEOREM 3.2. - If ̂  is an infinite ring of subsets of a set T flMd
y <^ verifies the condition (3) of theorem 2.3, there exists a pointwse
bounded set of bounded additive set functions^ ——> (G, l l . | | < p )
v^hich is not metrically equibounded.

Proof. - Take the set function ^ : ^f —> l^(ft) defined in
section 2. For every H G jf and h G N , let

M,(H)=(e^(M(H)))^

where e^ is the symbol of Kronecker. Each jn^ : jf —^ G is a
bounded additive set function and {^ \h G N} is pointwise bounded :
this follows from

IWH)||^ = |n^(H))|^ < min {|^(H)|^ , 2^}, r G R .

Suppose that there exists s verifying
sup{||^(H)HJ/z G N , HE^} < s < o o .
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For every H e Jf and every h G N , |^(JLI (H))|^, ̂  < 5, so
^LI(H) = Xi + M"1^) with ki 1 ,̂ < 5 and |̂  loo < 2-/l5. By lemma
2.5 this is impossible (we should have ^(X7) C B(^)).

COROLLARY 3.3. — There exists an F-normed space G on which
no a-exhaustive linear topology has the same bounded sets than the
F-norm topology of G .

Indeed, take the above space G, with ^ verifying the condition
(3), and apply the theorem 3.1.

4. Barrelledness conditions.

4.1. Let A be a bounded subset of I1 (= I1 (N)) and let E be a
topological vector space ; let y be its topology.

DEFINITION 4.1. - "We say that {A} galbs E (or its topology y),
or that E (or y ) is {A}-galbed, when, for every zero-neighbourhood
V in E, there exists a zero-neighbourhood U in E verifying

V(^).>o € A , VN > 0 , V(x,)o^N ^ U^ , ̂  a^ E V .
A»=0

We say that a point a € I 1 galbs E (or y\ or that E (or^)
is a-galbed, when {{a}} galbs E .

In the words of [22] , {A} galbs E iff A is bounded in the galb
^(E) of E ([22], n° 2.3.2.1).

For example, if 0 <p < 1, E is locally p-convex ([18], [26])
if and only if E is galbed by {B^}, with

(
B^ = a € I1 |^ \a^ < 1 . (9)

( M==0

PROPOSITION 4.2. — Every {A}-galbed linear topology y is the
lower upper bound of a set of semimetrizable (i.e. F-seminormable)
{f^s-galbed linear topologies.

Indeed, for every zero-neighbourhood V for ^, there exists a
sequence (^n)n>o °^ balanced zero-neighbourhoods such that
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^o c v . ̂ +1 "h ^+1 c ̂  and (v/! . ̂ +1) verifies the condition
of the definition 4.1. (V^) is a basis of zero-neighbourhoods for an
{A}-galbed semimetrizable linear topology, y is the lower upper
bound of these topologies.

PROPOSITION 4.3. — If A contains some sequence (a^) verifying
a^ > 0 for every n (or, more generally, if A is not bounded in the
spacer of [22], n° 0.1.7.1), a subset B of an {A}-galbed (resp {A}-
galbed and metrizable) topological vector space E is bounded if B is
metrically bounded for every continous P-seminorm of E (resp for
every F-norm defining the topology of E).

Proof. — Apply [23] (propositions 3 and 4). When E is metri-
zable, observe that if an F-norm p defines the topology of E and if
a continuous F-seminorm q of E is unbounded on B, the F-norm
s\xp{p , q ] enjoys both these properties.

DEFINITION 4.4. - We say that E (or its topology y ) is {A}-
barrelled when y is finer than any {A}-galbed linear topology ST on
E which admits a basis of y-closed zero-neighbourhoods.

If a G I1 , we shall write ^a-barrelled" instead of ^{{a^-barrelled".

Remark 4.5. — In view of the proposition 4.2, the above defini-
tion 4.3 is unaltered if Sf is assumed to be semimetrizable.

For example, the ultrabarrelled spaces of [11], [12], [17], [26] are
the 0-barrelled spaces, where 0 is the null element of 1l .

DEFINITION 4.6. — If 0 <p < 1, a p-barrelled space is a
{y}-barrelled space, where B^ is defined by ( 9 ) .

So, the usual barrelled spaces are the 1-barrelled locally convex
spaces.

Remark 4.7. — a) Every {A}-barrelled space is {B}-barrelled if
A C B .

More precisely, every {A}-barrelled space is {B}-barrelled if and
only if A is bounded in the strict galb G?-^ generated by {B} :
cf. [22], n° 5.5.8.
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b) If (E,^) is {A}-barrelled, the {A}-galbed hull of ^(i.e. the
finest {A}-galbed linear topology on E which be coarser than y ) is
{A}-barrelled.

Only the "only if part of a) need a proof. If A is not bounded
in G^1 there exists a complete metrizable linear space (X , ̂ )
which is galbed by {B} but not by {A} ([22], theoreme 5.7.2). Now
we use an argument of [17] : (X ,.50 is 0-barrelled, so the {A}-galbed
convex hull y ip\ of ^ is {A}-barrelled (by b) above) ; if ^ U} was
{B)-barrelled, we should have y = y u} (theorem 4.8 below), a
contradiction.

THEOREM 4.8. - E is [A}-barrelled if and only if, for every {A}-
galbed complete metrizable topological vector space F, every linear
operator u : E —> F wth closed graph is continuous.

Proof. - If {A} galbs F and if u : E —> F is linear, it is easily
seen that {A} galbs the linear topology on E which admits as a basis
of zero-neighbourhoods the closures in E of the sets ^"^(V^V zero-
neighbourhood in F. Therefore, u is almost continuous if E is
{A}-barrelled, hence continuous if, moreover, F is complete and
metrizable and if the graph of u is closed ([ 11 ] or [26]).

Conversely, if 3T is a semimetrizable (remark 4.5) {A}-galbed
linear topology endowed with a basis of zero-neighbourhoods closed in
(E , y\ the complete Hausdorff space F associated to (E, ST) is
metrizable, complete and {A}-galbed and it is known that the graph of
the canonical map (E ,^) —> F is closed.

PROPOSITION 4.9. - // {A} galbs E, for E to be {A}-barrelled, it
is sufficient that, for every {A}-galbed complete and metrizable linear
space (F , ST) and for every {A]-galbed Hausdorff linear topology
^Q on F coarser than ST , every continuous linear operator
u : E —^ (F , ^TQ ) is still continuous from E to (F , ST).

Indeed, if u : E—> F is linear, let ̂ \ be the linear topology on
F which admits as a basis of zero-neighbourhoods the set of subsets
^(U)+ V, where U (resp V) runs over the filter of zero-neigh-
bourhoods in E (resp (F , J')). Sf^ is coarser than ST ' , {A}-galbed if
E and 3T are (A}-galbed, and Hausdorff if the graph of

u : E—>(F , y )
is closed.
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THEOREM 4.10. - Let us consider the following conditions.
(i) E is {/^-barrelled.

(ii) For every {A}-galbed topological vector space F, every
pointwise bounded family of continuous linear operators

u, : E —^ F, ; E I,
Is equicontinuous.

Then, (i) implies (ii) in any case, and (ii) implies (i) ;/' {A} ga/&5
E .

Remark. - We can say also that (ii) holds if and only if the
{A>galbed hull of the topology ^ of E is {A}-barrelled.

L. Waelbroeck established the implication (ii) =====> (i) for A = {0}
in [26]. And we use essentially the method of [26].

Proof. - It is seen as usual that (i) implies (ii), observing that {A}
galbs the coarsest topology on E for which {u^ I i E 1} is equi-
continuous.

Conversely, let us assume that {A} galbs the topology y of E
and let ST be an {A}-galbed semimetrizable linear topology on E with
a basis of ^ -closed zero-neighbourhoods. By proposition 4.2 and [22]
(n° 0.1.4.1) there exists on E an F-seminorm p and a family of
F-seminorms (^-),ei defining respectively the topologies ST and y and
verifying the condition

(R,,) V N > 0 , VO^EE^ ,

N
sup^(^) < 2-k =» sup ^(^ ^ ^ ) < 2^

a<E=A \,:=o /

with k = h + 1, for v = p and also for v E {^. I / E I}, and for
every h E N .

Let ^ = {272 ^, 1/z E N , / E I}. For every v E ̂ , let us define
an F-seminorm py on E by

p^x) = inf { p ( X i ) + K^)^ =^ i + ^ 2 ^ x ! E K^ E E}-

Let G be the subspace of E-^ consisting of the points
x = (^p^e^- for which {v E^\x^ 0} is finite. Equip G with the
F-seminorm

r(x) = sup p^(x) .
v^Jf
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{A} galbs G. Indeed, every v E ^ verifies (R^ ^ + 1 ) , hence py
and r verify (R^^).

For every v E J^, define ^ : E —^ G by (u^(x))^ ^ e^ x\
where e^ is the symbol of Kronecker. From (r(Uy(x)) = py(x)
< inf{p00, v(x)} we deduce that {Uy \v E.̂ } is pointwise bounded
and that the u'yS are continuous for V.

That (ii) implies (i) now follows from the following observation :
for every e > 0 , [x G E |sup r(Uy(x)) < e} is contained in the

y(=^

^-closure of {x E E | p(x) < e}.
Indeed, since r(u^(x)) = py(x), if x is in the first set, for every

i E I and h E N , there exists A-i E E and x^ E E verifying
x =^ i + ̂  .P(^i) < e , ^(x^) <2~he .

5. Application to vector valued set functions.

Let Jf be a ring of subsets of a set T and A a bounded subset
of I1 . Let y {A} he the finest {A}-galbed linear topology on
S(T , ̂  ) for which {XH I H E ̂ } is bounded. If a E 11 , we write
^ instead of ^ {{„}}.

If F is an {A}-galbed topological vector space, an additive set
function ^ : ^f —> F is bounded if and only if the map /—> ffdp.
of S(T,^f) into F is continuous for the topology y r^i.

If, for some s E ]0 , oo [, (2-^)^o E A ,^} is t^ topology
^oo of uniform convergence on T (for s < 1 this is essentially a
theorem of Rolewicz and Ryll-Nardzewski : [19]).

Indeed y ^} is obviously finer than 5^. On the other hand,
.5̂ } is galbed by the sequence (2-")^ ([22], theorem 5.6.2), the
additive set function x '• H —> XH ( ^—> S(T ,^f)) is bounded for
the topology ̂  ^} » therefore, by [25] (theorem 3.5), or from the
argument of [19] or [22] (n° 7.2.7.2), the identical mapping
f—^ff^X of (S(T,jf),^J into (S(T,^f), y ̂ ) is continuous.

But y^ is strictly finer than y^ if ^ is an infinite ring and if,
for every s E R , a == (^) verifies ^ = ^(2~"5) .

Indeed, ^^ =^ would imply that, for every a-galbed space E,
every bounded additive set function jn : ^f —> E would be
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"L^-bounded" in the sense of [22]. But this would contradict
the theorem 7.4, c) of [22] (which remains true when ^f is a ring),

00

where X = ^ 2~" 6^ for Dirac measures §„ carried by disjoint ele-
o

ments of ^f.
The following theorem is an immediate consequence of the propo-

sition 4.9 and the theorem 4.10.

THEOREM 5.1. — For every ring ^f of subsets of a set T, the
following conditions are equivalent.

(a) S(T , ^f) is {^'barrelled for the topology y ̂ .
(j3) For every {A}-galbed complete metrizable topological vector

space (F , ^), an additive set function ^ : ^—>F is bounded for
if it is bounded for some Hausdorff [A}-galbed linear topology Sf Q
coarser than ST.

(7) For every {A}-galbed topological vector space G, every
pointwise bounded set of bounded additive set functions ^f—^ G is
equibounded on ^ .

Remark 5.2. — If ^f is an infinite a-ring and if ^C is the
or-algebra of all subsets of N , S(T ,^) and S(N , jf) are simulta-
neously {A}-barrelled or not for their respective topologies ^{A}-

S(N , jf) is {A}-barrelled if S(T , ̂ ) is because the first space is
a quotient of the second (transpose the map / : N —> T of section 2).

Conversely let us suppose that S(N ,^) is {A}-barrelled for its
topology y JA}- The lemma of [5] shows that the set function
yi : ^ —> F of the above condition (j8) is metrically bounded for
every continuous F-seminorm on (F,^), and therefore bounded for
^(proposition 4.3). Indeed, ST is {A}-galbed and A is not bounded
in 1̂  because the barrelledness hypothesis implies that {A} does not
galb the space l^(t2) of theorem 2.3.

Problem 2. — For what bounded subsets A of I1 is the topology
y^ on S (N,^ f ) {A}-barrelled ?

Let us observe that if ^{A} ls {A}-barrelled, then <^{B} ls

{B}-barrelled if B D A (or, more generally, if A is bounded in the


