YITZHAK WEIT On Schwartz's theorem for the motion group

Annales de l'institut Fourier, tome 30, nº 1 (1980), p. 91-107 <http://www.numdam.org/item?id=AIF_1980__30_1_91_0>

© Annales de l'institut Fourier, 1980, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON SCHWARTZ'S THEOREM FOR THE MOTION GROUP

by Yitzhak WEIT

1. Introduction.

Schwartz's Theorem in the theory of mean periodic functions on the real line states that every closed, translation-invariant subspace of the space of continuous functions on \mathbf{R} is spanned by the polynomial-exponential functions it contains [5]. In particular, every translation-invariant subspace contains an exponential function.

In [2] the two-sided analogue of this result was generalized to $SL_2(\mathbf{R})$. However, since [3] it is known that Schwartz's Theorem fails to hold for \mathbf{R}^n , n > 1.

Our main goal is to show that the two-sided analogue of Schwartz's Theorem holds for the motion group M(2). That is, every closed, two-sided invariant subspace of C(M(2)) contains an irreducible invariant subspace and every such subspace is spanned by a class of functions which replace the polynomial-exponentials on **R**.

It seems remarkable that the analogue of Schwartz's Theorem holds for the three dimensional Lie groups $SL_2(\mathbf{R})$ and M(2) while it fails to hold for \mathbf{R}^2 .

In section 3 we verify the two-sided Schwartz's Theorem for the motion group. In section 4 we consider the problem of onesided spectral analysis. Finally, in section 5, we study some invariant subspaces of continuous functions on \mathbb{R}^2 . It turns out that the one-sided Schwartz's Theorem for the motion group is intimately connected with a problem of Pompeiu type [1, 4, 7].

Y. WEIT

2. Preliminaries and Notation.

Let M(2) denote the Euclidean motion group consisting of the matrices $\binom{e^{i\alpha}}{0} \frac{z}{1}$, $\alpha \in \mathbf{R}$, $z \in \mathbf{C}$.

Let C(M(2)) denote the space of all continuous functions on M(2) with the usual topology of uniform convergence on compact sets. Let $\mathscr{E}(\mathbf{R}^n)$ be the space of infinitely differentiable functions on \mathbf{R}^n endowed with the topology of uniform convergence of functions and their derivatives on compacta. Let $\mathscr{E}'(\mathbf{R}^n)$ be the dual of $\mathscr{E}(\mathbf{R}^n)$, the space of Schwartz distributions on \mathbf{R}^n having compact support. The pairing between $\mathscr{E}(\mathbf{R}^n)$ and $\mathscr{E}'(\mathbf{R}^n)$ is denoted by T(f) for $f \in \mathscr{E}(\mathbb{R}^n)$ and $T \in \mathscr{E}'(\mathbb{R}^n)$, and for such f and T we denote by T * f the convolution of T and f. For $T \in \mathscr{E}'(\mathbb{R}^n)$, the Fourier transform of T is defined by $\hat{T}(z) = T(e^{iz \cdot x})$ where $z \in \mathbf{C}^n$, $x \in \mathbf{R}^n$ and $z \cdot x = z_1 x_1 + \ldots + z_n x_n$. By Paley-Wiener-Schwartz Theorem, the space $\hat{\mathscr{E}}'(\mathbf{R}^n)$ of Fourier transforms of elements of $\mathscr{E}'(\mathbb{R}^n)$ is identified with the space of entire functions of n complex variables of exponential type which have polynomial growth on the real subspace \mathbb{R}^n . The topology of $\hat{\mathcal{E}}'(\mathbb{R}^n)$ is so defined as to make the Fourier transform a topological isomorphism.

Let Π denote the group of all rotations of \mathbb{R}^2 . We denote by $\mathscr{E}'_{(r)}(\mathbb{R}^2)$ the space of all $T \in \mathscr{E}'(\mathbb{R}^2)$ which satisfy $T \circ \tau = T$ for every $\tau \in \Pi$. Let $\widehat{\mathscr{E}}'_{(r)}(\mathbb{R}^2)$ denote the space of Fourier transforms of elements of $\mathscr{E}'_{(r)}(\mathbb{R}^2)$. We notice that each $f \in \widehat{\mathscr{E}}'_{(r)}(\mathbb{R}^2)$ is a function of $z_1^2 + z_2^2$ and that for any even function $g \in \widehat{\mathscr{E}}'(\mathbb{R})$ the function \widetilde{g} where $\widetilde{g}(z_1, z_2) = g(\sqrt{z_1^2 + z_2^2})$ belongs to $\widehat{\mathscr{E}}'_{(r)}(\mathbb{R}^2)$. Let $\mathscr{E}_0(\mathbb{R}^2)$ denote the space of elements of $\mathscr{E}(\mathbb{R}^2)$ having compact support and $\mathscr{E}_0^{(r)}(\mathbb{R}^2)$ the space of radial functions in $\mathscr{E}_0(\mathbb{R}^2)$.

Let $C(\mathbf{R}^n)$ denote the space of continuous functions on \mathbf{R}^n with the topology of uniform convergence on compacta and $C^{(r)}(\mathbf{R}^2)$ the radial functions in $C(\mathbf{R}^2)$. The dual of $C(\mathbf{R}^n)$ is the space $M_0(\mathbf{R}^n) \subset \mathscr{E}'(\mathbf{R}^n)$ of all complex-valued Radon measures having compact support. Let $M_0^{(r)}(\mathbf{R}^2) = M_0(\mathbf{R}^2) \cap \mathscr{E}'_{(r)}(\mathbf{R}^2)$.

Finally, for $\lambda = (\lambda_1, \lambda_2) \in \mathbb{C}^2$ and $z = x + iy \in \mathbb{C}$ let $(\lambda, z) = \lambda_1 x + \lambda_2 y$.

3. Two-sided spectral synthesis.

The two-sided analogue of Schwartz's Theorem in spectral analysis for the motion group is stated in the following:

THEOREM 1. – Every closed, two-sided invariant subspace of C(M(2)) contains either a character of M(2) or a function $g(e^{i\alpha}, z) = e^{i(\lambda,z)}$ where $\lambda = (\lambda_1, \lambda_2) \in \mathbb{C}^2$ and $\lambda_1^2 + \lambda_2^2 \neq 0$. The two-sided invariant subspace generated by $e^{i(\lambda,z)}$ where $\lambda = (\lambda_1, \lambda_2)$, $\lambda_1^2 + \lambda_2^2 \neq 0$, is irreducible (minimal).

Proof. – For $f \in C(M(2))$, $f \neq 0$, let V_f denote the closed subspace generated by the two-sided translates of f.

The subspace V_f contains all the functions g where

$$g(e^{i\alpha}, z) = f(e^{i(\alpha+\beta)}, ue^{i\alpha} + e^{i\theta}z + w)$$
(1)

for every θ , $\beta \in \mathbf{R}$ and u, $w \in \mathbf{C}$. Let $u = \theta = w = 0$ in (1).

Then, for a suitable $m \in \mathbb{Z}$ the function $\int_{0}^{2\pi} f(e^{i(\alpha+\beta)}, z) e^{-im\beta} d\beta = e^{im\alpha} \int_{0}^{2\pi} f(e^{i\beta}, z) e^{-im\beta} d\beta$ $= e^{im\alpha} g_{1}(z)$

is non-zero and belongs to V_f . Let N denote the translation-invariant and rotation-invariant subspace of $C(\mathbf{R}^2)$ generated by g_1 .

By (1) the functions $e^{im\alpha}g_1(e^{i\theta}z + w)$ belongs to V_f for every $\theta \in \mathbf{R}$ and $w \in \mathbf{C}$. That is, V_f contains all functions $e^{im\alpha}\widetilde{g}(z)$ where $\widetilde{g} \in \mathbb{N}$. In [1] it was proved that every closed, translationinvariant and rotation-invariant subspace of $C(\mathbf{R}^2)$ is spanned by the polynomial-exponential functions it contains. In particular, the subspace N contains therefore an exponential function $e^{i(\lambda,z)}$, $\lambda = (\lambda_1, \lambda_2) \in \mathbf{C}^2$ and the function $h(e^{i\alpha}, z) = e^{im\alpha}e^{i(\lambda,z)}$ belongs to V_f . If $\lambda_1^2 + \lambda_2^2 = 0$ then the subspace N contains the constant functions and V_f contains therefore the character $e^{im\alpha}$. Suppose that $\lambda_1^2 + \lambda_2^2 \neq 0$.

Let $h_1 \in \mathscr{E}_0(\mathbb{R}^2)$ of the form $h_1(w) = h_2(r) e^{-i\theta m}$ where $w = r e^{i\theta}$, and $h_2 \in \mathscr{E}_0^{(r)}(\mathbb{R}^2)$ such that $\hat{h}_1(\lambda_1, \lambda_2) \neq 0$.

Then the function:

$$\int_{\mathsf{R}^2} h(e^{i\alpha}, z - e^{i\alpha}w) h_1(w) dw = \hat{h}_1(\lambda_1, \lambda_2) e^{i(\lambda, z)}$$
(2)

(here dw denotes Lebesgue measure on \mathbf{R}^2) is non-zero and belongs to V_f . It follows, by (1) and the analyticity of the elements of $\hat{\mathcal{E}}'_{(r)}(\mathbf{R}^2)$ that V_f contains all functions $e^{i(\mu,z)}$ where $\mu = (\mu_1, \mu_2) \in \mathbf{C}^2$ such that $\mu_1^2 + \mu_2^2 = \lambda_1^2 + \lambda_2^2$. To prove the second part of the theorem, let $g(z) = e^{i(\lambda,z)}$ where $\lambda = (\lambda_1, \lambda_2) \in \mathbf{C}^2$, $\lambda_1^2 + \lambda_2^2 \neq 0$. Firstly, we will show that V_g contains no character of M(2).

Suppose that $e^{im\alpha} \in V_g$ for some $m \in \mathbb{Z}$. Let $\mu \in C(M(2))$, $\mu(e^{i\alpha}, z) = e^{-im\alpha} \mu_1(z)$ where $\mu_1 \in \mathscr{E}_0^{(r)}(\mathbb{R}^2)$ such that $\hat{\mu}_1(\lambda_1, \lambda_2) = 0$ and $\hat{\mu}_1(0, 0) \neq 0$. We have

$$\int_{\mathbf{R}^2} e^{i(\lambda, e^{i\theta_z})} \mu_1(z) dz = 0$$

for every $\theta \in \mathbf{R}$. Consequently, we deduce

$$\int_{M(2)} e^{i(\lambda, e^{i\theta}z + we^{i\alpha})} e^{-im\alpha} \mu_1(z) d\alpha dz$$

=
$$\int_0^{2\pi} \left[\int_{\mathbf{R}^2} e^{i(\lambda, e^{i\theta}z)} \mu_1(z) dz \right] e^{i[(\lambda, we^{i\alpha}) - m\alpha]} d\alpha = 0$$

for every $\theta \in \mathbf{R}$ and $w \in \mathbf{C}$. Namely, μ annihilates the subspace V_g . On the other hand, we have

$$\int_{M(2)} e^{im\alpha} \mu(e^{i\alpha}, z) d\alpha dz = \hat{\mu}_1(0, 0) \neq 0, \text{ a contradiction.}$$

Suppose that $e^{i(w,z)} \in V_g$ where $w = (w_1, w_2) \in \mathbb{C}^2$. If $\lambda_1^2 + \lambda_2^2 \neq w_1^2 + w_2^2$ then for $\mu_2 \in \mathscr{E}_0^{(r)}(\mathbb{R}^2)$ where $\hat{\mu}_2(\lambda_1, \lambda_2) = 0$ and $\hat{\mu}_2(w_1, w_2) \neq 0$ we have

$$\int_{0}^{2\pi} \int_{\mathbf{R}^{2}} e^{i(\lambda, e^{i\theta}z + ve^{i\alpha})} \mu_{2}(z) dz d\alpha$$

=
$$\int_{0}^{2\pi} \left[\int_{\mathbf{R}^{2}} e^{i(e^{i\theta}\lambda, z)} \mu_{2}(z) dz \right] e^{i(\lambda, ve^{i\alpha})} d\alpha = 0$$

for each $\theta \in \mathbf{R}$ and $v \in \mathbf{C}$. However, we have

$$\int_0^{2\pi} \int_{\mathbf{R}^2} e^{i(w,z)} \mu_2(z) \, dz d\alpha \neq 0$$

which proves the irreducibility of V_g . This completes the proof.

Schwartz's Theorem in spectral synthesis is described in the following:

THEOREM 2. – Every closed, two-sided invariant subspace of C(M(2)) is spanned by the functions as

$$g(e^{i\alpha}, z) = e^{im\alpha} Q(\operatorname{Re} z, \operatorname{Im} z) e^{i(\lambda, z)}$$

that it contains. $(\lambda \in \mathbf{C}^2 \text{ and } Q \text{ is polynomial}).$

Proof. – For $f \in C(M(2))$, $f \neq 0$ let V denote the closed subspace generated by the two-sided translates of f. Obviously, f is contained in the closed subspace generated by the functions: $e^{im\alpha} P_m(z) = \int_0^{2\pi} f(e^{i(\alpha+\beta)}, z) e^{-im\beta} d\beta = e^{im\alpha} \int_0^{2\pi} f(e^{i\beta}, z) e^{-im\beta} d\beta$ where $m \in \mathbb{Z}$.

By [1], each function $e^{im\alpha} P_m(z)$ is contained in the closed subspace spanned by the functions $e^{im\alpha} Q(\operatorname{Re} z, \operatorname{Im} z) e^{i(\lambda, z)}$ where $Q(\operatorname{Re} z, \operatorname{Im} z) e^{i(\lambda, z)}$ is contained in the rotation-invariant and translation-invariant subspace of $C(\mathbb{R}^2)$ generated by $P_m(z)$, and hence in the two-sided invariant subspace generated by $P_m(z)$, which completes the proof of the theorem.

4. One-sided spectral analysis.

One-sided spectral analysis of bounded functions on M(2) was studied in [6].

Notation. – Let Γ_w , $w \in \mathbb{C}$, denote the closed subspace of $C(\mathbb{R}^2)$ spanned by the functions $e^{i(\lambda_1 x + \lambda_2 y)}$ (of $(x, y) \in \mathbb{R}^2$) where $\lambda_1^2 + \lambda_2^2 = w^2$. For the characterization of right-invariant subspaces of C(M(2)) we state the following:

THEOREM 3. – Every closed, right-invariant subspace of C(M(2)) contains a function as

$$g(e^{i\alpha}, z) = e^{im\alpha}g_1(z), \ m \in \mathbb{Z}, \ g_1 \neq 0.$$

Moreover, if $g_1 \notin \Gamma_0$, then the closed right-invariant subspace generated by g contains a function as $h(e^{i\alpha}, z) = g_2(z)$.

For $g_2 \in \Gamma_w$ and $g_1 \in \Gamma_0$ the closed right-invariant subspaces generated by g_2 and by $e^{im\alpha}g_1(z)$ are irreducible.

Proof. – Let $f \in V$, $f \neq 0$, where V is a closed right-invariant subspace of C(M(2)). Then V contains all functions f^* such that $f^*(e^{i\alpha}, z) = f(e^{i(\alpha+\beta)}, z - e^{i\alpha}w)$ where $\beta \in \mathbb{R}$ and $w \in \mathbb{C}$. Hence, for a suitable $m \in \mathbb{Z}$ the function

$$\int_0^{2\pi} f(e^{i(\alpha+\beta)}, z) e^{-im\beta} d\beta = e^{im\alpha} \int_0^{2\pi} f(e^{i\beta}, z) e^{-im\beta} d\beta = e^{im\alpha} g_1(z)$$

is non-zero and belongs to V. Suppose that $g_1 \notin \Gamma_0$. Then if g_1 is a polynomial (in Rez and $I_m z$) which is harmonic on \mathbb{R}^2 there exists a function $h \in \mathscr{E}_0(\mathbb{R}^2)$, $h(w) = \mu(r) e^{im\theta}$, $\mu \in \mathscr{E}_0^{(r)}(\mathbb{R}^2)$, $w = re^{i\theta}$, such that $g_1 * h \neq 0$.

Hence the function

$$e^{im\alpha} \int_{\mathbf{R}^2} g_1(z - e^{i\alpha}w) h(w) dw = \int_{\mathbf{R}^2} g_1(z - w) h(w) dw = g_2(z)(3)$$

is non-zero and belongs to V.

Otherwise, the closed rotation-invariant and translationinvariant subspace generated by g_1 contains a function $e^{i(\lambda,z)}$ where $\lambda = (\lambda_1, \lambda_2) \in \mathbb{C}^2$, $\lambda_1^2 + \lambda_2^2 \neq 0$ [1]. Let $h_1 \in \mathscr{E}_0(\mathbb{R}^2)$, $h_1(w) = \mu_1(r) e^{im\theta}$ where

$$\mu_1 \in \mathcal{E}_0^{(r)}(\mathbf{R}^2), \ w = re^{i\theta}, \ such that \ \hat{h}_1(\lambda_1, \lambda_2) \neq 0.$$

There exists $\beta \in \mathbf{R}$ such that $h_{1,\beta} * g_1 \neq 0$, where

$$h_{1,\beta}(w) = h_1(e^{i\beta}w) = e^{im\beta}h_1(w).$$

Hence, $h_1 * g_1 \neq 0$ and proceeding as in (3) we complete the proof of the first part of the theorem.

Let V_1 be the closed right-invariant subspace generated by $g_2(z)$ where $g_2 \in \Gamma_{w_0}$ for some $w_0 \in \mathbb{C}$, $w_0 \neq 0$. We may show, as in the proof of Theorem 1, that V_1 contains no functions as $e^{im\alpha}g_1(z)$ where $g_1 \in \Gamma_0$. Suppose now that $g_3 \in V_1$ where $g_3 \in \Gamma_{w_1}$, $w_1 \in \mathbb{C}$. To derive the irreducibility of V_1 we will show that $g_3 = Cg_2$ for some $C \in \mathbb{C}$. Let $\{\Phi_n\}$ be a sequence in $\mathscr{E}_0(\mathbb{R}^2)$ such that

$$\int_{\mathbf{R}^2} g_2(z - e^{i\alpha}w) \Phi_n(w) dw \xrightarrow[C(M(2))]{} g_3(z).$$

Then we have

$$\frac{1}{2\pi} \int_0^{2\pi} \left[\int_{\mathbf{R}^2} g_2(z - e^{i\alpha}w) \Phi_n(w) dw \right] d\alpha \xrightarrow[C(M(2))]{} g_3(z)$$

and

$$\int_{\mathbf{R}^2} g_2(z - e^{i\alpha}w) \Phi_n^*(|w|) dw \xrightarrow[C(M(2))]{} g_3(z)$$
(5)

where

$$\Phi_n^*(|w|) = \frac{1}{2\pi} \int_0^{2\pi} \Phi_n(e^{-i\alpha}w) \, d\alpha \, , \, \Phi_n^* \in \mathcal{E}_0^{(r)} \, , \, n = 1, 2, \dots$$
 (6)

But for every n we have

$$\int_{\mathsf{R}^2} g_2(z-w) \, \Phi_n^*(|w|) \, dw = \hat{\Phi}_n^*(w_0) \, g_2(z) \, .$$

Consequently, $g_3 = Cg_2$, as required. Similarly, we verify the irreducibility of the closed right-invariant subspace generated by $g_1(z)e^{im\alpha}$ where $g_1 \in \Gamma_0$.

Remark 1. – We don't know whether Theorem 3 characterizes all the irreducible right invariant subspaces as it is not known whether the exponentials are the only functions of $C(\mathbf{R}^n)$, n > 1 which generate irreducible translation-invariant subspaces. Whether every translation-invariant subspace of $C(\mathbf{R}^n)$, n > 1 contains an irreducible subspace seems to be an open question.

Remark 2. – In view of Theorem 3 the right-sided analogue of Schwartz's Theorem in spectral analysis of continuous functions may be formulated as the following question; does every closed, rightinvariant subspace of C(M(2)) contain either a function as $e^{im\alpha}g_1(z)$ where $g_1 \in \Gamma_0$, $g_1 \neq 0$ $m \in \mathbb{Z}$, or $g_2(z)$ where $g_2 \in \Gamma_w$, $g_2 \neq 0$, for some $w \in \mathbb{C}$?

Notation. — Let μ_R , $R \ge 0$, denote the normalized Lebesgue measure of the circle $\{z : |z| = R\}$. For $f \in C(\mathbb{R}^2)$ let $N_f^{(r)}$ denote the closed subspace spanned by $\{f * \mu_R : R \ge 0\}$ and $\tau(f)$ the closed translation-invariant subspace generated by f.

We deduce an equivalent form of the right-sided analogue of Schwartz's Theorem (as formulated in Remark 2).

It is described in

THEOREM 4. - The following statements are equivalent:

 (i) The right-sided analogue of Schwartz's Theorem holds for M(2).

97

(ii) Let $f \in C(\mathbb{R}^2)$, $f \neq 0$. Then: (a) If $\tau(f) \cap \Gamma_0 = \{0\}$ then there exists $w \in \mathbb{C}$ such that $N_f^{(r)} \cap \Gamma_w \neq \{0\}$. (b) If $\tau(f) \cap \Gamma_0 \neq \{0\}$ then, either $N_f^{(r)} \cap \Gamma_w \neq \{0\}$ for some $w \in \mathbb{C}$, or, there exist $m \in \mathbb{Z}$, $g \in \Gamma_0$, $g \neq 0$ and a sequence $\psi_n \in \mathscr{E}_0^{(r)}(\mathbb{R}^2)$ such that

$$f * \phi_n \xrightarrow{C(\mathbf{B}^2)} g$$
 (7)

where $\phi_n(r,\theta) = \psi_n(r) e^{-im\theta}$, n = 1, 2, ... (Here (r,θ) are the polar coordinates in \mathbb{R}^2).

Proof. – Suppose that the right-sided analogue of Schwartz's Theorem holds for M(2). Let $f \in C(M(2))$ where $f(e^{i\alpha}, z) = f(z)$. Suppose that $\tau(f) \cap \Gamma_0 = \{0\}$. The closed right-invariant subspace W_f generated by f contains no function as $e^{im\alpha}g(z) \neq 0$ where $g \in \Gamma_0$ and $m \in \mathbb{Z}$. Since, otherwise

$$\int_{\mathbf{R}^2} f(z - e^{i\alpha}w) \,\mu_n(w) \,dw \xrightarrow[C(\mathbf{M}(2))]{} e^{im\alpha}g(z)$$

implies for $\alpha = 0$ that: $f * \mu_n \xrightarrow{C(\mathbb{R}^2)} g$, a contradiction. Hence, W_f contains a function $g_1(z)$ where $g_1 \in \Gamma_w$, $g_1 \neq 0$. In other words, there exist $\Phi_n \in \mathcal{E}_0(\mathbb{R}^2)$, $n = 1, 2, \ldots$, such that

$$\int_{\mathbf{R}^2} f(z - e^{i\alpha}w) \Phi_n(w) dw \xrightarrow[C(M(2))]{} g_1(z).$$

Hence, by (5) we have:

$$\int_{\mathsf{R}^2} f(z-w) \, \Phi_n^*(|w|) \, dw \xrightarrow[\mathsf{C}(\mathsf{M}(2))]{} g_1(z)$$

where Φ_n^* are defined in (6). That is, $g_1 \in N_f^{(r)}$ which yields (ii) (a).

Suppose now that $\tau(f) \cap \Gamma_0 \neq \{0\}$. If $W_f \cap \Gamma_v \neq \{0\}$ for some $v \in \mathbf{C}$ then, as proved above, $N_f^{(r)} \cap \Gamma_v \neq \{0\}$ (here, the functions of Γ_v are looked upon as function on M(2)). Otherwise, the subspace W_f must contain a function as $e^{im\alpha}g_2(z)$ where $g_2 \in \Gamma_0$, $g_2 \neq 0$, and $m \in \mathbf{Z}$. Namely, there exists $\phi_n \in \mathscr{E}_0(\mathbf{R}^2)$ such that

$$\int_{\mathbf{R}^2} f(z - e^{i\alpha}w) \phi_n(w) dw \xrightarrow[C(M(2))]{} e^{im\alpha}g_2(z).$$

Hence we have

$$\frac{1}{2\pi} \int_0^{2\pi} \left[\int_{\mathbf{R}^2} f(z-\xi) \,\phi_n(e^{-i\alpha}\xi) \,d\xi \right] e^{-im\alpha} d\alpha \longrightarrow g_2(z)$$

98

which yields

$$\frac{1}{2\pi} \int_{\mathbf{R}^2} f(z-\xi) \, \widetilde{\phi}_n(\xi) \, d\xi \longrightarrow g_2(z)$$

where $\widetilde{\phi}_n(\xi) = \widetilde{\psi}_n(r) e^{-im\theta}$, $\widetilde{\psi}_n(r) = \int_0^{2\pi} \phi(e^{-i\eta}r) e^{-im\eta} d\eta$, $\xi = re^{i\theta}$, and we have shown that (i) implies (ii).

Suppose now that (ii) holds. By Theorem 3 we have to show that for every $f \in C(M(2))$, $f(e^{i\alpha}, z) = f(z)$, $f \neq 0$, the subspace W_f contains either a function g(z), $g \neq 0$, $g \in \Gamma_w$, or, a function $g(e^{i\alpha}, z) = e^{im\alpha}g_1(z)$ where $g_1 \in \Gamma_0$, $g_1 \neq 0$ and $m \in \mathbb{Z}$.

Let $f \in C(\mathbb{R}^2)$, $f \neq 0$ and suppose that $N_f^{(r)} \cap \Gamma_w \neq \{0\}$ for some $w \in \mathbb{C}$. Then, by definition, there exist $\psi_n \in \mathscr{E}_0^{(r)}(\mathbb{R}^2)$ $n = 1, 2, \ldots$, and $g \in \Gamma_w$ such that

$$\int_{\mathbf{R}^2} f(z-\xi) \psi_n(\xi) d\xi \xrightarrow[C(\mathbf{R}^2)]{} g(z) \, .$$

But we have

 $\int_{\mathbb{R}^2} f(z - e^{i\alpha}\xi) \psi_n(\xi) d\xi = \int_{\mathbb{R}^2} f(z - \xi) \psi_n(\xi) d\xi \quad \text{for} \quad n = 1, 2, \dots,$ which implies (i).

Finally, suppose that $\tau(f) \cap \Gamma_0 \neq \{0\}$ and that $N_f^{(r)} \cap \Gamma_w = \{0\}$ for every $w \in \mathbf{C}$. By (ii) (b) we have

$$\int_{\mathbb{R}^2} f(z - e^{i\alpha}w) \phi_n(w) dw = \int_{\mathbb{R}^2} f(z - \xi) \phi_n(e^{-i\alpha}\xi) d\xi$$
$$= e^{im\alpha} \int_{\mathbb{R}^2} f(z - \xi) \phi_n(\xi) d\xi$$

for $n = 1, 2, \ldots$, which yields, by (7)

$$\int_{\mathbf{R}^2} f(z - e^{i\alpha}\xi) \psi_n(\xi) d\xi \xrightarrow[C(M(2))]{} e^{im\alpha}g(z) .$$

This completes the proof.

5. Invariant subspaces of $C(R^2)$.

For $f \in C(\mathbb{R}^2)$ we say that $w \in Sp^{T.R.}(f)$, $w \in \mathbb{C}$ if the translation-invariant and rotation-invariant subspace generated by f contains an exponential in Γ_w . Actually, the fact announced in [1] that unless f = 0 we have $Sp^{T.R.}(f) \neq \phi$ implies the main

results of [1] concerning the Pompeiu problem [4, 7]. By Theorem 4, the one-sided Schwartz's Theorem for the motion group is intimately connected to the following problem:

For $f \in C(\mathbb{R}^2)$ we say that $w \in Sp^{(r)}(f)$, $w \in \mathbb{C}$, $w \neq 0$, if $N_f^{(r)} \cap \Gamma_w \neq \{0\}$, and that $0 \in Sp^{(r)}(f)$ if $N_f^{(r)} \cap \widetilde{\Gamma}_0 \neq \{0\}$, where $\widetilde{\Gamma}_0$ denotes the space of harmonic functions on \mathbb{R}^2 . Suppose that $f \neq 0$. Does this imply that $Sp^{(r)}(f) \neq \phi$?

Remark 3. – We notice that for $f \in C(\mathbb{R}^2)$ we have $Sp^{(r)}(f) \subseteq Sp^{T.R.}(f)$.

Remark 4. – This question is connected to the following problem of Pompeiu type:

Determine for which family $P \subseteq M_0(\mathbb{R}^2)$, the only continuous function f on \mathbb{R}^2 such that $T(f * \mu_R) = 0$ for all $T \in P$ and $R \ge 0$, is the zero function.

Let J_n denote the nth Bessel function of the first kind. By definition, we deduce

$$\mathbf{J}_n(r)\,e^{\,in\theta}\,=\,\frac{1}{2\pi i^n}\,\int_0^{\,2\pi}e^{\,ir\cos{(\phi-\theta)}}\,e^{\,in\phi}\,d\phi\,.$$

Hence we have $J_n(wr) e^{in\theta} \in \Gamma_w$, $Sp^{(r)}(J_n(wr) e^{in\theta}) = \{w\}$ for $w \in \mathbb{C}$, $w \neq 0$ and $N_{I_n}^{(r)}$ is one-dimensional where $I_n(r, \theta) = J_n(wr) e^{in\theta}$.

A partial answer to the above question is provided by the following result:

THEOREM 5. - Let
$$f \in C(\mathbb{R}^2)$$
, $f \neq 0$ where
 $f(r, \theta) = \sum_{m=0}^{N} g_m(r) e^{im\theta}$, $g_m \in C^{(r)}(\mathbb{R}^2)$ $(m = 0, 1, ..., N)$.
Then $Sp^{(r)}(f) \neq \phi$. If $0 \notin Sp^{(r)}(f)$ there exist λ , $a_m \in \mathbb{C}$
 $(m = 0, 1, ..., N)$, $\lambda \neq 0$, where $\sum_{m=0}^{N} |a_m| > 0$ such that
 $\sum_{m=0}^{N} a_m J_m(\lambda r) e^{im\theta}$ belongs to $N_f^{(r)}$. Moreover, we have
 $Sp^{(r)}(f) = \bigcup_{m=0}^{N} Sp^{(r)}(g_m(r) e^{im\theta})$.

The proof will be accomplished in several lemmas.

LEMMA 6. – Every proper closed ideal in $\hat{\mathscr{E}}'_{(r)}(\mathsf{R}^2)$ has a common zero in C^2 .

Proof. – Let J be a proper closed ideal in $\hat{\mathscr{E}}'_{(r)}(\mathsf{R}^2)$ and suppose that the functions in J have no common zeroes. Every $f \in J$ is a function of $z_1^2 + z_2^2$. That is, there exists an even entire function Q_f of one complex variable such that

$$f(z_1, z_2) = Q_f(\sqrt{z_1^2 + z_2^2})$$
 and $Q_f \in \hat{\mathscr{E}}'(\mathbf{R})$.

Let J* be the ideal in $\hat{\mathscr{E}}'(\mathbf{R})$ generated by $\{Q_f : f \in J\}$.

Obviously, the functions in J* have no common zeroes. Thus, applying Schwartz's Theorem [5] we deduce that $J^* = \hat{\mathscr{E}}'(\mathbb{R})$. That is, there exists a sequence $\{P_n\}$ in J* converging to 1 in $\hat{\mathscr{E}}'(\mathbb{R})$. Each P_n must be of the form $\sum_{j=1}^k T_j(w)S_j(w)$ where each $T_j \in \hat{\mathscr{E}}'(\mathbb{R})$ and $S_j \in J$. But then the function $\sum_{j=1}^k T_j(w)S_j(w) + \sum_{j=1}^k T_j(-w)S_j(-w) = \sum_{j=1}^k (T_j(w) + T_j(-w))S_j(w)$ belongs to J since each $T_j(w) + T_j(-w)$ belongs to $\hat{\mathscr{E}}'_{(r)}(\mathbb{R}^2)$. Hence, $Q_n(w) = \frac{1}{2} (P_n(w) + P_n(-w))$ belongs to J and $Q_n \longrightarrow 1$

in $\hat{\mathscr{E}}'_{(r)}(\mathbb{R}^2)$, a contradiction.

LEMMA 7. - Let $f \in C(\mathbb{R}^2)$ where $f(r, \theta) = g(r)e^{im\theta}$, $g \in C^{(r)}(\mathbb{R}^2), g \neq 0, m \in \mathbb{Z}$. Then $Sp^{(r)}(f) \neq \phi$. If $0 \notin Sp^{(r)}(f)$ there exists $\lambda \in \mathbb{C}, \lambda \neq 0$, such that $H \in N_f^{(r)}$ where $H(r, \theta) = J_m(\lambda r)e^{im\theta}$.

Proof. – We may assume that
$$f \in \mathscr{E}(\mathbb{R}^2)$$
. Let $M_f^{(r)}$ denote the closed subspace of $\mathscr{E}(\mathbb{R}^2)$ spanned by $\{f * \mu_{\mathbb{R}} : \mathbb{R} \ge 0\}$. For $m \in \mathbb{Z}$ let $\mathscr{E}_m(\mathbb{R}^2)$ denote the closed subspace of functions $s \in \mathscr{E}(\mathbb{R}^2)$ such that $s(r, \theta) = h(r)e^{im\theta}$. We have $M_e^{(r)} \subset \mathscr{E}_m(\mathbb{R}^2)$.

Let $\mathscr{E}'_m(\mathbf{R}^2) \subset \mathscr{E}'(\mathbf{R}^2)$ denote the dual of $\mathscr{E}_m(\mathbf{R}^2)$. Let $\mathbf{M}_f^{(r)_1} = \{ \mathbf{T} \in \mathscr{E}'_m(\mathbf{R}^2) : \mathbf{T}(f) = 0, f \in \mathbf{M}_f^{(r)} \}.$ Every element of $\hat{\mathscr{E}}'_m(\mathbb{R}^2)$ is of the form $p(r)e^{im\theta}$ (as a function on \mathbb{R}^2). Let $\mathbb{P} = \{p : \hat{T}(r, \theta) = p(r)e^{im\theta}, T \in \mathbb{M}^{(r)\perp}_{\epsilon}\}$.

We notice that all functions of P are even or odd depending on m.

Let k be the larger integer such that 0 is a zero of order k for each $p \in \mathbb{P}$. It follows that $\frac{p(w)}{w^k}$, $p \in \mathbb{P}$, is an even entire function of w and by complexification of $\frac{p(r)}{r^k}$

$$p^*(z_1, z_2) = \frac{p(\sqrt{z_1^2 + z_2^2})}{(z_1^2 + z_2^2)^{k/2}}$$

is an entire function on C^2 . The space

$$\mathbf{J}^* = \left\{ p^* : p^*(z_1, z_2) = \frac{p(\sqrt{z_1^2 + z_2^2})}{(z_1^2 + z_2^2)^{k/2}}, \ p \in \mathbf{P} \right\}$$

is therefore a closed ideal in $\hat{\mathscr{E}}'_{(r)}(\mathbb{R}^2)$. If $0 \notin \mathrm{Sp}^{(r)}(f) J^*$ is a proper ideal.

Hence, by Lemma 6, there exists

$$\lambda^* = (\lambda_1, \lambda_2) \in \mathbf{C}^2 , \ \lambda_1^2 + \lambda_1^2 = \lambda^2 \neq 0$$

which is a common zero of J^* . Consequently, for each $T \in M_f^{(r)\perp}$ we have $\hat{T}(w) = 0$ where $w = (w_1, w_2) \in \mathbb{C}^2$, $w_1^2 + w_2^2 = \lambda^2$. It follows that T(Q) = 0 for $T \in M_f^{(r)\perp}$ where

$$Q(x, y) = \frac{1}{2\pi i^m} \int_0^{2\pi} e^{i\lambda_1(x\cos\phi + y\sin\phi)} e^{im\phi} d\phi$$

But we have

$$Q(r,\theta) = \frac{1}{2\pi i^m} \int_0^{2\pi} e^{i\lambda r \cos(\phi-\theta)} e^{im\phi} d\phi = J_m(wr) e^{im\theta}$$

Consequently, $Q \in M_f^{(r)} \cap \Gamma_{\lambda}$ which completes the proof.

Notation. – Let $C(\mathbb{R}^2, \mathbb{C}^N)$ denote the space of all continuous functions on \mathbb{R}^2 which take values in \mathbb{C}^N , with the usual topology. Let $M_0(\mathbb{R}^2, \mathbb{C}^N)$ be the dual of $C(\mathbb{R}^2, \mathbb{C}^N)$, the space of vector-valued measures having compact support. For $f \in C(\mathbb{R}^2, \mathbb{C}^N)$, (resp. $\mu \in M_0(\mathbb{R}^2, \mathbb{C}^N)$) let $(f)_n$ (resp. $(\mu)_n$) denote the nth coordinate of f (resp. μ). For $m = (m_1, m_2, ..., m_N) \in \mathbb{Z}^N$ let $B_{(m)}$ denote the closed subspace of $C(\mathbf{R}^2, \mathbf{C}^N)$ which consists of all functions f where

$$(f)_n(r,\theta) = h_n(r)e^{im_n\theta}$$
 $n = 1, 2, \dots, N$.

Let $B'_{(m)}$ be the dual of $B_{(m)}$, the space of all $\eta \in M_0(\mathbb{R}^2, \mathbb{C}^N)$ such that $(\eta)_n = \mu_n e^{-im_n \theta}$ where $\mu_n \in M_0^{(r)}(\mathbb{R}^2)$, n = 1, 2, ..., N. We will use the following equality:

$$(\mathbf{J}_{k}(wr')e^{ik\theta'}) * (\mu(r')e^{im\theta'})(r,\theta) = \phi(w)\mathbf{J}_{k+m}(wr)e^{i(k+m)\theta}$$
(8)

where $\mu \in M_0^{(r)}(\mathbb{R}^2)$, $w \in \mathbb{C}$, and $\mu(r')e^{im\theta}(r, \theta) = \phi(r)e^{im\theta}$. Finally, we notice that $M_0^{(r)}(\mathbb{R}^2)$ acts on $B_{(m)}$ by convolution. Namely, $f \in B_{(m)}$ and $\mu \in M_0^{(r)}(\mathbb{R}^2)$ imply that $f * \mu \in B_{(m)}$.

LEMMA 8. -- Every closed non-trivial subspace of $B_{(m)}$, invariant under $M_0^{(r)}(\mathbb{R}^2)$ contains an invariant one-dimensional subspace. Moreover, if $f \in B_{(m)}$ such that $\lambda \in Sp^{(r)}((f)_n)$, $\lambda \neq 0$, for some $n, 1 \leq n \leq N$, then the closed subspace spanned by $\{f * \mu_R : R \geq 0\}$ contains a function $g \neq 0$, such that

$$(g)_n(r, \theta) = a_n \mathcal{J}_{m_n}(\lambda r) e^{im_n \theta} \qquad n = 1, 2, \dots, N.$$

Proof. – By induction on N where the case N = 1 is provided by Lemma 7. Let $f \in B_{(m)}$ and suppose that $0 \neq \lambda \in Sp^{(r)}((f)_1)$. Let V_f denote the closed subspace of $B_{(m)}$ spanned by $\{f * \mu_R : R \ge 0\}$ and $V_f^{\perp} = \{\eta \in B'_{(m)} : \eta(g) = 0, g \in V_f\}$. We notice that for $\eta \in V_f^{\perp}$ we have:

$$\sum_{n=1}^{N} (g_n(r)e^{im_n\theta}) * (\mu_n e^{-im_n\theta}) = 0$$
(9)

where $(\eta)_n = \mu_n e^{-im_n \theta}$ and $(f)_n = g_n(r) e^{im_n \theta}$, n = 1, 2, ..., N.

Thus we may assume that there exists $\eta \in V_f^{\perp}$ such that

$$(\mathbf{J}_{m_{\mathbf{N}}}(\lambda r) e^{im_{\mathbf{N}}\theta}) * (\mu_{\mathbf{N}} e^{-im_{\mathbf{N}}\theta}) \neq 0.$$
⁽¹⁰⁾

Otherwise, the subspace V_f contains a function g^* such that $(g^*)_n = 0$ for n = 1, 2, ..., N - 1, and $(g^*)_N = J_{m_N}(\lambda r) e^{im_N \theta}$ which completes the proof. To this end, let $h \in B_{(m')}$ where $(h)_n = (f)_n$ for n = 1, 2, ..., N - 1, $m' = (m_1, m_2, ..., m_{N-1})$ and $B_{(m')} \subset C(\mathbb{R}^2, \mathbb{C}^{N-1})$. By the induction hypothesis the subspace V_h contains a function $h^* \neq 0$ such that

$$(h^*)_n = b_n J_{m_n}(\lambda r) e^{im_n \theta}$$
 for $n = 1, 2, ..., N - 1$.

That is, there exists a sequence $\{\phi_k\}$, $\phi_k \in M_0^{(r)}(\mathbb{R}^2)$, such that

$$(g_n(r')e^{im_n\theta'} * \phi_k)(r,\theta) \xrightarrow{C(\mathbf{R}^2)} b_n J_{m_n}(\lambda r)e^{im_n\theta}$$
(11)

for n = 1, 2, ..., N - 1, where $\sum_{n=1}^{N-1} |b_n| > 0$. Let $\psi_k \in M_0^{(r)}(\mathbb{R}^2)$ where

$$\psi_k = \phi_k * \mu_N e^{-im_N \theta} * \mu_N e^{im_N \theta} \quad k = 1, 2, \dots, .$$

Then by (8), (10) and (11) we obtain:

$$g_{n}(r)^{im_{n}\theta} * \psi_{k} \xrightarrow{C(\mathbf{R}^{2})}{_{k \to \infty}} b_{n} J_{m_{n}}(\lambda r) e^{im_{n}\theta} * \mu_{N} e^{-im_{N}\theta} * \mu_{N} e^{im_{N}\theta}$$
$$= b_{n} C_{1} J_{m_{n}}(\lambda r) e^{im_{n}\theta}$$

for n = 1, 2, ..., N - 1 where $C_1 \in C$, $C_1 \neq 0$.

For n = N we have by (9) and (8):

$$g_{N}(r)e^{im_{N}\theta} * \psi_{k} = g_{N}(r)e^{im_{N}\theta} * \mu_{N}e^{-im_{N}\theta} * \phi_{k} * \mu_{N}e^{im_{N}\theta}$$
$$= -\left[\sum_{n=1}^{N-1}g_{n}(r)e^{im_{n}\theta} * \mu_{n}e^{-im_{n}\theta}\right] * \phi_{k} * \mu_{N}e^{im_{N}\theta}$$

Hence we obtain

$$g_{n}(r) e^{im_{N}\theta} * \psi_{k} \xrightarrow{C(\mathbb{R}^{2})} - \left[\sum_{n=1}^{N-1} b_{n} J_{m_{n}}(\lambda r) e^{im_{n}\theta} * \mu_{n} e^{-im_{n}\theta}\right] * \mu_{N} e^{im_{N}\theta}$$
$$= C J_{0}(\lambda r) * \mu_{N} e^{im_{N}\theta} = C' J_{N}(\lambda r) e^{im_{N}\theta} .$$

Similarly, we may prove that if $0 \in Sp^{(r)}((f)_n)$ for some n, $1 \le n \le N$, then V_f contains a function $g \ne 0$ such that:

$$(g)_n(r,\theta) = a_n r^{m_n} e^{im_n\theta}$$
 $n = 1, 2, \dots, N$.

Proof of Theorem 5. - Let $h \in B_{(m)}$, $B_{(m)} \subset C(\mathbb{R}^2, \mathbb{C}^{N+1})$ where m = (0, 1, ..., N) and $(h)_n(r, \theta) = g_{n-1}(r)e^{i(n-1)\theta}$, n = 1, 2, ..., N+1, and suppose that $\lambda \in Sp^{(r)}((h)_{k_0})$, $\lambda \neq 0$, for some k_0 , $1 \leq k_0 \leq N+1$. Then by Lemma 8, there exists a sequence $\{\phi_k\}$, $\phi_k \in M_0^{(r)}(\mathbb{R}^2)$ k = 1, 2, ..., such that

$$(g_{n-1}(r')e^{i(n-1)\theta'}*\phi_k)(r,\theta) \xrightarrow[k\to\infty]{\operatorname{C}(\mathsf{R}^2)} a_{n-1}J_{n-1}(\lambda r)e^{i(n-1)\theta}$$

104

for n = 1, 2, ..., N + 1 where $\sum_{n=0}^{N} |a_n| > 0$. Hence, we have $\left[\left(\sum_{n=0}^{N} g_n(r') e^{in\theta} \right) * \phi_k \right] (r, \theta) \xrightarrow[k \to \infty]{} \sum_{n=0}^{N,+1} a_n J_n(\lambda r) e^{in\theta}.$ If $0 \in \operatorname{Sp}^{(r)}((h)_{k_0})$ then, similarly, $N_f^{(r)}$ contains $g \in \widetilde{\Gamma}_0$,

 $g \neq 0$, where $g(r, \theta) = \sum_{n=0}^{N} b_n r^n e^{in\theta}$. Finally, we may easily prove that $Sp^{(r)}(f) \subseteq \bigcup_{m=0}^{N} Sp^{(r)}(g_m e^{im\theta})$ and the result follows.

COROLLARY 6. – Let
$$f \in C(\mathbb{R}^2)$$
, $f \neq 0$ where

$$f(r, \theta) = \sum_{m=0}^{N} g_m(r) e^{im\theta} , g_m \in C^{(r)}(\mathbb{R}^2) \quad (m = 0, 1, ..., N).$$

Then the translation-invariant closed subspace $\tau(f)$ generated by f contains an exponential function.

Proof. If $0 \in N_f^{(r)}$ then $\tau(f)$ contains a polynomial and hence $1 \in \tau(f)$. Otherwise, by Theorem 5, $g \in \tau(f)$, $g \neq 0$ where:

$$g(r, \theta) = \sum_{m=0}^{N} a_m J_m(\lambda r) e^{im\theta}$$

for some λ , $a_m \in \mathbf{C}$, $\lambda \neq 0$, $(m = 0, 1, \dots, N)$.

The subspace $\tau(f)$ contains therefore all the functions h where $h(x, y) = (g * \mu) (x, y)$ $= C \sum_{m=0}^{N} a_m \int_{\mathbb{R}^2} \left[\int_0^{2\pi} e^{i\lambda[(x-\alpha)\cos\phi + (y-\beta)\sin\phi]} e^{im\phi} \right] d\mu(\alpha, \beta)$ $= C \sum_{m=0}^{N} a_m \int_0^{2\pi} \hat{\mu}(\lambda\cos\phi, \lambda\sin\phi) e^{i\lambda(x\cos\phi + y\sin\phi)} e^{im\phi} d\phi$

for every $\mu \in M_0(\mathbb{R}^2)$ where $C \in \mathbb{C}$, $C \neq 0$.

Thus $\tau(f)$ contains all the functions u where

$$u(x, y) = \sum_{m=0}^{N} a_m \int_0^{2\pi} s(\phi) e^{i\lambda(x\cos\phi + y\sin\phi)} e^{im\phi} d\phi$$

for every $s \in C[0, 2\pi]$, $s(0) = s(2\pi)$. For a sequence $\{s_n\}$ converg-

ing to the Dirac mass δ_{ϕ_0} concentrated in ϕ_0 where $\sum_{m=0}^{N} a_m e^{im\phi_0} \neq 0$, we obtain, by passing to the limit, that $v \in \tau(f)$ where

$$v(x, y) = \left(\sum_{m=0}^{N} a_m e^{im\phi_0}\right) e^{i(x\lambda\cos\phi_0 + y\lambda\sin\phi_0)}$$

which completes the proof.

Remark 5. — To this end we may introduce the following proof to the fact that every translation-invariant and rotation-invariant closed subspace of $C(\mathbb{R}^2)$ contains an exponential function [1]. Let R_f denote the closed translation-invariant and rotation invariant subspace generated by $f \neq 0$. Then, for a suitable $m \in \mathbb{Z}$ the function g where

$$g(r, \theta) = \int_0^{2\pi} f(r, \theta + \beta) e^{-im\beta} d\beta = e^{im\theta} \int_0^{2\pi} f(r, \beta) e^{-im\beta} d\beta$$
$$= e^{im\theta} f_1(r)$$

is non-zero and belongs to R_f . Let $\mu \in M_0^{(r)}(\mathbb{R}^2)$ where $\mu(f_1) \neq 0$. Hence the function $g_1 = g * (\mu e^{-im\theta})$ is non-zero and belongs to $R_f \cap C^{(r)}(\mathbb{R}^2)$.

By Lemma 6, or by Lemma 7 for m = 0, there exists $\lambda \in \mathbf{C}$ such that $J_0(\lambda r) \in \mathbb{R}_f$. Arguing as in the proof of Corollary 6, we deduce that \mathbb{R}_f contains the exponentials $e^{i(x\lambda\cos\phi+y\lambda\sin\phi)}$ for every $\phi \in \mathbf{R}$ and the result follows.

BIBLIOGRAPHY

- [1] L. BROWN, B.M. SCHREIBER, and B.A. TAYLOR, Spectral synthesis and the Pompeiu problem, Ann. Inst. Fourier, Grenoble, 23 (1973), 125-154.
- [2] L. EHRENPREIS, and F. MAUTNER, Some properties of the Fourier transform on semi-simple Lie groups II., Trans. Amer. Math. Soc., 84 (1957), 1-55.

- [3] D.I. GUREVICH, Counterexamples to a problem of L. Schwartz, Funct. Anal. Appl., 197 (1975), 116-120.
- [4] D. POMPEIU, Sur une propriété intégrale des fonctions de deux variables réelles, Bull. Sci. Acad. Royale Belgique (5), 15 (1929), 265-269.
- [5] L. SCHWARTZ, Théorie générale des fonctions moyenne-périodiques, Ann. of Math., 48 (1947), 857-928.
- [6] Y. WEIT, On the one-sided Wiener's theorem for the motion group, to appear in Ann. of Math.
- [7] L. ZALCMAN. Analyticity and the Pompeiu problem, Arch. Rational Mech. Anal., 47 (1972), 237-254.

Manuscrit reçu le 7 septembre 1979.

Yitzhak WEIT, University of Haïfa Department of Mathematics Mount Carmel Haïfa (Israël).