SVANTE JANSON

BMO and commutators of martingale transforms

<http://www.numdam.org/item?id=AIF_1981__31_1_265_0>
BMO AND COMMUTATORS
OF MARTINGALE TRANSFORMS

by Svante Janson

0. Introduction.

The connection between BMO and commutators of singular integrals on \(\mathbb{R}^n \) was found by Coifman, Rochberg and Weiss [1]. Their result has been further developed by Uchiyama [5] and myself [4]. This paper shows that these results hold also for the martingale transforms studied in [3].

1. The transform.

We state the basic definitions and properties of our transforms. More details are given in [3].

We assume that \((\Omega, \mathcal{F}, \mu)\) is a probability space and that \(\{\mathcal{F}_n\}_{n=0}^\infty\) is an increasing sequence of sub-\(\sigma\)-fields of \(\mathcal{F}\) such that \(\mathcal{F}_n\) is generated by \(d^n\) disjoint atoms of probability \(d^{-n}\). \(d\) is here and in the sequel a fixed integer. Thus, an atom \(Q\) of \(\mathcal{F}_n\) is the union of \(d\) atoms of \(\mathcal{F}_{n+1}\) which will be denoted \(Q^1 \ldots Q^d\).

For \(f\) an integrable function, we define \(f_n = E(f | \mathcal{F}_n)\). On any atom of \(\mathcal{F}_n\), \(f_n\) is constant and \(f_{n+1}\) assumes \(d\) values. Hence, still studying one atom only, \(f_{n+1} - f_n\) may be regarded as a vector in \(\mathbb{C}^d\), which will be called the local difference of \(f\) on the atom.

(*) Research has partly been done during boring lessons at Arménens stabs- och sambandsskola (Army School of Staff Work and Communications) in Uppsala.
It is easily seen that every local difference actually belongs to the $d - 1$ dimensional space $V = \{(x_i)_{i=1}^d ; \Sigma x_i = 0\}$.

Let A be a linear operator in V.

We define, whenever possible, Tf to be the function whose local differences are obtained from those of f by the operator A. (Also $Tf_0 = 0$).

We will need the fact that T is a bounded operator on L^p, $1 < p < \infty$.

We will represent A by a $d \times d$ matrix. This represents an extension of A to an operator of C^d into C^d and may be chosen in many ways, but we will use the unique choice $(a_{ij})_{i,j}$ such that $\Sigma_j a_{ij} = \Sigma_i a_{ij} = 0$. Note that the identity mapping in V is represented by $\mathbb{1} = (\delta_{ij} - 1/d)_{i,j=1}^d$, and the corresponding transform is $Tf = f - Ef$. C will denote various positive constants.

2. The commutator.

For any integrable function f on Ω, we define C_f to be the commutator of multiplication by f and the operator T above, i.e. $C_f g = fTg - T(fg)$. If $f \in L^q$, it is obvious that C_f is a continuous linear operator from L^p to L^r, $1 < r < p < \infty$ and $1/r = 1/p + 1/q$.

The following theorem is less trivial. Here

$$BMO = \{f ; \sup_n, \omega \ E(|f - f_n| | \mathcal{F}_n) < \infty\}.$$

We also have $\sup E(|f - f_n|^p | \mathcal{F}_n) < \infty$ for $f \in BMO$ and any $p < \infty$.

Theorem 1. — If $f \in BMO$, then C_f is a bounded linear operator in L^p, $1 < p < \infty$.

Proof. — This is a simple adaptation of the proof of [4], Lemma 11, but for completeness, we give the main steps. We define $g^* = \sup_n E(|g| | \mathcal{F}_n)$ and $g^# = \sup_n E(|g - g_n| | \mathcal{F}_n)$. Choose q and r such that $1 < q < qr < p$. Assume that $\omega \in Q$, an atom of \mathcal{F}_n, and $g \in L^p$. Let $g_1 = g \cdot X_Q$, $g_2 = g - g_1$ and $a = f_n(\omega)$.

$$C_f g = C_{f-a} g = (f - a) Tg - T(f - a) g_1 - T(f - a) g_2.$$

We treat three terms separately.
E(\(|f - a)\ Tg || Q) \leq E(|f - a|^{q'} | Q)^{1/q'} E(|Tg|^q | Q)^{1/q}
\leq C((Tg^q)^* (\omega))^{1/q}
E(|T(f - a) g_1 || Q) \leq d^{-n/r} \|T(f - a) g_1\|_r \leq C d^{-n/r} \|(f - a) g_1\|_r
\leq C((g^{rq})^* (\omega))^{1/rq},
and \(T(f - a) g_2 \) is constant on \(Q \). Hence
\[
E((C_f g - (C_f g)_Q || Q) \leq C((Tg^q)^* (\omega))^{1/q} + C((g^{rq})^* (\omega))^{1/rq},
\]
and since the right hand side is independent of \(Q \),
\[
(C_f g)^* \leq C((Tg^q)^* (\omega))^{1/q} + C((g^{rq})^* (\omega))^{1/rq} \in L^p.
\]
Now \(C_f g \in L^p \) follows as in the real-variable case [2].

In order to prove the converse, we obviously have to exclude some cases, e.g. when \(T \) is the identity. The proper requirement turns out to be the following.

We define \(A \) to be degenerate if there exists \(i_0 \) such that
\[
a_{i_0 j} = a_{i_0} = -a_{i_0 i_0} / (d - 1)
\]
for every \(j \neq i_0 \), otherwise \(A \) is non-degenerate.

Equivalently \(A \) is degenerate if and only if it is a multiple of \(\bar{T} \) plus a matrix having all entries in one row and in the corresponding column equal to zero.

Remark. — This property is weaker than the property required for the characterization of \(H^1 \) and \(BMO \) by a different method in [3] (viz. that \(A \) has no real eigenvector). In the important special case \(a_{ij} = \alpha_{i-j} \) (where \(\alpha_{-k} = \alpha_{d-k} \)), \(A \) is non-degenerate unless it is a multiple of the identity.

Theorem 2. —

a) Assume that \(A \) is non-degenerate. If \(C_f \) is bounded on any \(L^p \), then \(f \in BMO \).

b) If \(A \) is degenerate, this fails for every \(L^p \), \(1 < p < \infty \).

Proof. — Assume that \(C_f \) is bounded on \(L^p \). We choose an atom \(Q \) of \(\mathcal{S}_n (n \geq 1) \).

Choose \(j, k \neq i \) and define \(g \) to be \(\chi_{Q^j} - \chi_{Q^k} \). All local differences but one of \(g \) are zero and we find that \(Tg = a_{ij} - a_{ik} \).
on Q'. Since fg is zero on Q', $T(fg)$ is constant there. Thus there is a constant a such that

$$|a_{ij} - a_{ik}| E(|f - a| |Q'|) \leq E(|(a_{ij} - a_{ik})(f - a)|^p |Q'|^{1/p})$$

$$= E(|C_f g|^p |Q'|^{1/p}) \leq |Q'|^{-1/p} \|C_f g\|_p$$

$$\leq C |Q'|^{-1/p} \|g\|_p = C.$$

Consequently $E(|f - a| |Q'|) \leq C$ unless the $d - 1$ values of a_{ij}, $j \neq i$, all are equal. In that case their common value must be $-a_{ii}/(d - 1)$.

Now we note that the transpose operator C_f is bounded on L^p. However $C_f = -C_f$, where C_f is the commutator of f and the operator T_f obtained as above from the transpose matrix A_f. Hence we also have $E(|f - a| |Q'|) \leq C$ unless $a_{ij} = -a_{ii}/(d - 1)$. This together with the preliminary result above shows that $E(|f - a| |Q'|) \leq C$ unless A is degenerate. Since every atom, except S_2 itself, is of the form Q' for some Q and i, this completes the proof of part a).

For the converse, let us assume that A is degenerate; $A = \lambda \tilde{T} + A'$, where $a_{ij}' = a_{ii}' = 0, j = 1 \ldots d$. Hence $Tg = \lambda (g - Eg) + T'g$. We choose a positive integer N. $\Omega, \Omega_0, (\Omega_0^1)^0 \ldots$ is a sequence of atoms of S_0, S_1, \ldots respectively. Let $Q_0 \in S_N$ be the $(N + 1)^{th}$ of these, and define $f = X_Q$. Then it is easy to see, for any g, that $T(f \circ g - g) = fT(g - g_0), T'(fg_N) = 0$ and $fT'g_N = 0$. Consequently

$$C_f g = \lambda f(g - Eg) + fT'g - \lambda (fg - E(fg)) - (fg) = \lambda (-f Eg + E(fg))$$

and $\|C_f g\|_p \leq |\lambda| (\|f\|_p + \|f\|_p') \|g\|_p$. Hence

$$\|C_f\| \leq |\lambda| (\|f\|_p + \|f\|_p').$$

If the result of part a) were to hold, we would by the closed graph theorem have $\|f\|_{BMO} \leq C \|C_f\| \leq C(\|f\|_p + \|f\|_{p'})$, but we see that this is impossible by letting $N \to \infty$.
3. Various extensions.

On \mathbb{R}^n, Uchiyama [5] showed that the commutator is compact if and only if the function belongs to the subspace CMO of BMO. This holds in our case too.

Definition. $\text{CMO} = \{f \in \text{BMO} : f_n \to f \text{ in } \text{BMO as } n \to \infty\} = \{f ; \sup E(|f - f_n| |\mathcal{F}_n|) \to 0, \ n \to \infty\}$. CMO is the closure in BMO of the functions that are \mathcal{F}_n-measurable for some n.

Theorem 3. Assume that A is non-degenerate. Then C_f is a compact operator of L^p into itself if and only if $f \in \text{CMO}$ (1 < p < ∞).

Proof. If $f \in \text{CMO}$, $||C_{f_n} - C_f|| = ||C_{f_n} - f|| \leq C ||f_n - f||_{\text{BMO}}$ by Theorem 1. Hence $C_{f_n} \to C_f$, and since the range of C_{f_n} is finite-dimensional, C_f is compact.

Conversely, if $f \notin \text{CMO}$, there exists an infinite sequence Q_n of atoms such that $E(|f - E(f|Q_n)| |Q_n|) \geq C$ for some positive C. Thus, by the proof of Theorem 2, there exist functions g_n such that g_n and $C_f g_n$ are supported on Q_n, $||g_n|| \leq 1$ and $||C_f g_n|| \geq C$. There is no convergent subsequence of $\{C_f g_n\}$, and hence C_f is not compact.

Quantitative estimates of the rate of convergence of f_n to f correspond to the commutator mapping one space into another.

Theorem 4. Assume that A is non-degenerate. Let $1 < p < \infty$ and let φ be a positive increasing convex function on \mathbb{R}^+ such that $\varphi(0) = 0$, $\varphi(2t) \leq C\varphi(t)$ and $t^{-1/p} \varphi^{-1}(t)$ is decreasing. Then $E(|f - f_n| |\mathcal{F}_n|) \leq C d^{-n/p} \varphi^{-1}(d^n)$ if and only if C_f maps L^p into the Orlicz space L^φ.

The proof is similar to the one for \mathbb{R}^n given in [4].

We may also study more general operators. Let us assume that we begin with one linear operator A_Q in \mathcal{V} for every atom Q. Define the operator T as before, now applying A_Q to the local difference on Q.
It is clear, by the same proof as above, that Theorem 1 (and one direction of Theorems 3 and 4) holds if the operators A_Q are uniformly bounded. Also, if the operators are uniformly non-degenerate, all theorems above hold.

BIBLIOGRAPHY

Manuscrit reçu le 13 août 1980.

Svante Janson,
Uppsala University
Department of Mathematics
Thunbergvägen 3
S 752 38 Uppsala (Suède).