JEAN-MARC DESHOUILLERS
HENRYK IWANIEC

On the greatest prime factor of $n^2 + 1$

<http://www.numdam.org/item?id=AIF_1982__32_4_1_0>
ON THE GREATEST PRIME FACTOR OF \(n^2 + 1 \)

by J.-M. DESHOUILLERS and H. IWANIEC

1. Introduction.

In 1967 C. Hooley [2] (see also [3]) showed that if \(D \) is not a perfect square then the greatest prime factor of \(n^2 - D \) exceeds \(n^{11/10} \) infinitely often. In fact Hooley's arguments yield a slightly better result with the exponent 11/10 replaced by any \(\theta \) less than \(\theta_0 = 1.100 148 3 \ldots \) the solution of

\[
14 \left(\frac{\theta - 12}{11} \right) + \frac{28}{9} \log \left(1 + \frac{33}{14} \left(\frac{\theta - 12}{11} \right) \right) - \frac{41}{33} + \frac{32}{9} \log \frac{11}{8} = 0.
\]

Among several innovative ideas in Hooley's proof one finds a very interesting application of A. Weil's estimate for Kloosterman sums

\[
S(n m; c) = \sum_{d \text{ (mod } c)} e\left(\frac{d}{c} n + \frac{\bar{d}}{c} m \right) \ll (n, m, c)^{1/2} c^{3/4 + \varepsilon}
\]

where the symbol \(\bar{d} \) stands for a solution of \(d \bar{d} \equiv 1 \text{ (mod } c) \). Recently the authors [1] investigated linear forms in Kloosterman sums \(S(nQ, m; c) \) with the variables of the summation \(n, m \) and \(c \) counted with a smooth weight function, showing (see Lemma 3) that there exists a considerable cancellation of terms.

In the paper we inject this result into the Chebyshev-Hooley method to prove the following

Theorem. For any \(\varepsilon > 0 \) there exist infinitely many integers \(n \) such that \(n^2 + 1 \) has a prime factor greater than \(n^{\theta - \varepsilon} \), where \(\theta \) satisfies

\[
2 - \theta - 2 \log (2 - \theta) = \frac{5}{4} \quad (\theta = 1.202 468 \ldots).
\]
Our result can be generalized to \(n^2 - D \) by using Hooley's arguments from [3].

The authors express their thanks to Prof. C. Hooley for interesting comments and corrections.

2. Chebyshev's method.

Let \(x \geq 2 \) and let \(b \) be a non-negative function of \(C^\infty \)-class with support in \([x,2x]\) and the derivates of which satisfy

\[
b^{(l)}(\xi) \ll x^{-l}, \quad l = 0, 1, 2, \ldots,
\]

the implied constant in \(\ll \) depending on \(l \) alone. Denote

\[
X = \int b(\xi) \, d\xi \quad \text{and} \quad |A_d| = \sum_{n^2 + 1 = 0 (\text{mod } d)} b(n).
\]

We begin with applying Chebyshev's idea to calculate

\[
(1) \quad T(x) = \sum_p |A_p| \log p = \sum_d |A_d| \Lambda (d) + O(x)
\]

\[
= \sum_n b(n) \sum_{d | n^2 + 1} \Lambda (d) + O(x) = \sum_n b(n) \log (n^2 + 1) + O(x)
\]

\[
= 2 \log x \int b(\xi) \, d\xi + O(x) = 2X \log x + O(x).
\]

The partial sum

\[
T_0(x) = \sum_{p \leq x} |A_p| \log p
\]

\[
= \sum_{p \leq x} \sum_{\nu^2 + 1 \equiv 0 (\text{mod } p)} (\log p) \sum_{n \equiv \nu (\text{mod } p)} b(n)
\]

can be evaluated easily by the Poisson summation formula.

Lemma 1. — For any \(f(\xi) \) of \(C^1 \) class with compact support in \((0, \infty)\) we have

\[
\sum_{n = a (\text{mod } q)} f(n) = \frac{1}{q} \sum_h e\left(-\frac{ah}{q}\right) f\left(\frac{h}{q}\right), \quad h \in \mathbb{Z}
\]

where \(\hat{f}(t) \) is the Fourier transform of \(f(\xi) \).
By Lemma 1

\[\sum_{n \equiv v \pmod{p}} b(n) = \frac{1}{p} \sum_{h} e \left(-\frac{vh}{p} \right) b \left(\frac{h}{p} \right). \]

For \(h = 0 \) we have \(\hat{b}(0) = X \). If \(h \neq 0 \), by partial integration two times we get

\[\hat{b} \left(\frac{h}{p} \right) = \int b(\xi)e \left(\frac{h}{p} \xi \right) d\xi \]

\[= \left(\frac{p}{2\pi i h} \right)^2 \int b''(\xi)e \left(\frac{h}{p} \xi \right) d\xi \ll h^{-2}p^2x^{-1}. \]

This yields

\[\sum_{n \equiv v \pmod{p}} b(n) = \frac{X}{p} + O \left(\frac{p}{x} \right) \]

whence

\[T_0(x) = X \log x + O(x). \]

Letting \(P_x \) be the greatest prime factor of \(\prod_{x < n < 2x} (n^2 + 1) \) by (1) and (2) it follows that

\[S(x) = \sum_{x < p \leq P_x} |\mathcal{A}_p| \log p = X \log x + O(x). \]

Our aim is to estimate \(S(x) \) from above and deduce from it a lower estimate for \(P_x \).

3. Splitting up of \(S(x) \).

In what follows it will be convenient to have \(p \) counted with a smooth weight function. Therefore we arrange the sum \(S(x) \) as

\[S(x) = \sum_{1 \leq j \leq J} S(x, P_j) + O(x) \]

with \(P_j = 2^j x, \quad 0 \leq j \leq J \leq 2 \log x \) and

\[S(x, P_j) = \sum_{p < p \leq 4P_j} |\mathcal{A}_p| C_j(p) \log p \]

\]
where \(C_j(\xi) \) are non-negative functions of \(C^\infty \)-class which satisfy the three following conditions

\[
\text{Supp } C_j \subset [P_j, 4P_j]
\]

\[
(6) \quad \sum_{0 \leq j < J} C_j(\xi) = \begin{cases}
1 & \text{if } 2x < \xi \leq P_x \\
O(1) & \text{if } x < \xi \leq 2x \text{ or } P_x < \xi \leq 2P_x \\
0 & \text{otherwise}
\end{cases}
\]

\(C_j(\xi) \ll P_j^{-l} \), with the implied constant depending on \(l \) alone. The error term \(O(x) \) in (4) comes from a trivial estimate for the contribution of primes \(p \) in the interval \((x, 2x] \) which is not completely covered.

4. Application of the sieve method.

A typical sum to be considered is

\[
S(x, P) = \sum_{P < p < 4P} |\mathcal{A}_p| C(p) \log p
\]

with \(x < P \leq 2P_x \). Let \(x \geq D > 1 \) and let \(\{\lambda_d\}_{d \leq D} \) be an upper bound sieve of level \(D \), i.e. a sequence of real numbers such that

\[
\lambda * 1 \geq \mu * 1, \quad \lambda_1 = 1, \quad \lambda_d = 0 \quad \text{for } d \geq D.
\]

We also assume that \(|\lambda_d| \leq 1 \) for all \(d \) and that \(\lambda_d = 0 \) when \(d \) is not square-free.

Thus

\[
S(x, P) \leq \sum_{d \leq D} \lambda_d \sum_{m = 0 \pmod{d}} |\mathcal{A}_m| C(m) \log m.
\]

By the Poisson summation formula we write

\[
|\mathcal{A}_m| = \sum_{v^2 + 1 \equiv 0 \pmod{m}} \sum_{n \equiv v \pmod{m}} b(n)
\]

\[
= \frac{\omega(m)}{m} X + r(\mathcal{A}, m)
\]

where \(\omega(m) \) is the number of incongruent solutions of \(v^2 + 1 \equiv 0 \pmod{m} \) and

\[
(7) \quad r(\mathcal{A}, m) = \frac{1}{m} \sum_{h \neq 0 \pmod{m}} \sum_{v^2 + 1 \equiv 0 \pmod{m}} e\left(-\frac{vh}{m}\right) h\left(\frac{h}{m}\right).
\]
According to the above we write

\[S(x,P) \leq XV(x,P) + R(x,P) \]

where \(XV(x,P) \) is considered as a main term

\[V(x,P) = \sum_{d<D} \sum_{m=0 \pmod{d}} \frac{\omega(m)}{m} C(m) \log m \]

and \(R(x,P) \) is the total error term

\[R(x,P) = \sum_{d<D} \lambda_d R(x,d,P) \]

with

\[R(x,d,P) = \sum_{h \neq 0} \sum_{m=0 (\text{mod } d)} \frac{C(m)}{m} \log m \sum_{\nu^2+1 \equiv 0 (\text{mod } m)} \hat{b} \left(\frac{h}{m} \right) e \left(-\frac{vh}{m} \right). \]

5. Transformation of \(R(x,d,P) \).

We are searching for \(D \) as large as possible for which the estimate

\[R(x,P) \ll x^{1-\varepsilon} \]

is available. By partial integration \(l = [4\varepsilon^{-1}] \) times we get

\[\hat{b} \left(\frac{h}{m} \right) = \left(-2\pi i \frac{h}{m} \right)^{-l} \int b^{(l)}(\xi) e \left(\frac{h}{m} \xi \right) d\xi \ll x \left(\frac{P}{|h|} \right)^{l} \ll h^{-2} \]

for \(|h| \geq Px^{4-1} = H, \) say. Hence truncating the series (9) at \(h = H \) we make an error \(0(\tau(d)/d) \) which contributes to \(R(x,P) \) an admissible amount

\[\sum_{d<D} \frac{\tau(d)}{d} \ll (\log D)^2 \ll (\log x)^2. \]

For the remaining terms we need an explicit formula for the solutions of

\[\nu^2 + 1 \equiv 0 (\text{mod } m). \]

Lemma 2. (Gauss). Let \(m > 1 \). If (11) is soluble then \(m \) is represented properly as a sum of two squares

\[m = r^2 + s^2, \quad (r,s) = 1, \quad r,s > 0. \]
There is a one to one correspondence between the incongruent solutions \(v(\text{mod} m) \) of (11) and the solutions \((r,s)\) of (12) given by

\[
\frac{v}{m} = \frac{r}{s} - \frac{r}{s(r^2 + s^2)}.
\]

Proof. — See [5] and [3], p. 34, eq. (68).

By Lemma 2 we get

\[
\sum_{r^2 + 1 \equiv 0 \text{ (mod } m)} e\left(-\frac{vh}{m}\right) = \sum_{r,s > 0, (r,s) = 1, r^2 + s^2 = m} e\left(-\frac{r}{s}\right)
\left\{1 + O\left(\frac{r|h|}{sm}\right)\right\}
\]

whence letting \(g(m,h) = \frac{C(m)}{m} (\log m) h\left(\frac{h}{m}\right) \) we obtain

\[
R(x,d,P) = \sum_{0 < |h| \leq H} \sum_{r,s > 0, r^2 + s^2 \equiv 0 \text{ (mod } d)} g(r^2 + s^2, h) e\left(-\frac{r}{s}\right) + O(d^{-1} P x^{3e-1}).
\]

Here the error \(O(d^{-1} P x^{3e-1}) \) contributes to \(R(x,P) \) less than \(P x^{3e-1} \log x \ll x^{1-\epsilon} \) provided \(P \leq x^{-5e} \) which we henceforth assume.

For sum over \(r \) we apply Poisson's summation formula giving

\[
\sum_{r^2 + s^2 \equiv 0 \text{ (mod } d)} g(r^2 + s^2, h) e\left(-\frac{r}{s}\right) = \sum_{u(\text{mod } ds)} e\left(-\frac{\tilde{u}}{s}\right) \sum_{r = u(\text{mod } ds)} g(r^2 + s^2, h)
\]

\[
= \frac{1}{ds} \sum_{k \equiv 1 \text{ (mod } ds)} \sum_{u(\text{mod } ds)} e\left(-\frac{\tilde{u}}{s} - k \frac{u}{ds}\right) G(h,k; s)
\]

where \(G(h,k; s) = \int g(\xi^2 + s^2, h) e(k \xi/ds) \, d\xi. \) Writing \(u = \alpha s + \beta d \) with \(\alpha^2 + 1 \equiv 0 \text{ (mod } d) \) it becomes

\[
\frac{1}{ds} \sum_{\alpha^2 + 1 \equiv 0 \text{ (mod } d)} \sum_{k} e\left(-\frac{\alpha k}{d}\right) S(-h\tilde{d}, -k; s) G(h,k; s).
\]
For $k = 0$ the Kloosterman sum $S(-hd, -k; s)$ reduces to a Ramanujan sum for which we have

$$|S(-hd, 0; s)| \leq (h, s).$$

Therefore the terms with $k = 0$ contribute less than

$$\frac{\tau(d)}{d} \sum_{0 < |h| \leq H} \sum_{s < 2\sqrt{p}} \frac{(h, s) \times \log p}{s} \frac{\sqrt{p}}{d} x^s \ll \frac{x^{1-\varepsilon}}{d}.$$

Finally

$$\sum_{s > 0} \frac{1}{s} S(-hd, -k; s) G(h, k; s) + O\left(\frac{x^{1-\varepsilon}}{d}\right).$$

6. Linear forms in Kloosterman sums.

Let $N, M, C \geq 1$ and $f(n, m, c)$ be a function of C^6 class with compact support in $[C, 2C]$ with respect to c and satisfying

$$\left|\frac{\partial^{l_1+l_2+l_3}}{\partial_1^{l_1} \partial_2^{l_2} \partial_3^{l_3}} f(n, m, c)\right| \leq N^{-l_1} M^{-l_2} C^{-l_3}, \quad 0 \leq l_1, l_2, l_3 \leq 2.$$

In this section we borrow from [1] an estimate for the average of trilinear forms (cf. Theorem 11)

$$B^+(N, M, C) = \sum_{0 < n < N} \sum_{0 < m < M} \sum_{(c, d) = 1} b_{m, d} S(nd, \pm m; c) f(n, m, c)$$

where $b_{m, d}$ are arbitrary complex numbers.

Lemma 3. — If $f(n, m, c)$ satisfies (14) then for any $\varepsilon > 0$ we have

$$\left(\sum_{D < d \leq 2D} |B^+(N, M, C)|\right)^2 \ll (CDM)^3 N^2 \left(\sum_{0 < m \leq M} \sum_{D < d \leq 2D} |b_{m, d}|^2\right)$$

$$\times \left\{\frac{D(DC^2 + MN + NC^2)(DC^2 + MN + MC^2)}{DC^2 + MN} + \leq \sqrt{D(D+M)} \cdot C^3\right\}$$

and the same upper bound holds for $(\Sigma |B^+_d|)^2$, the constant implied in \ll depending on ε at most.
7. Estimation of the error.

In order to make Lemma 3 applicable we first split up the sum over s in $R(x,d,P)$ into $\ll \log P$ sums of the type

$$
\sum_{(s,d)=1} \frac{a(s)}{s} S(-hd, \pm k; s) G(h, \mp k; s)
$$

where $a(s)$ is a function of C^2 class with support $[S,2S]$, $S \leq 2\sqrt{P}$ and satisfying $a^{(l)}(s) \ll S^{-l}$ for $l = 0, 1, 2$. The terms with $|k| \geq DSP^{-1/2}x^{3e} = K$, say, can be eliminated trivially: integrate by parts in $G(A, \mp A^2, s)$, getting

$$
-\left(\frac{ds}{|k|\sqrt{P}}\right)\sqrt{P} \ll k^{-2}x^{-1}.
$$

Therefore such terms contribute to $R(x,d,P)$ less than

$$
\frac{\tau(d)}{d} \sum_{0 < |h| \leq H} \frac{1}{k^2x} \sum_{0 < s \leq 2\sqrt{P}} \frac{1}{d} \ll P^{3/2} x^e \ll x^{1-e}. \frac{d}{dx}
$$

For $0 \leq |h| \leq H$, $0 < |k| \leq K$ and $S < s \leq 2S$ we trivially have

$$
\frac{\partial^{l_1 + l_2 + l_3}}{\partial h^{l_1}\partial k^{l_2}\partial s^{l_3}} G(h, \mp k, s) \frac{a(s)}{s} \ll |h|^{-l_1}|k|^{-l_2}|s|^{-l_3} x^{1 + 12e} \frac{S\sqrt{P}}{S\sqrt{P}}
$$

for $0 \leq l_1, l_2, l_3 \leq 2$. This shows that Lemma 3 is applicable with

$$
f(h,k,s) = \frac{S\sqrt{P}}{x^{1 + 13e} S} \frac{a(s)}{s} G(h, \mp k, s)
$$

giving

$$
\left(\sum_{D < d \leq 2D} |R(x,d,P)|\right)^2 \ll x^{2-2e} + \frac{x^{2+40eHK}}{D^2P}
$$

$$
\times \text{Sup}_{1 \leq S \leq 2 \leq \sqrt{P}} \left\{\frac{D^2(DS^2 + HK + HS^2)(DS^2 + HK + KS^2)}{S^2(DS^2 + HK)} + DS\sqrt{D(D + K)}\right\}
$$

$$
\ll x^{2-2e} + (D^2x + DP + DxP^2)x^{48e}.
$$
Therefore (10) holds if

\[D \leq x^{\frac{1}{2}} - 25, \quad D \leq x^{2 - 10\varepsilon} P^{-1} \quad \text{and} \quad D \leq x^{1 - 10\varepsilon} P^{-\frac{1}{2}}. \]

This result can be compared with Hooley’s \(D = x^{1 - \varepsilon} P^{-3/4} \).

8. Evaluation of the main term.

For \(d \) square-free with \(\omega(d) \neq 0 \) consider

\[L(s,d) = \sum_{m=1}^{\infty} \frac{\omega(dm)}{\omega(d)} m^{-s}. \]

Lemma 4. — We have

\[L(s,d) = \frac{\zeta(s) L(s, \chi_d)}{\zeta(2s)} \prod_{p \mid d} \left(1 + \frac{1}{p^s} \right)^{-1}. \]

Proof. — Follow the arguments of [3] on pp. 31-32 and equation (6.1).

Writing

\[C(m) \frac{\log m}{m} = \frac{1}{2\pi i} \int_{(\sigma)} R(s) m^{-s} ds, \quad \sigma > 0 \]

by Mellin’s inversion formula and partial integration two times

\[R(s) = \int C(\xi) \frac{\log \xi}{\xi} \xi^{s-1} d\xi \ll (|s|+1)^{-2} P^{s-1} \log P. \]

Therefore

\[\sum_{m=0 \text{mod} d} \frac{\alpha(m)}{m} \frac{\zeta(s)}{\zeta(2)} \prod_{p \mid \lambda} \left(1 + \frac{1}{p} \right)^{-1} \frac{1}{2\pi i} \int_{(\sigma)} R(s) \frac{\omega(d)}{d^s} L(s,d) ds \]

\[= R(1) \frac{\omega(d)}{d} \frac{L(1, \chi_d)}{\zeta(2)} \prod_{p \mid \lambda} \left(1 + \frac{1}{p} \right)^{-1} \frac{1}{2\pi i} \int_{(\sigma)} R(s) \frac{\omega(d)}{d^s} L(s,d) ds \]

\[= \frac{\omega(d)}{d} \prod_{p \mid \lambda} \left(1 + \frac{1}{p} \right)^{-1} \frac{L(1, \chi_d)}{\zeta(2)} \int C(\xi) \frac{\log \xi}{\xi} \xi \, d\xi + O\left(\frac{\zeta^2(d)}{dP \log P} \right). \]
This yields
\[V(x,P) = \left(\sum_{d \leq D} \frac{\lambda_d}{d} \rho(d) \right) \frac{L(1, \chi_d)}{\zeta(2)} \int C(\xi) \frac{\log \xi}{\xi} \, d\xi + O\left(\sqrt{\frac{D}{P}} (\log x)^4 \right) \]
where \(\rho(d) = \omega(d) \prod_{p|d} \left(1 + \frac{1}{p} \right)^{-1} \). Now we specify \(\lambda_d \) to be those of the Rosser sieve giving (see [4])
\[
\sum_{d \leq D} \frac{\lambda_d}{d} \frac{\rho(d)}{x} = \prod_{p < D} \left(1 - \frac{1}{p} \right) \frac{\zeta(2)}{L(1, \chi_d)} \left(2e^\gamma + O\left(\frac{1}{\log D} \right) \right)
\]
\[
= \frac{2\zeta(2)}{L(1, \chi_d)} \frac{1}{\log D} \left(1 + O\left(\frac{1}{\log D} \right) \right)
\]
by the Mertens prime number theorem. Hence we conclude that
\[
V(x,P) = \frac{2}{\log D} \int C(\xi) \frac{\log \xi}{\xi} \, d\xi \left(1 + O\left(\frac{1}{\log D} \right) \right).
\]
We choose \(D \) equal to \(x^{1-10\epsilon} P^{-\frac{1}{2}} \) thus by (6) the total main term is equal to
\[
X \sum_{0 < j < 1} V(x,P_j) = 2(1 + O(\epsilon)) X \int_{x}^{px} \frac{\log \xi}{\xi \log \frac{x}{\sqrt{\xi}}} \, d\xi
\]
\[
= 2(1 + O(\epsilon)) X \int_{0}^{\theta} \frac{t \, dt}{1 - t/2} \log x
\]
\[
= (1 + O(\epsilon)) f(\theta) X \log x
\]
where \(f(\theta) = 4(1 - \theta - 2 \log (2 - \theta)) \) and is less than 1 for \(\theta = 1.202 468 87 \). The proof the Theorem follows from this and (3).
One may note that the truth of Selberg's eigenvalue conjecture leads to the lower bound \(x^{\sqrt{3/2} - \epsilon} \) for \(P_x \).

BIBLIOGRAPHY

Manuscrit reçu le 17 mars 1981
révisé le 15 octobre 1981.

J.-M. Deshouillers,
Université de Bordeaux I
U.E.R. de Mathématiques
et d'Informatique
Laboratoire associé au CNRS n° 226
351, cours de la Libération
F - 33405 Talence Cedex.

H. Iwaniec,
Mathematics Institute
Polish Academy of Sciences
ul. Śniadeckich 8
PL - 00950 Warszawa.