JEAN-MARC DESHOUILLERS
HENRYK Iwaniec

On the greatest prime factor of $n^2 + 1$

<http://www.numdam.org/item?id=AIF_1982__32_4_1_0>
ON THE GREATEST PRIME FACTOR OF $n^2 + 1$

by J.-M. DESHOUILLERS and H. IWANIEC

1. Introduction.

In 1967 C. Hooley [2] (see also [3]) showed that if D is not a perfect square then the greatest prime factor of $n^2 - D$ exceeds $n^{11/10}$ infinitely often. In fact Hooley's arguments yield a slightly better result with the exponent $11/10$ replaced by any θ less than $\theta_0 = 1.100 148 3 \ldots$ the solution of

$$\frac{14}{3} \left(\theta - \frac{12}{11} \right) + \frac{28}{9} \log \left(1 + \frac{33}{14} \left(\theta - \frac{12}{11} \right) \right) - \frac{41}{33} + \frac{32}{9} \log \frac{11}{8} = 0.$$

Among several innovative ideas in Hooley's proof one finds a very interesting application of A. Weil's estimate for Kloosterman sums

$$(2) \quad S(n \ b; \ c) = \sum_{d \equiv 1 (mod \ c)} \epsilon \left(n \frac{d}{c} + m \frac{d}{c} \right) \ll (n, m, c)^{1/2} c^2 + \epsilon$$

where the symbol \overline{d} stands for a solution of $d \overline{d} \equiv 1 (mod \ c)$. Recently the authors [1] investigated linear forms in Kloosterman sums $S(n \overline{Q} \ b; \ c)$ with the variables of the summation n, m and c counted with a smooth weight function, showing (see Lemma 3) that there exists a considerable cancellation of terms.

In the paper we inject this result into the Chebyshev-Hooley method to prove the following

Theorem. — For any $\varepsilon > 0$ there exist infinitely many integers n such that $n^2 + 1$ has a prime factor greater than $n^{8-\varepsilon}$, where θ satisfies

$$2 - \theta - 2 \log (2 - \theta) = \frac{5}{4} \quad (\theta = 1.202 468 \ldots).$$
Our result can be generalized to $n^2 - D$ by using Hooley's arguments from [3].

The authors express their thanks to Prof. C. Hooley for interesting comments and corrections.

2. Chebyshev's method.

Let $x \geq 2$ and let b be a non-negative function of C^∞-class with support in $[x, 2x]$ and the derivatives of which satisfy

$$b^{(l)}(\xi) \ll x^{-l}, \quad l = 0, 1, 2, \ldots,$$

the implied constant in \ll depending on l alone. Denote

$$X = \int b(\xi) \, d\xi \quad \text{and} \quad |\mathcal{A}_d| = \sum_{n^2 + 1 = 0 \pmod{d}} b(n).$$

We begin with applying Chebyshev's idea to calculate

$$T(x) = \sum_p |\mathcal{A}_p| \log p = \sum_d |A_d| \wedge (d) + O(x)$$

$$= \sum_n b(n) \sum_{d | n^2 + 1} \wedge (d) + O(x) = \sum_n b(n) \log (n^2 + 1) + O(x)$$

$$= 2 (\log x) \int b(\xi) \, d\xi + O(x) = 2X \log x + O(x).$$

The partial sum

$$T_0(x) = \sum_{p \leq x} |\mathcal{A}_p| \log p$$

$$= \sum_{p \leq x} \sum_{v^2 + 1 \equiv 0 \pmod{p}} (\log p) \sum_{n \equiv v \pmod{p}} b(n)$$

can be evaluated easily by the Poisson summation formula.

Lemma 1. — For any $f(\xi)$ of C^1 class with compact support in $(0, \infty)$ we have

$$\sum_{n \equiv a \pmod{q}} f(n) = \frac{1}{q} \sum_h e\left(-\frac{ah}{q}\right) \hat{f}\left(\frac{h}{q}\right), \quad h \in \mathbb{Z},$$

where $\hat{f}(t)$ is the Fourier transform of $f(\xi)$.
ON THE GREATEST PRIME FACTOR OF $n^2 + 1$

By Lemma 1

$$\sum_{n=\nu (\text{mod} \ p)} b(n) = \frac{1}{p} \sum_{h} e\left(-\frac{vh}{p}\right) \hat{b}\left(\frac{h}{p}\right).$$

For $h = 0$ we have $\hat{b}(0) = X$. If $h \neq 0$ by partial integration two times we get

$$\hat{b}\left(\frac{h}{p}\right) = \int b(\xi)e\left(\frac{h}{p} \xi\right) d\xi = \left(\frac{p}{2\pi ih}\right)^2 \int b''(\xi)e\left(\frac{h}{p} \xi\right) d\xi \ll h^{-2}p^2x^{-1}.$$

This yields

$$\sum_{n=\nu (\text{mod} \ p)} b(n) = \frac{X}{p} + O\left(\frac{p}{x}\right)$$

whence

(2) \hspace{1cm} T_0(x) = X \log x + O(x).

Letting P_x be the greatest prime factor of $\prod_{x < n < 2x} (n^2 + 1)$ by (1) and (2) it follows that

(3) \hspace{1cm} S(x) = \sum_{x < p \leq P_x} |\mathcal{A}_p| \log p = X \log x + O(x).

Our aim is to estimate $S(x)$ from above and deduce from it a lower estimate for P_x.

3. Splitting up of $S(x)$.

In what follows it will be convenient to have p counted with a smooth weight function. Therefore we arrange the sum $S(x)$ as

(4) \hspace{1cm} S(x) = \sum_{1 \leq j \leq J} S(x,P_j) + O(x)

with $P_j = 2^jx$, $0 \leq j \leq J \leq 2 \log x$ and

(5) \hspace{1cm} S(x,P_j) = \sum_{p_j < p \leq 4p_j} |\mathcal{A}_p|C_j(p) \log p$
where \(C_j(\xi) \) are non-negative functions of \(C^\infty \)-class which satisfy the three following conditions

\[
\text{Supp } C_j \subset [P_j, 4P_j]
\]

\[
\sum_{0 < j < J} C_j(\xi) = \begin{cases}
1 & \text{if } 2x < \xi \leq P_x \\
O(1) & \text{if } x < \xi \leq 2x \text{ or } P_x < \xi \leq 2P_x \\
0 & \text{otherwise}
\end{cases}
\]

\(C_j(\xi) \ll P_j^{-1} \), with the implied constant depending on \(l \) alone. The error term \(O(x) \) in (4) comes from a trivial estimate for the contribution of primes \(p \) in the interval \((x, 2x]\) which is not completely covered.

4. Application of the sieve method.

A typical sum to be considered is

\[
S(x, P) = \sum_{p < P < 4P} |\mathcal{A}_p| C(p) \log p
\]

with \(x < P \leq 2P_x \). Let \(x \geq D > 1 \) and let \(\{\lambda_d\}_{d \leq D} \) be an upper bound sieve of level \(D \), i.e. a sequence of real numbers such that

\[
\lambda \ast \ast 1 \geq \mu \ast \ast 1, \quad \lambda_1 = 1, \quad \lambda_d = 0 \text{ for } d \geq D.
\]

We also assume that \(|\lambda_d| \leq 1\) for all \(d \) and that \(\lambda_d = 0 \) when \(d \) is not square-free.

Thus

\[
S(x, P) \leq \sum_{d \leq D} \lambda_d \sum_{m = 0 (\mod d)} |\mathcal{A}_m| C(m) \log m.
\]

By the Poisson summation formula we write

\[
|\mathcal{A}_m| = \sum_{v^2 + 1 \equiv 0 (\mod m)} \sum_{n = v (\mod m)} b(n)
= \frac{\omega(m)}{m} X + r(\mathcal{A}, m)
\]

where \(\omega(m) \) is the number of incongruent solutions of \(v^2 + 1 \equiv 0 (\mod m) \) and

\[
(7) \quad r(\mathcal{A}, m) = \frac{1}{m} \sum_{h \neq 0} \sum_{v^2 + 1 \equiv 0 (\mod m)} e\left(-\frac{vh}{m}\right)b\left(\frac{h}{m}\right).
\]
According to the above we write

$$S(x,P) \leq XV(x,P) + R(x,P)$$

where $XV(x,P)$ is considered as a main term

$$V(x,P) = \sum_{d < D} \lambda_d \sum_{m=0 \pmod{d}} \frac{\omega(m)}{m} C(m) \log m$$

and $R(x,P)$ is the total error term

$$R(x,P) = \sum_{d < D} \lambda_d R(x,d,P)$$

with

$$R(x,d,P) = \sum_{h \neq 0} \sum_{m=0 \pmod{d}} \frac{C(m)}{m} \log m \sum_{\nu^2 + 1 \equiv 0 \pmod{m}} \delta \left(\frac{h}{m} \right) e\left(-\frac{v(h)}{m} \right).$$

5. Transformation of $R(x,d,P)$.

We are searching for D as large as possible for which the estimate

$$R(x,P) \ll x^{1-\varepsilon}$$

is available. By partial integration $l = [4e^{-1}]$ times we get

$$b\left(\frac{h}{m} \right) = \left(-2\pi i \frac{h}{m} \right)^{-1} \int b^{(0)}(\xi) e\left(\frac{h}{m} \xi \right) d\xi \ll x\left(\frac{P}{|h|x} \right)^l \ll h^{-2}$$

for $|h| \geq Px^{\varepsilon-1} = H$, say. Hence truncating the series (9) at $h = H$ we make an error $0(\tau(d)/d)$ which contributes to $R(x,P)$ an admissible amount

$$\sum_{d < D} \frac{\tau(d)}{d} \ll (\log D)^2 \ll (\log x)^2.$$

For the remaining terms we need an explicit formula for the solutions of

$$v^2 + 1 \equiv 0 \pmod{m}.$$

Lemma 2. (Gauss). — Let $m > 1$. If (11) is soluble then m is represented properly as a sum of two squares

$$m = r^2 + s^2, \quad (r,s) = 1, \quad r,s > 0.$$
There is a one to one correspondence between the incongruent solutions \(v \mod{w} \) of (11) and the solutions \((r,s)\) of (12) given by

\[
\frac{v}{m} = \frac{\bar{r}}{s} - \frac{r}{s(r^2 + s^2)}.
\]

Proof. — See [5] and [3], p. 34, eq. (68).

By Lemma 2 we get

\[
\sum_{v^2 + 1 = 0 \mod{m}} e\left(-\frac{vh}{m}\right) = \sum_{r,s > 0, (r,s) = 1} e\left(-\frac{\bar{r}}{s}\right)\left\{1 + O\left(\frac{|h|}{sm}\right)\right\}
\]

whence letting \(g(m,h) = \frac{C(m)}{m} (\log m) b\left(\frac{h}{m}\right) \) we obtain

\[
R(x,d,P) = \sum_{0 < |h| \leq H} \sum_{(r,s) = 1, r, s > 0} g(r^2 + s^2, h) e\left(-\frac{\bar{r}}{s}\right) + O(d^{-1} P x^{3\varepsilon - 1}).
\]

Here the error \(O(d^{-1} P x^{3\varepsilon - 1}) \) contributes to \(R(x;P) \) less than \(P x^{3\varepsilon - 1} \log x \ll x^{1-\varepsilon} \) provided \(P \leq x^{2 - 5\varepsilon} \) which we henceforth assume.

For sum over \(r \) we apply Poisson's summation formula giving

\[
\sum_{\{r,s\} = 1} g(r^2 + s^2, h) e\left(-\frac{\bar{r}}{s}\right) = \frac{1}{ds} \sum_{u\mod{d\phi}} \sum_{(u,s) = 1} e\left(-h\frac{\bar{u}}{s} - k\frac{u}{ds}\right) G(h,k;\bar{u} s) = \int g(\xi^2 + s^2, h) e(k\xi/d\xi) \, d\xi.
\]

Writing \(u = \alpha s + \beta d \) with \(\alpha^2 + 1 \equiv 0 \mod{d} \) it becomes

\[
\frac{1}{ds} \sum_{\alpha^2 + 1 = 0 \mod{d}} \sum_{\xi} e\left(-\frac{\alpha k}{d}\right) S(-h\bar{\alpha} - k;\bar{s}) G(h,k;\bar{s}).
\]
For \(k = 0 \) the Kloosterman sum \(S(-h\bar{d},-k;s) \) reduces to a Ramanujan sum for which we have

\[
|S(-h\bar{d},0;s)| \leq (h,s).
\]

Therefore the terms with \(k = 0 \) contribute less than

\[
\frac{\tau(d)}{d} \sum_{0 < |d| \leq H} \sum_{s \leq 2\sqrt{P}} \frac{(h,s) \times \log P}{s} \ll \sqrt{P} \frac{d}{x} x^{1-\epsilon}.
\]

Finally

\[
R(x,d,P) = \frac{1}{d} \sum_{n^2 + 1 = 0 (\text{mod } d)} \sum_{0 < |d| \leq H} \sum_{k \neq 0} \frac{e\left(-\frac{ak}{d}\right)}{s} \sum_{s > 0} \frac{1}{s} S(-hd,-k;s)G(h,k;s) + O\left(\frac{x^{1-\epsilon}}{d}\right).
\]

6. Linear forms in Kloosterman sums.

Let \(N, M, C \geq 1 \) and \(f(n,m,c) \) be a function of \(C^6 \) class with compact support in \([C,2C]\) with respect to \(c \) and satisfying

\[
\frac{\partial^{l_1+l_2+l_3}}{\partial n^{l_1} \partial m^{l_2} \partial c^{l_3}} |f(n,m,c)| \leq N^{-l_1} M^{-l_2} C^{-l_3}, \quad 0 \leq l_1, l_2, l_3 \leq 2.
\]

In this section we borrow from [1] an estimate for the average of trilinear forms (cf. Theorem 11)

\[
B_d^+(N,M,C) = \sum_{0 < n \leq N} \sum_{0 < m \leq M} \sum_{(c,d) = 1} b_{m,d} S(nd \pm m;c) f(n,m,c)
\]

where \(b_{m,d} \) are arbitrary complex numbers.

Lemma 3. - If \(f(n,m,c) \) satisfies (14) then for any \(\epsilon > 0 \) we have

\[
\left(\sum_{D < d \leq 2D} |B_d^+(N,M,C)| \right)^2 \ll (CDMN)^3 N \left(\sum_{0 < m \leq M} \sum_{D < d \leq 2D} |b_{m,d}|^2 \right) \times \left\{ \frac{D(DC^2 + MN + NC^2)(DC^2 + MN + MC^2)}{DC^2 + MN} + \leq \sqrt{D(D+M)C^3} \right\}
\]

and the same upper bound holds for \((\Sigma |B_d^-|)^2 \), the constant implied in \(\ll \) depending on \(\epsilon \) at most.
7. Estimation of the error.

In order to make Lemma 3 applicable we first split up the sum over s in $R(x,d,P)$ into $\ll \log P$ sums of the type

$$
\sum_{(s,d)=1} \frac{a(s)}{s} S(-hd,\pm k;s) G(h,\mp k;s)
$$

where $a(s)$ is a function of C^2 class with support $[S,2S]$, $S \leq 2\sqrt{P}$ and satisfying $a^{(l)}(s) \ll S^{-l}$ for $l = 0,1,2$. The terms with $|k| \geq DSP^{-1/2}x^{3e} = K$, say, can be eliminated trivially: integrate by parts $l = [4e^{-1}]$ times with respect to ξ in $G(h,\pm k,s)$, getting

$$
G(h,\pm k,s) = \left(\frac{-ds}{2\pi i k}\right)^l \int \frac{\partial^l}{\partial \xi^l} g(\xi^2 + s^2,h) e\left(\frac{\xi k}{ds}\right) d\xi
\ll \left(\frac{ds}{|k|\sqrt{P}}\right)^l \sqrt{P} \ll k^{-2}x^{-1}.
$$

Therefore such terms contribute to $R(x,d,P)$ less than

$$
\frac{\tau(d)}{d} \sum_{0 < |h| \leq H} \sum_{k \geq 1} \frac{1}{k^2 x} \sum_{0 < s \leq 2\sqrt{P}} 1 \ll \frac{P^{3/2}}{dx^e} x^e \ll \frac{x^{1-\epsilon}}{d}.
$$

For $0 \leq |h| \leq H$, $0 < |k| \leq K$ and $S < s \leq 2S$ we trivially have

$$
\frac{\partial^{l_1 + l_2 + l_3}}{\partial h^{l_1} \partial k^{l_2} \partial s^{l_3}} G(h,\mp k,s) \frac{a(s)}{s} \ll |h|^{-l_1} |k|^{-l_2} |s|^{-l_3} \frac{x^{1+12e}}{S\sqrt{P}}
$$

for $0 \leq l_1, l_2, l_3 \leq 2$. This shows that Lemma 3 is applicable with

$$
f(h,k,s) = \frac{S\sqrt{P}}{x^{1+13e}} \frac{a(s)}{s} G(h,\mp k,s) \ 	ext{giving}
$$

$$
\left(\sum_{D < d \leq 2D} |R(x,d,P)| \right)^2 \ll x^{2-2e} + \frac{x^{2+40eHK}}{D^2P}
\times \sup_{1 < S \leq 2 \leq \sqrt{P}} \left\{ \frac{D^2(DS^2 + HK + HS^2)(DS^2 + HK + KS^2)}{S^2(DS^2 + HK)} + DS\sqrt{D(D+K)} \right\}
\ll x^{2-2e} + (D^2x + DP + DxP^2)x^{48e}.
$$
Therefore (10) holds if

\[D \leq x^{\frac{3}{2} - 25\varepsilon}, \quad D \leq x^{2 - 10\varepsilon} P^{-1} \quad \text{and} \quad D \leq x^{1 - 10\varepsilon} P^{-\frac{1}{2}}. \]

This result can be compared with Hooley's \(D = x^{1-\varepsilon} P^{-3/4} \).

8. Evaluation of the main term.

For \(d \) square-free with \(\omega(d) \neq 0 \) consider

\[
L(s, d) = \sum_{m=1}^{\infty} \frac{\omega(dm)}{\omega(d)} m^{-s}.
\]

Lemma 4. — We have

\[
L(s, d) = \frac{\zeta(s) L(s, \chi_d)}{\zeta(2s)} \prod_{p \mid d} \left(1 + \frac{1}{p^s} \right)^{-1}.
\]

Proof. — Follow the arguments of [3] on pp. 31-32 and equation (6.1).

Writing

\[
C(m) \log \frac{m}{m} = \frac{1}{2\pi i} \int_{(\sigma)} R(s) m^{-s} ds, \quad \sigma > 0
\]

by Mellin's inversion formula and partial integration two times

\[
R(s) = \int C(\xi) \frac{\log \xi}{\xi} \xi^{s-1} d\xi \ll (|s| + 1)^{-2} P^{-1} \log P.
\]

Therefore

\[
\sum_{m \equiv 0 (\text{mod})} \frac{\omega(m)}{m} c(m) \log m = \frac{1}{2\pi i} \int_{(\sigma)} R(s) \frac{\omega(d)}{d^s} L(s, d) \, ds = R(1) \frac{\omega(d)}{d} \frac{L(1, \chi_d)}{\zeta(2)} \prod_{p \mid d} \left(1 + \frac{1}{p} \right)^{-1} + \frac{1}{2\pi i} \int_{(\sigma)} R(s) \frac{\omega(d)}{d^s} L(s, d) \, ds = \frac{\omega(d)}{d} \prod_{p \mid d} \left(1 + \frac{1}{p} \right)^{-1} \frac{L(1, \chi_d)}{\zeta(2)} \int C(\xi) \frac{\log \xi}{\xi} d\xi + O\left(\frac{\tau^2(d)}{P \log P} \right).
\]
This yields
\[V(x,P) = \left(\sum_{d < D} \frac{\lambda_d}{d^s} \rho(d) \right) \frac{L(1, \chi_d)}{\zeta(2)} \int \frac{C(\xi)}{\xi^s} \log \frac{\xi}{\xi^s} \, d\xi + O\left(\sqrt{\frac{D}{P}} \left(\log x \right)^4 \right) \]
where \(\rho(d) = \omega(d) \prod_{p|d} \left(1 + \frac{1}{p} \right)^{-1} \). Now we specify \(\lambda_d \) to be those of the Rosser sieve giving (see [4])
\[
\sum_{d < D} \lambda_d \frac{\rho(d)}{d} = \prod_{p < D} \left(1 - \frac{\rho(p)}{p} \right) \left(2e^\gamma + O\left(\frac{1}{\log D} \right) \right)
\]
\[
= \prod_{p < D} \left(1 - \frac{1}{p} \right) \frac{\zeta(2)}{L(1, \chi_d)} \left(2e^\gamma + O\left(\frac{1}{\log D} \right) \right)
\]
\[
= \frac{2\zeta(2)}{L(1, \chi_d)} \frac{1}{\log D} \left(1 + O\left(\frac{1}{\log D} \right) \right)
\]
by the Mertens prime number theorem. Hence we conclude that
\[
V(x,P) = \frac{2}{\log D} \int \frac{C(\xi)}{\xi^s} \log \frac{\xi}{\xi^s} \, d\xi \left(1 + O\left(\frac{1}{\log D} \right) \right).
\]
We choose \(D \) equal to \(x^{1-10\epsilon} \) thus by (6) the total main term is equal to
\[
X \sum_{0 < j < k} V(x,P_j) = 2(1 + O(\epsilon)) \int_1^{p_x} \frac{\log \xi}{\xi \log (x/\sqrt{\xi})} \, d\xi
\]
\[
= 2(1 + O(\epsilon)) \int_1^{\theta} \frac{t \, dt}{1 - t/2} \log x
\]
where \(f(\theta) = 4(1 - \theta - 2 \log (2 - \theta)) \) and is less than 1 for \(\theta = 1.20246887 \). The proof the Theorem follows from this and (3).

One may note that the truth of Selberg’s eigenvalue conjecture leads to the lower bound \(x^{3/2 - \epsilon} \) for \(P_x \).

BIBLIOGRAPHY

Manuscrit reçu le 17 mars 1981
révisé le 15 octobre 1981.

J.-M. Deshouillers,
Université de Bordeaux I
U.E.R. de Mathématiques
et d'Informatique
Laboratoire associé au CNRS n° 226
351, cours de la Libération
F - 33405 Talence Cedex.

H. Iwaniec,
Mathematics Institute
Polish Academy of Sciences
ul. Śniadeckich 8
PL - 00950 Warszawa.