JEAN-MARC DESHOUILLEERS
HENRYK IWANIEC

On the greatest prime factor of $n^2 + 1$

<http://www.numdam.org/item?id=AIF_1982__32_4_1_0>
ON THE GREATEST PRIME FACTOR OF $n^2 + 1$

by J.-M. DESHOUILLERS and H. IWANIEC

1. Introduction.

In 1967 C. Hooley [2] (see also [3]) showed that if D is not a perfect square then the greatest prime factor of $n^2 - D$ exceeds $n^{11/10}$ infinitely often. In fact Hooley's arguments yield a slightly better result with the exponent $11/10$ replaced by any θ less than $\theta_0 = 1.1001483\ldots$ the solution of

$$14\left(\theta - \frac{12}{11}\right) + \frac{28}{9} \log \left(1 + \frac{33}{14}\left(\theta - \frac{12}{11}\right)\right) - \frac{41}{33} + \frac{32}{9} \log \frac{11}{8} = 0.$$

Among several innovative ideas in Hooley's proof one finds a very interesting application of A. Weil's estimate for Kloosterman sums

$$S(n m; c) = \sum_{\substack{d \equiv 1 \pmod{c} \atop (d, c) = 1}} e\left(n \frac{d}{c} + m \frac{d}{c}\right) \ll (n, m, c)^{1/2} c^{1/2 + \varepsilon}$$

where the symbol d stands for a solution of $d\bar{d} \equiv 1 \pmod{c}$. Recently the authors [1] investigated linear forms in Kloosterman sums $S(nQ,m;c)$ with the variables of the summation n, m and c counted with a smooth weight function, showing (see Lemma 3) that there exists a considerable cancellation of terms.

In the paper we inject this result into the Chebyshev-Hooley method to prove the following

Theorem. — For any $\varepsilon > 0$ there exist infinitely many integers n such that $n^2 + 1$ has a prime factor greater than $n^{8-\varepsilon}$, where θ satisfies

$$2 - \theta - 2 \log (2 - \theta) = \frac{5}{4} \quad (\theta = 1.202468 \ldots).$$
Our result can be generalized to $n^2 - D$ by using Hooley’s arguments from [3].

The authors express their thanks to Prof. C. Hooley for interesting comments and corrections.

2. Chebyshev's method.

Let $x \geq 2$ and let b be a non-negative function of C^∞-class with support in $[x,2x]$ and the derivates of which satisfy

$$b^{(l)}(\xi) \ll x^{-l}, \quad l = 0, 1, 2, \ldots,$$

the implied constant in \ll depending on l alone. Denote

$$X = \int b(\xi) \, d\xi \quad \text{and} \quad |A_d| = \sum_{n^2 + 1 = 0 (\text{mod } d)} b(n).$$

We begin with applying Chebyshev’s idea to calculate

$$T(x) = \sum_p |A_p| \log p = \sum_d |A_d| \Lambda (d) + O(x)$$

$$= \sum_n b(n) \sum_{d|n^2 + 1} \Lambda (d) + O(x) = \sum_n b(n) \log (n^2 + 1) + O(x)$$

$$= 2 \log x \int b(\xi) \, d\xi + O(x) = 2X \log x + O(x).$$

The partial sum

$$T_0(x) = \sum_{p \leq x} |A_p| \log p$$

$$= \sum_{p \leq x} \sum_{\nu \sqrt{1} + 1 \equiv 0 (\text{mod } p)} (\log p) \sum_{n = \nu (\text{mod } p)} b(n)$$

can be evaluated easily by the Poisson summation formula.

Lemma 1. For any $f(\xi)$ of C^1 class with compact support in $(0, \infty)$ we have

$$\sum_{n = a (\text{mod } q)} f(n) = \frac{1}{q} \sum_h e\left(-\frac{ah}{q}\right) f\left(\frac{h}{q}\right), \quad h \in \mathbb{Z}$$

where $\hat{f}(t)$ is the Fourier transform of $f(\xi)$.
By Lemma 1
\[\sum_{n \equiv v \pmod{p}} b(n) = \frac{1}{p} \sum_{h} e\left(-\frac{vh}{p}\right)b\left(\frac{h}{p}\right). \]

For \(h = 0 \) we have \(b(0) = X \). If \(h \neq 0 \) by partial integration two times we get
\[\hat{b}\left(\frac{h}{p}\right) = \int b(\xi)e\left(\frac{h}{p}\xi\right)d\xi \]
\[= \left(\frac{p}{2\pi ih}\right)^2 \int b''(\xi)e\left(\frac{h}{p}\xi\right)d\xi \ll h^{-2}p^2x^{-1}. \]

This yields
\[\sum_{n \equiv v \pmod{p}} b(n) = \frac{X}{p} + O\left(\frac{p}{x}\right) \]

whence
\[(2) \quad T_0(x) = X \log x + O(x). \]

Letting \(P_x \) be the greatest prime factor of \(\prod_{x < n < 2x} (n^2 + 1) \) by (1) and (2) it follows that
\[(3) \quad S(x) = \sum_{x < p \leq P_x} |\mathcal{A}_p| \log p = X \log x + O(x). \]

Our aim is to estimate \(S(x) \) from above and deduce from it a lower estimate for \(P_x \).

3. Splitting up of \(S(x) \).

In what follows it will be convenient to have \(p \) counted with a smooth weight function. Therefore we arrange the sum \(S(x) \) as
\[(4) \quad S(x) = \sum_{1 \leq j \leq J} S(x; P_j) + O(x) \]

with \(P_j = 2^j x \), \(0 \leq j \leq J \leq 2 \log x \) and
\[(5) \quad S(x; P_j) = \sum_{P_j < p \leq 4P_j} |\mathcal{A}_p|C_j(p) \log p \]
where $C_j(\xi)$ are non-negative functions of C^∞-class which satisfy the three following conditions

$$\text{Supp } C_j \subseteq [P_j, 4P_j]$$

\[
\sum_{0 \leq j < J} C_j(\xi) = \begin{cases}
1 & \text{if } 2x < \xi \leq P_x \\
O(1) & \text{if } x < \xi \leq 2x \text{ or } P_x < \xi \leq 2P_x \\
0 & \text{otherwise}
\end{cases}
\]

$C_j^{(l)}(\xi) \ll P_j^{-l}$, with the implied constant depending on l alone. The error term $O(x)$ in (4) comes from a trivial estimate for the contribution of primes p in the interval $(x, 2x]$ which is not completely covered.

4. Application of the sieve method.

A typical sum to be considered is

$$S(x, P) = \sum_{p < p < 4P} |\mathcal{A}_p| C(p) \log p$$

with $x < P \leq 2P_x$. Let $x \geq D \geq 1$ and let $\{\lambda_d\}_{d \leq D}$ be an upper bound sieve of level D, i.e. a sequence of real numbers such that

$$\lambda \ast 1 \geq \mu \ast 1, \quad \lambda_1 = 1, \quad \lambda_d = 0 \quad \text{for} \quad d \geq D.$$

We also assume that $|\lambda_d| \leq 1$ for all d and that $\lambda_d = 0$ when d is not square-free. Thus

$$S(x, P) \leq \sum_{d \leq D} \lambda_d \sum_{m=0}^{\lambda d} |\mathcal{A}_m| C(m) \log m.$$

By the Poisson summation formula we write

$$|\mathcal{A}_m| = \sum_{v^2 + 1 \equiv 0 \pmod{m}} b(n) = \frac{\omega(m)}{m} X + r(\mathcal{A}, m)$$

where $\omega(m)$ is the number of incongruent solutions of $v^2 + 1 \equiv 0 \pmod{m}$ and

$$r(\mathcal{A}, m) = \frac{1}{m} \sum_{h \not= 0} \sum_{v^2 + 1 \equiv 0 \pmod{m}} e\left(-\frac{vh}{m}\right)b\left(\frac{h}{m}\right)$$

(7)
According to the above we write

\(S(x, P) \leq XV(x, P) + R(x, P) \)

where \(XV(x, P) \) is considered as a main term

\[
V(x, P) = \sum_{d < D} \lambda_d \sum_{m \equiv 0 \pmod{d}} \frac{\omega(m)}{m} C(m) \log m
\]

and \(R(x, P) \) is the total error term

\[
R(x, P) = \sum_{d < D} \lambda_d R(x, d, P)
\]

with

\[
R(x, d, P) = \sum_{h \neq 0} \sum_{m \equiv 0 \pmod{d}} \frac{C(m)}{m} \log m \sum_{v^2 + 1 \equiv 0 \pmod{m}} \tilde{b} \left(\frac{h}{m} \right) e \left(-\frac{vh}{m} \right).
\]

5. Transformation of \(R(x, d, P) \).

We are searching for \(D \) as large as possible for which the estimate

\(R(x, P) \ll x^{1-\varepsilon} \)

is available. By partial integration \(l = [4e^{-1}] \) times we get

\[
\tilde{b} \left(\frac{h}{m} \right) = \left(-2\pi i \frac{h}{m} \right)^{-l} b^{(l)}(\xi) e \left(\frac{h}{m} \xi \right) d\xi \ll x \left(\frac{P}{|h|x} \right)^{l} \ll h^{-2}
\]

for \(|h| \geq Px^{-1} = H_1 \), say. Hence truncating the series (9) at \(h = H \) we make an error \(0(\tau(d)/d) \) which contributes to \(R(x, P) \) an admissible amount

\[
\sum_{d < D} \frac{\tau(d)}{d} \ll (\log D)^2 \ll (\log x)^2.
\]

For the remaining terms we need an explicit formula for the solutions of

\(v^2 + 1 \equiv 0 \pmod{m} \).

Lemma 2. (Gauss). — Let \(m > 1 \). If (11) is soluble then \(m \) is represented properly as a sum of two squares

\[
m = r^2 + s^2, \quad (r, s) = 1, \quad r, s > 0.
\]
There is a one to one correspondence between the incongruent solutions \(v \pmod{w} \) of (11) and the solutions \((r,s)\) of (12) given by

\[
\frac{v}{m} = \frac{\bar{r}}{s} - \frac{r}{s(r^2 + s^2)}.
\]

Proof. — See [5] and [3], p. 34, eq. (68).

By Lemma 2 we get

\[
\sum_{r^2 + s^2 = m, \ r,s > 0, (r,s) = 1} e\left(-\frac{vh}{m}\right) = \sum_{r^2 + s^2 = m} e\left(-\frac{h\bar{r}}{s}\right)\left\{1 + O\left(\frac{|r|h|}{sm}\right)\right\}
\]

whence letting \(g(m,h) = \frac{C(m)}{m} (\log m) \hat{h}\left(\frac{h}{m}\right) \) we obtain

\[
R(x,d,P) = \sum_{0 < |h| \leq H} \sum_{(r,s) = 1, \ r,s > 0, \ r^2 + s^2 \equiv 0 \pmod{d}} g(r^2 + s^2, h) e\left(-\frac{h\bar{r}}{s}\right) + O(d^{-1} \alpha x^{3\epsilon - 1}).
\]

Here the error \(O(d^{-1} \alpha x^{3\epsilon - 1}) \) contributes to \(R(x,P) \) less than \(\alpha x < x^{1-\epsilon} \) provided \(P < x^{2-5\epsilon} \) which we henceforth assume.

For sum over \(r \) we apply Poisson's summation formula giving

\[
\sum_{r^2 + s^2 \equiv 0 \pmod{d}} g(r^2 + s^2, h) e\left(-\frac{h\bar{r}}{s}\right) = \sum_{u \pmod{d}} e\left(-h\frac{\bar{u}}{s}\right) \sum_{r \equiv u \pmod{d}} g(r^2 + s^2, h)
\]

\[
= \frac{1}{ds} \sum_{k \equiv 1 \pmod{d}} \sum_{u \pmod{d}} e\left(-h\frac{\bar{u}}{s} - k\frac{u}{ds}\right) G(h,k;\bar{s})
\]

where \(G(h,k;\bar{s}) = \int g(\xi^2 + s^2, h) e(k\xi/\xi) \, d\xi \). Writing \(u = \alpha s + \beta d \) with \(\alpha^2 + 1 \equiv 0 \pmod{d} \) it becomes

\[
\frac{1}{ds} \sum_{\alpha^2 + 1 \equiv 0 \pmod{d}} \sum_{k} e\left(-\frac{\alpha k}{d}\right) S(-h\bar{d}, -k; s) G(h,k;\bar{s}).
\]
For \(k = 0 \) the Kloosterman sum \(S(-h\alpha, -k; s) \) reduces to a Ramanujan sum for which we have

\[
|S(-h\alpha, 0; s)| \leq (h, s).
\]

Therefore the terms with \(k = 0 \) contribute less than

\[
\frac{\tau(d)}{d} \sum_{0 < |\beta| \leq H} \sum_{s \leq \sqrt{p}} \frac{(h, s) \times \log p}{s} \frac{\sqrt{p}}{d} x^s \ll \frac{x^{1-\epsilon}}{d}.
\]

Finally

(13) \[
R(x, d, p) = \frac{1}{d} \sum_{\alpha \mid x^2 + 1 \equiv 0 \pmod{d}} \sum_{0 < |\beta| \leq H} \sum_{k \neq 0} e\left(-\frac{ak}{d}\right) \sum_{s > 0} \frac{1}{s} S(-h\alpha, -k; s) G(h, k; s) + O\left(\frac{x^{1-\epsilon}}{d}\right).
\]

6. Linear forms in Kloosterman sums.

Let \(N, M, C \geq 1 \) and \(f(n, m, c) \) be a function of \(C^6 \) class with compact support in \([C, 2C]\) with respect to \(c \) and satisfying

\[
\left|\frac{\partial_{l_1+l_2+l_3}}{C_{l_1}C_{m_{l_2}}C_{c_{l_3}}} f(n, m, c)\right| \leq N^{-l_1} M^{-l_2} C^{-l_3}, \quad 0 \leq l_1, l_2, l_3 \leq 2.
\]

In this section we borrow from [1] an estimate for the average of trilinear forms (cf. Theorem 11)

\[
B_{4}^{+}(N, M, C) = \sum_{0 < n \leq N} \sum_{0 < m \leq M} \sum_{(c, d) = 1} b_{m, d} S(nd, \pm m; c) f(n, m, c)
\]

where \(b_{m, d} \) are arbitrary complex numbers.

Lemma 3. - If \(f(n, m, c) \) satisfies (14) then for any \(\epsilon > 0 \) we have

\[
\left(\sum_{D < d \leq 2D} |B_{4}^{+}(N, M, C)| \right)^2 \ll (CDMN)^4 \left(\sum_{0 < m \leq M} |b_{m, d}|^2 \right) \times \left\{ \frac{D(D^2 + MN + NC^2)(DC^2 + MN + MC^2)}{DC^2 + MN} + \leq \sqrt{D(D + M)C^3} \right\}
\]

and the same upper bound holds for \((\Sigma |B_{4}^{+}|)^2 \), the constant implied in \(\ll \) depending on \(\epsilon \) at most.
7. Estimation of the error.

In order to make Lemma 3 applicable we first split up the sum over s in $R(x,d,P)$ into $\ll \log P$ sums of the type

\begin{equation}
\sum_{(s,d)=1} a(s) s^{-h,\pm k,s} G(h,\mp k,s)
\end{equation}

where $a(s)$ is a function of C^2 class with support $[S,2S]$, $S \lesssim 2\sqrt{P}$ and satisfying $a^{(l)}(s) \ll S^{-l}$ for $l = 0,1,2$. The terms with $|k| \geq DSP^{-1/2}x^{3e} = K$, say, can be eliminated trivially: integrate by parts $l = [4e^{-1}]$ times with respect to ξ in $G(h,\pm k,s)$, getting

\begin{align*}
G(h,\pm k,s) &= \left(\frac{-ds}{2\pi i k}\right)^l \int \frac{\partial^l}{\partial \xi^l} g(\xi^2 + s^2, h) e^{(\xi k)/ds} d\xi \\
&\ll \left(\frac{ds}{|k|\sqrt{P}}\right)^l \sqrt{P} \ll k^{-2}x^{-1}.
\end{align*}

Therefore such terms contribute to $R(x,d,P)$ less than

\[\frac{\tau(d)}{d} \sum_{0 <|h| \leq H} \sum_{k > |h|} \frac{1}{k^2 x} \sum_{0 < s \leq \sqrt{P}} 1 \ll \frac{P^{3/2}}{x^2} \ll \frac{d}{x^{1-\varepsilon}}. \]

For $0 \leq |h| \leq H$, $0 < |k| \leq K$ and $S < s \leq 2S$ we trivially have

\begin{equation}
\frac{\partial^{l_1 + l_2 + l_3}}{\partial h^{l_1} \partial k^{l_2} \partial s^{l_3}} G(h,\mp k,s) \frac{a(s)}{s} \ll |h|^{-l_1} |k|^{-l_2} |s|^{-l_3} \frac{x^{1+12e}}{S\sqrt{P}}
\end{equation}

for $0 \leq l_1, l_2, l_3 \leq 2$. This shows that Lemma 3 is applicable with

\[f(h,k,s) = \frac{S\sqrt{P}}{x^{1+13e}} \frac{a(s)}{s} G(h,\mp k,s) \]

giving

\[\left(\sum_{D < d \leq 2D} |R(x,d,P)| \right)^2 \ll x^{2-2\varepsilon} + \frac{x^{2+40eHK}}{D^2 P} \]

\[\times \sup_{1 < S < 2 < \sqrt{P}} \left\{ \frac{D^2(DS^2 + HK + HS^2)(DS^2 + HK + KS^2)}{S^2(DS^2 + HK)} + DS\sqrt{D(D+K)} \right\} \]

\[\ll x^{2-2\varepsilon} + (D^2x + DP + DxP^2)x^{48e}. \]
Therefore (10) holds if

\begin{equation}
D \leq x^{\frac{1}{2} - 25\epsilon}, \quad D \leq x^{2 - 10\epsilon} \pi^{-1} \quad \text{and} \quad D \leq x^{1 - 10\epsilon} \pi^{-\frac{1}{2}}.
\end{equation}

This result can be compared with Hooley's \(D = x^{1-\epsilon} \pi^{-3/4} \).

8. Evaluation of the main term.

For \(d \) square-free with \(\omega(d) \neq 0 \) consider

\[L(s,d) = \sum_{m=1}^{\infty} \frac{\omega(dm)}{\omega(d)} m^{-s}. \]

Lemma 4. — We have

\begin{equation}
L(s,d) = \frac{\zeta(s) L(s,\chi_d)}{\zeta(2s)} \prod_{p | d} \left(1 + \frac{1}{p} \right)^{-1}.
\end{equation}

Proof. — Follow the arguments of [3] on pp. 31-32 and equation (6.1). Writing

\[C(m) \frac{\log m}{m} = \frac{1}{2\pi i} \int_{(\sigma)} R(s)m^{-s} \, ds, \quad \sigma > 0 \]

by Mellin’s inversion formula and partial integration two times

\[R(s) = \int C(\xi) \frac{\log \xi}{\xi} \xi^{s-1} \, d\xi \ll (|s|+1)^{-2} \pi^{s-1} \log \pi. \]

Therefore

\[\sum_{m=0 \,(\text{mod})} \frac{\omega(m)}{m} c(m) \log m = \frac{1}{2\pi i} \int_{(\sigma)} R(s) \frac{\omega(d)}{d^s} L(s,d) \, ds \]

\[= R(1) \frac{\omega(d)}{d} \frac{L(1,\chi_d)}{\zeta(2)} \prod_{p \mid d} \left(1 + \frac{1}{p} \right)^{-1} + \frac{1}{2\pi i} \int_{(\frac{1}{2})} R(s) \frac{\omega(d)}{d^s} L(s,d) \, ds \]

\[= \frac{\omega(d)}{d} \prod_{p \mid d} \left(1 + \frac{1}{p} \right)^{-1} \frac{L(1,\chi_d)}{\zeta(2)} \int C(\xi) \frac{\log \xi}{\xi} \xi^{s-1} d\xi + O\left(\frac{\epsilon^2(d)}{d \log \pi} \right). \]
This yields

\[V(x, \mathcal{P}) = \left(\sum_{d \leq D} \frac{\lambda_d \rho(d)}{d} \right) \frac{L(1, \chi_d)}{\zeta(2)} \int C(\xi) \frac{\log \xi}{\xi} \, d\xi + O\left(\sqrt{\frac{D}{P}} (\log x)^4 \right) \]

where \(\rho(d) = \omega(d) \prod_{p|d} \left(1 + \frac{1}{p}\right)^{-1} \). Now we specify \(\lambda_d \) to be those of the Rosser sieve giving (see [4])

\[
\sum_{d \leq D} \lambda_d \frac{\rho(d)}{d} = \prod_{p < D} \left(1 - \frac{\rho(p)}{p}\right) \left(2e^\gamma + O\left(\frac{1}{\log D} \right) \right)
= \prod_{p < D} \left(1 - \frac{1}{p}\right) \frac{\zeta(2)}{L(1, \chi_d)} \left(2e^\gamma + O\left(\frac{1}{\log D} \right) \right)
= \frac{2\zeta(2)}{\zeta(2)} \frac{1}{\log D} \left(1 + O\left(\frac{1}{\log D} \right) \right)
\]

by the Mertens prime number theorem. Hence we conclude that

\[V(x, \mathcal{P}) = \frac{2}{\log D} \int C(\xi) \frac{\log \xi}{\xi} \, d\xi \left(1 + O\left(\frac{1}{\log D} \right) \right). \]

We choose \(D \) equal to \(x^{1-10\epsilon} \mathcal{P}^{-\frac{1}{2}} \) thus by (6) the total main term is equal to

\[
X \sum_{\theta \leq \xi \leq \theta+1} V(x, \mathcal{P}_\theta) = 2(1 + O(\epsilon)) \times \int_{x}^{p_x} \frac{\log \xi}{\xi \log (x/\sqrt{\xi})} \, d\xi
= 2(1 + O(\epsilon)) \times \int_{1}^{\theta} \frac{t \, dt}{1 - t^2/2} \log x
= (1 + O(\epsilon)) f(\theta) X \log x
\]

where \(f(\theta) = 4(1 - \theta - 2 \log (2 - \theta)) \) and is less than 1 for \(\theta = 1.202 468 87 \). The proof the Theorem follows from this and (3).

One may note that the truth of Selberg's eigenvalue conjecture leads to the lower bound \(x^{3/2 - \epsilon} \) for \(\mathcal{P}_x \).

BIBLIOGRAPHY

ON THE GREATEST PRIME FACTOR OF $n^2 + 1$

Manuscrit reçu le 17 mars 1981
révisé le 15 octobre 1981.

J.-M. Deshouillers,
Université de Bordeaux I
U.E.R. de Mathématiques
et d'Informatique
Laboratoire associé au CNRS n° 226
351, cours de la Libération
F - 33405 Talence Cedex.

H. Iwaniec,
Mathematics Institute
Polish Academy of Sciences
ul. Śniadeckich 8
PL - 00950 Warszawa.