HANSPETER KRAFT
CLAUDIO PROCESI
Graded morphisms of G-modules

<http://www.numdam.org/item?id=AIF_1987__37_4_161_0>
1. Introduction.

During the 1987 meeting in honor of J. K. Koszul, Steve Halperin explained to us the following conjecture (motivated by the study of the spectral sequence associated to a homogeneous space).

1.1. Conjecture. — If \(f_1, f_2, \ldots, f_n \) is a regular sequence in the polynomial ring \(\mathbb{C}[x_1, x_2, \ldots, x_n] \), the connected component of the automorphism group of the (finite dimensional) algebra \(\mathbb{C}[x_1, \ldots, x_n]/(f_1, \ldots, f_n) \) is solvable.

In this paper we prove a weak form of this (Corollary 4.3) which implies the conjecture at least when the \(f_i \)'s are homogeneous (Remark 4.4).

2. Preliminaries.

Our base field is \(\mathbb{C} \), the field of complex numbers, or any other algebraically closed field of characteristic zero.

2.1. Definition. — A morphism \(\varphi : V \to W \) between finite dimensional vector spaces \(V \) and \(W \) is called graded if there is a basis of \(W \) such that the components of \(\varphi \) are all homogeneous polynomials.

Let us denote by \(\mathcal{O}(V), \mathcal{O}(W) \) the ring of regular functions on \(V \) and \(W \). These \(\mathbb{C} \)-algebras are naturally graded by degree: \(\mathcal{O}(V) = \bigoplus \mathcal{O}(V)_i \). A subspace \(S \subset \mathcal{O}(V) \) is called graded if \(S = \bigoplus_i S \cap \mathcal{O}(V)_i \).

Key-words: Automorphism group of an algebra - G-module - Equivariant graded morphism - Regular sequence.
If $\varphi : V \to W$ is a morphism and $\varphi^* : \mathcal{O}(W) \to \mathcal{O}(V)$ the corresponding comorphism we have the following equivalence:

$$\varphi \text{ is graded } \iff \varphi^*(W^*) \text{ is a graded subspace of } \mathcal{O}(V).$$

2.2. Lemma. — For any graded morphism $\varphi : V \to W$ there is a unique decomposition $W = \bigoplus W_v$ and homogeneous morphisms $\varphi_v : V \to W_v$ of degree v such that

$$\varphi = (\varphi_0, \varphi_1, \varphi_2, \ldots) : V \to W_0 \oplus W_1 \oplus W_2 \oplus \cdots.$$

(This is clear from the definitions.)

2.3. Remark. — Let G be an algebraic group. Assume that V and W are G-modules and that $\varphi : V \to W$ is graded and G-equivariant. Then in the notations of lemma 2.2 all W_v are submodules and all components φ_v are G-equivariant.

2.4. Remark. — If $\varphi : V \to W$ is graded and dominant with $\varphi^{-1}(0) = \{0\}$, then φ is a finite surjective morphism. In fact given a finitely generated graded algebra $A = \bigoplus A_i$ with $A_0 = \mathbb{C}$ and a graded subspace $S \subset A$ such that the radical $\text{rad}(S)$ of the ideal generated by S is the homogeneous maximal ideal $\bigoplus A_i$ of A, then A is a finitely generated module over the subalgebra $\mathbb{C}[S]$ generated by S (see [1, II.4.3 Satz 8]).

3. The Main Theorem.

3.1. Theorem. — Let G be a connected reductive algebraic group and let V, W be two G-modules. Assume that V and W do not contain 1-dimensional submodules. Then any graded G-equivariant dominant morphism with finite fibres is a linear isomorphism.

We first prove this for $G = \text{SL}_2$ and then reduce to this situation.

For any C^*-module V we have the weight decomposition

$$V = \bigoplus_j V_j, \quad V_j := \{v \in V \mid t(v) = t^j \cdot v\}.$$

We say that V has only positive weights if $V = \bigoplus_{j > 0} V_j$.
3.2. Lemma. — Let V, W be two C^*-modules with only positive weights, and let $\varphi : V \to W$ be a C^*-equivariant graded morphism with finite fibres. For all $k \geq 0$ we have

$$\varphi^{-1}\left(\bigoplus_{j \leq k} W_j \right) \subseteq \bigoplus_{j \leq k} V_j,$$

and the inclusion is strict for at least one k in case φ is not linear.

Proof. — By lemma 2.2 and remark 2.3 we have $\varphi = \sum_{v \geq 1} \varphi_v$ where $\varphi_v : V \to W_v$ is homogeneous of degree v and C^*-equivariant. Let

$$v = \sum_{j=1}^{k} v_j \in \bigoplus_{j > 0} V_j = V$$

with $v_k \neq 0$. Then

$$\lim_{\lambda \to 0} \lambda^{k} \cdot t_\lambda^{-1}(v) = v_k.$$ (Here t_λ denotes the action of C^*.) Since φ_v is homogeneous of degree v and C^*-equivariant we obtain

$$(1) \quad \lim_{\lambda \to 0} \lambda^{v_k} \cdot t_\lambda^{-1}(\varphi_v(v)) = \varphi_v(v_k).$$

This implies that $\varphi_v(v) \in \bigoplus_{j \leq v_k} W_j$ for all v, proving the first claim.

If φ is not linear, i.e. $\varphi \neq \varphi_1$, then there is a $v > 1$, an index k and an element $v \in V_k$ such that $\varphi_v(v) \neq 0$. But $\varphi_v(v) \in W_{v_k}$ by (1) and so $v \notin \varphi^{-1}\left(\bigoplus_{j \leq k} W_j \right)$. \square

3.3. Corollary. — Under the assumptions of lemma 3.2 suppose that φ is surjective. Put $\lambda_j := \dim V_j$ and $\mu_j := \dim W_j$. Then for all $k \geq 1$ we have

$$(2) \quad \lambda_1 + \lambda_2 + \cdots + \lambda_k \geq \mu_1 + \mu_2 + \cdots + \mu_k.$$ If φ is not linear the inequality is strict for at least one k.

(This is clear.)

3.4. Proposition. — Let V, W be two SL_2-modules containing no fixed lines. Let $\varphi : V \to W$ be a graded SL_2-equivariant morphism, which is dominant and has finite fibres. Then φ is a linear isomorphism.
Proof. - Consider the maximal unipotent subgroup

\[U := \left\{ \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\} \subset \text{SL}_2 \]

and the maximal torus

\[T := \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} \mid \lambda \in \mathbb{C}^* \right\} \cong \mathbb{C}^*. \]

By assumption \(\varphi \) is finite and surjective (Remark 2.4), and \(\varphi^{-1}(W^U) = V^U \). Hence the induced morphism

\[\varphi|_{V^U} : V^U \rightarrow W^U \]

is graded, \(T \)-equivariant, finite and surjective too. Furthermore all weights \(\lambda_j \) of \(V^U \) and \(\mu_j \) of \(W^U \) are positive. It follows from (2) that

\[\lambda_k + \lambda_{k+1} + \cdots \leq \mu_k + \mu_{k+1} + \cdots \]

for all \(k \), because \(\sum \lambda_j = \dim V^U = \dim W^U = \sum \mu_j \). From this we get

\[\dim V = 2\lambda_1 + 3\lambda_2 + \cdots + (n+1)\lambda_n \]

\[\leq 2\mu_1 + 3\mu_2 + \cdots + (n+1)\mu_n = \dim W \]

for all \(n \) which are big enough. (Remember that an irreducible \(\text{SL}_2 \)-module of highest weight \(j \) is of dimension \(j + 1 \)). If \(\varphi \) is not linear this inequality is strict (Corollary 3.3), contradicting the fact that \(\varphi \) is finite and surjective. \(\square \)

3.5. Proof of the Theorem.

- Assume that \(\varphi : V \rightarrow W \) is not linear, i.e. there is a \(\nu_0 > 1 \) such that the component \(\varphi|_{\nu_0} : V \rightarrow W|_{\nu_0} \) is non-zero. Then there is a homomorphism \(\text{SL}_2 \rightarrow G \) and a non-trivial irreducible \(\text{SL}_2 \)-submodule \(M \subset V \) such that \(\varphi|_M \neq 0 \). (In fact the intersection of the fixed point sets \(V^{(\text{SL}_2)} \) for all homomorphisms \(\iota : \text{SL}_2 \rightarrow G \) is zero.) Now consider the \(G \)-stable decompositions \(V = V^{\text{SL}_2} \oplus V' \) and \(W = W^{\text{SL}_2} \oplus W' \) and the following morphism:

\[\varphi' : V' \hookrightarrow V \xrightarrow{\varphi} W \xrightarrow{\text{pr}} W'. \]

Since \(V' \) and \(W' \) are sums of isotypic components the morphism \(\varphi' \) is again graded. Furthermore \(\varphi^{-1}(W^{\text{SL}_2}) = V^{\text{SL}_2} \), hence \(\varphi^{-1}(0) = V^{\text{SL}_2} \cap V' = \{0\} \). This implies that \(\varphi' : V' \rightarrow W' \) is dominant
with finite fibres and satisfies therefore the assumptions of proposition 3.4. As a consequence φ' is linear. Since $\varphi|_{V'} : V' \to W$ is graded too we have $\varphi_v|_{V'} = 0$ for all $v > 1$. This contradicts the facts that $M \subseteq V'$ and $\varphi_v|_{M} \neq 0$ (see the construction above).

4. Some Consequences.

We add some corollaries of the theorem. Let G be a connected reductive group. For every G-module V we have the canonical G-stable decomposition $V = V^o \oplus V'$ where V^o is the sum of all 1-dimensional representations (i.e. $V^o = V^{(G,G)}$) and V' the sum of all others. The proof of the theorem above easily generalizes to obtain the following result:

4.1. Theorem. – Let $\varphi : V \to W$ be a graded G-equivariant dominant morphism with finite fibres. Then φ induces a linear isomorphism

$$\varphi|_{V'} : V' \cong W'.$$

4.2. Corollary. – Let $\mathcal{O}(V)$ be the ring of regular functions on a G-module V, and let f_1, \ldots, f_n be a regular sequence of homogenous elements of $\mathcal{O}(V)$ such that the linear span $\langle f_1, \ldots, f_n \rangle$ is G-stable. Then $\langle f_1, \ldots, f_n \rangle$ contains all non-trivial representations of (G,G) in $\mathcal{O}(V)_1$, the linear part of $\mathcal{O}(V)$.

Proof. – The regular sequence f_1, \ldots, f_n defines a G-equivariant finite morphism $\varphi : V \to W$, $W := \langle f_1, \ldots, f_n \rangle^*$. By the theorem above the restriction $\varphi'|_{V'} : V' \to W'$ is a linear isomorphism which means that every non-trivial (G,G)-submodule of $\langle f_1, \ldots, f_n \rangle$ is contained in the linear part $\mathcal{O}(V_1)$ of $\mathcal{O}(V)$.

4.3. Recall that a finite dimensional \mathbb{C}-algebra is called a complete intersection if it is of the form $\mathbb{C}[x_1, \ldots, x_n]/(f_1, \ldots, f_n)$ with a regular sequence f_1, \ldots, f_n.

Corollary. – Let A be a finite dimensional local \mathbb{C}-algebra with maximal ideal m and let gr_mA be the associated graded algebra (with respect to the m-adic filtration). If gr_mA is a complete intersection then the connected component of the automorphism group of A is solvable.
Proof. — Let G and \mathcal{G} be the connected components of the automorphism groups of A and of gr_mA respectively. Since the m-adic filtration of A is G-stable we have a canonical homomorphism $\rho : G \to \mathcal{G}$. It is easy to see that $\ker \rho$ is unipotent, so it remains to show that \mathcal{G} is solvable.

Assume that \mathcal{G} is not solvable. Then \mathcal{G} contains a (non-trivial) semisimple subgroup H. By assumption we have an isomorphism

$$\text{gr}_mA \cong \mathbb{C}[x_1, \ldots, x_n]/(f_1, \ldots, f_n)$$

with a regular sequence f_1, \ldots, f_n where all f_i are homogeneous of degree ≥ 2. Clearly the action of \mathcal{G} on gr_mA is induced from a (faithful) linear representation on $\mathbb{C}[x_1, \ldots, x_n] \subset \mathbb{C}[x_1, \ldots, x_n]$. Hence it follows from corollary 4.2 that $\langle f_1, \ldots, f_n \rangle$ contains all non-trivial H-submodules of $\mathbb{C}[x_1, \ldots, x_n]$, contradicting the fact that all f_i have degree ≥ 2.

4.4. Remark. — The corollary above implies that conjecture 1.1 is true in case all f_i are homogeneous, i.e. if the algebra

$$A = \mathbb{C}[x_1, \ldots, x_n]/(f_1, \ldots, f_n)$$

is finite dimensional and graded with all x_i of degree 1.

4.5. Remark. — Another formulation of our result is the following: Let V be a representation of a connected algebraic group G and $Z \subset V$ a G-stable graded subscheme, which is a complete intersection supported in $\{0\}$. Then (G, G) acts trivially on Z.

BIBLIOGRAPHY

H. Kraft,
Mathematisches Institut
Universität Basel
Rheinsprung 21
CH-4051 Basel.

C. Procesi,
Istituto Matematico
Guido Castelnuovo
Università di Roma
I-00100 Roma.