KRYSYNA BUGAJSKA
Structure of a leaf of some codimension one riemannian foliation

<http://www.numdam.org/item?id=AIF_1988__38_1_169_0>
STRUCTURE OF A LEAF OF SOME CODIMENSION ONE
RIEMANNIAN FOLIATION

par Krystyna BUGAJSKA

1. Introduction.

Let M be a smooth, connected, open manifold of dimension n and let \mathcal{F} be a smooth codimension-one complete Riemannian (that is (M, \mathcal{F}) admits a bundle like metric g in the sense of [6]) foliation of M. Let $E \subset TM$ be the tangent bundle of \mathcal{F} and let $D \subset TM$ be the distribution orthogonal to E i.e. $D = E^\perp$ and $TM = E \oplus D$. Let all leaves of \mathcal{F} be open, orientable manifolds and let M be also orientable. Then there exists a normal field of unit vectors $n(x)$ and all leaves of \mathcal{F} have trivial holonomy ([6] cor. 4 p. 130). For a vector $v \in T_x M$ and for a real number e let $g(x, v, e)$ denote the geodesic arc issuing from x whose length is $|e|$ and whose initial vector is v or $-v$ according as $c > 0$ or < 0. By (x, v, c) we will denote its terminal point. Let \mathcal{F} be a totally geodesic foliation. Now, since D is integrable, every leaf of \mathcal{F} meets every leaf of the horizontal foliation \mathcal{H} determined by D ([3], lemme (1.9) p. 230). Let $\mathcal{L}(x)$ and $\mathcal{H}(x)$ be the leaves through $x \in M$ of \mathcal{F} and \mathcal{H} respectively. Let $I(x)$ denote the set $\mathcal{L}(x) \cap \mathcal{H}(x)$.

DEFINITION 1. — Let $x_0 \in \mathcal{L}(x)$ and let $N(x_0)$ denote the set of all positive numbers s such that at least one of two points

Key-words : Riemannian foliation - Open leaf - Non-positive curvature.

(x, ±n(x), s) belongs to \(L(x) \). If \(N(x_0) \) is non-empty we denote the greatest lower bound of \(N(x_0) \) by \(\rho(x_0) \). If \(N(x_0) \) is empty we put \(\rho(x_0) = \infty \). So \(0 \leq \rho(x_0) \leq \infty \).

Definition 2. — If \(I(x) - x_0 \) is non-empty then the greatest lower bound of \(d_L(x_0, x) \) for \(x \in I(x_0) - x_0 \) is called the range of \(x_0 \) and is denoted by \(e_L(x_0) \). Here \(d_L(x_0, x) \) denotes the length of a minimizing geodesic joining \(x_0 \) to \(x \) in the \(L \)-submanifold.

If \(0 < \rho(x) < \infty \) then lemma (4.3) of [4] asserts that at least one of two points \((x_0, \pm n(x), \rho) \) belongs to \(L(x_0) \). Also for each \(x \in L(x_0) \), \(\rho(x) = \rho(x_0) \) (lemma (3.2) of [4]). Hence we denote \(\rho(x_0) \) by \(\rho(L(x_0)) \) and call it the distance of \(L \). As a matter of fact for any leaves \(L, L_1 \) of \(F \), \(\rho(L) = \rho(L_1) \) ([4] p. 136). Although \(e_L(x) \) has no such property we can show the following:

Proposition 1. — Let \(e_L(x_0) \) be a finite non-equal to zero number. Then

a) there exists an element \(x \in I(x_0) \) such that \(d_L(x_0, x) = e_L(x_0) \)

b) for every \(x \in I(x_0) \), \(e_L(x) = e_L(x_0) \) i.e. the ranges of \(\mathcal{H} \)-equivalent points of \(L \) are the same.

Proposition 2. — Let \(L \) be a map \(f : L \to L \) given by \(f(x) = (x, n(x), m\rho) \). If for some \(m \in \mathbb{Z}^+ \) and for some \(x_0 \in L \), \(d_L(x_0, f(x_0)) = e_L(x_0) \) then for every \(x \in L \) we have \(d_L(x, f(x)) = e_L(x) \).

Corollary 1. — There exists a vector field \(v \) on \(L \) such that \(f(x) = \exp_x e_L(x)v(x) \). So, to any point \(x \in L \) we can relate a piece of the geodesic \(g(x, v(x), e_L(x)) \).

Since the elements of a holonomy along a horizontal curve are local isometries of the induced Riemannian metrics of the leaves of \(F \) ([1] p. 383) the map \(f \) determines the partition of \(L \) onto mutually isometric subspaces.
COROLLARY 2. — \(\mathcal{L} \) is of fibred type over a complete Riemannian manifold \(N \) with boundary. A fiber contains a countable number of elements and projection is a local isometry. If \(C_x \) is a maximal, open subset of \(\mathcal{L} \) containing \(x \) and such that \(C_x \cap f(C_x) = \emptyset \) then \(N \cong C_x \cup (\tilde{C}_x \cap f(\tilde{C}_x)) \).

Let us assume that the vector field \(v \) which determined by \(f \) is a parallel one. Then we have

COROLLARY 3. — Leaf \(\mathcal{L} \) is diffeomorphic to \(\mathcal{L}' \times \mathbb{R} \) and has non-positive curvature.

I would like to thank the referee for indicating me my error.

2. Proofs.

It is easy to see that for each \(x' \in \mathcal{H}(x_0) \cap \mathcal{L}(x_0), \ d_{\mathcal{H}}(x_0, x') = m\rho \) for some \(m \in \mathbb{Z} \). Now let us suppose that a point \(x \in I(x_0) \) such that \(e_{\mathcal{L}}(x_0) = d_{\mathcal{L}}(x_0, x) \) does not exist. However we can find a sequence of points \(\{y_\lambda; \lambda = 1, 2, \ldots\} \) belonging to \(I(x_0) \) such that \(\lim_{\lambda \to \infty} d_{\mathcal{L}}(x_0, y_\lambda) = e_{\mathcal{L}}(x_0) \). Since \(\mathcal{L} \) is a complete Riemannian manifold, an accumulation point \(y \) of \(\{y_\lambda\} \) belongs to \(\mathcal{L} \). Let \([y_\lambda, y] \) denote the geodesic arc in \(\mathcal{L} \). Let us displace parallelly \(g(y_\lambda, n(y_\lambda), s_{\lambda, \lambda+1}) \) along \([y_\lambda, y] \). Here \(s_{\lambda, \lambda+1} \) denotes a parameter on the \(\mathcal{H}(x_0) \) geodesic such that \((y_\lambda, n(y_\lambda), s_{\lambda, \lambda+1}) = y_{\lambda+1} \); \(s_{\lambda, \lambda+1} = m(\lambda)\rho \). We obtain the geodesic arcs \(g(y, n(y), m(\lambda)\rho) \) with \(y_\lambda' \) as their terminal points. So we see that \(y \) is an accumulation point of \(y_\lambda' \in I(y) \) relative to \(\mathcal{L} \). However if \(e_{\mathcal{L}}(x_0) > 0 \) then \(e_{\mathcal{L}}(x) > 0 \) for each \(x \in \mathcal{L} \) ([4], lemma (4.1)). So we come to a contradiction which proves (a) of proposition 1.

For (b) let \(y_0 \in I(x_0) \) have the property that \(d_{\mathcal{L}}(x_0, y_0) = e_{\mathcal{L}}(x_0) \). Let \(y_0 = (x_0, n(x_0), m\rho) \). Since \(\mathcal{L} \) is complete there exists a minimal \(\mathcal{L} \)-geodesic \(g(x_0, n_0, e_{\mathcal{L}}(x_0)) \) which joins \(x_0 \) and \(y_0 \). Let us express \(\mathcal{H}(x_0) \) by \(z(s), -\infty < s < \infty \), where \(z(0) = x_0 \) and \(s \) denotes the arclength. Let us displace \(U_0 \) parallelly along the curve \(z(x) \). Then corresponding to each \(s \) we get a vector \(n(s) \) at \(z(s) \).
tangent to the leaf \(\mathcal{L}(z(s)) \) with \(g(z(s), n(s), e_\mathcal{L}(x_0)) \subseteq \mathcal{L}(z(s)) \). Let \(y_0 = z(s_0) \). Taking a finite system of coordinate neighborhoods of \(z(s) \) for \(0 \leq s \leq s_0 \), we see that the point \((z(s_0), n(s_0), e_\mathcal{L}(x_0)) \in \mathcal{L} \) also belongs to \(\mathcal{H}(x_0) \). Let us denote this point by \(y_1 \). We have \(d_\mathcal{L}(x_0, y_0) = d_\mathcal{L}(y_0, y_1) \). Let us suppose that \(d_\mathcal{L}(y_0, y_1) \neq e_\mathcal{L}(y_0) \).

By definition \(e_\mathcal{L}(y_0) < d_\mathcal{L}(y_0, y_1) \). By (a) there exists \(y_2 \in I(x_0) \) such that \(d_\mathcal{L}(y_0, y_2) = e_\mathcal{L}(y_0) \). Let us displace parallelly a minimal geodesic \([y_0, y_2]\) along \(z(s) \). For \(z(0) = x_0 \) we obtain some point \(x \in I(x_0) \) which satisfies \(d_\mathcal{L}(x_0, x) < d_\mathcal{L}(y_0, y_1) = e_\mathcal{L}(x_0) \). So we come to a contradiction, hence \(e_\mathcal{L}(x_0) = e_\mathcal{L}(y_0) \). However this implies that \(e_\mathcal{L}(x) = e_\mathcal{L}(x_0) \) for each \(x \in I(x_0) \) and completes the proof of (b).

For the horizontal curve \(z(s) \) there exists a family of diffeomorphisms \(\phi_s : U_0 \to U_s ; s \in (-\infty, \infty) \), such that

1. \(U_s \) is a neighborhood of \(z(s) \) in the leaf \(\mathcal{L}(z(s)) \) for all \(s \in (-\infty, \infty) \)
2. \(\phi_s(z(0)) = z(s) \) for all \(s \in (-\infty, \infty) \)
3. for \(x \in U_0 \), the curve \(s \to \phi_s(x) \) is horizontal
4. \(\phi_0 \) is the identity map of \(U_0 \), i.e. \(z(s) \) uniquely determines germs of local diffeomorphisms from one leaf to another. According to [5] we call this family of diffeomorphisms an element of holonomy along \(z(s) \). However in our case of totally geodesic foliation \(\mathcal{F} \) these local diffeomorphisms are local isometries. Moreover we can extend them to \(a \)-neighborhoods \(U_\mathcal{F}(z(s), a) \), where \(a < \frac{1}{2} e_\mathcal{L}(y) \) for all \(y \in U_\mathcal{F}(z(s), a) ; s \in (-\infty, \infty) \).

Let us consider a map \(d : U_\mathcal{F}(x_0, a) \to R \) given by \(d(x) = d_\mathcal{F}(x, f(x)) \). Since \(d \) is continuous we have \(\forall \varepsilon > 0, \exists \delta \text{s.t.} \left| (d(x) - d(y)) \right| < \varepsilon \) if \(d_\mathcal{F}(x, y) < \delta \); \(x, y \in U_\mathcal{F}(x_0, a) \). Let \(\delta < \frac{1}{2} a \) i.e. the ball \(U_\mathcal{F}(x_0, 2\delta) \subseteq U_\mathcal{F}(x_0, a) \). Let \(d(x_0) = e_\mathcal{F}(x_0) \). Suppose that for some \(x \in U_\mathcal{F}(x_0, \delta) \), \(d(x) \neq e_\mathcal{F}(x) \). Then we have \(d(x) = e_\mathcal{F}(x) + b \) with \(b > 0 \). By (a) of proposition 1 there exists \(x' \in I(x) \) such that \(d_\mathcal{F}(x, x') = e_\mathcal{F}(x) \), \(x' = (x, n(x), m' p) \) with \(m' \neq m \). Let \(f' : \mathcal{L} \to \mathcal{L} \) be given as \(f'(x) = (x, n(x), m' p) \) and let \(d' \) be analogous to \(d \) map with \(f' \) instead of \(f \). We have \(d'(x_0) = d(x_0) + \tau, \tau > 0 \). (If \(\tau = 0 \),
the property \(U_L(x_0, 2\delta) \subset U_L(x_0, \delta) \) allows us to interchange the role of the maps \(f \) and \(f' \) as well as \(x_0 \) and \(x \). For this it is enough to consider the case with \(\tau > 0 \). Now, for each \(x \in U_L(x_0, \delta) \) we have \(d(x_0) = d(x) \pm \mathcal{H} ; \) \(d'(x_0) = d'(x) \pm \mathcal{H}' \) with \(\mathcal{H}, \mathcal{H}' < \varepsilon \). So \(d'(x) = (d(x_0) + \tau) \mp \mathcal{H}' \). For \(\varepsilon < \frac{1}{2} \tau \) we come to a contradiction since \(d'(x) \neq d(x) \). Hence for all \(x \in U_L(x_0, \delta) \), \(d(x) = e_L(x) \).

Now, let \(y \) be an element of \(L \) and \([x_0, y] \) a minimal geodesic joining \(x_0 \) and \(y \). We can take a finite sequence of points \(y_i, i = 0, 1 \ldots N \) on \([x_0, y] ; y_0 = x_0, y_N = y \) and \(U_L(y_i, \delta_i) \cap [x_0, y] \cap U_L(y_{i+1}, \delta_{i+1}) \neq \emptyset \) for all \(i \in (0 \ldots N) \). We repeat the above consideration for each \(U_L(u_i, \delta_i) \). This completes the proof of proposition 2.

Let \(\tilde{C}_x = \tilde{C}_x - C_x \). Then any element \(x' \in C_x \) cannot be \(\mathcal{H} \)-equivalent to any element \(y \in \tilde{C}_x \). For this let \(z_i \in C_x \) be a sequence of elements such that \(\lim_{\mathcal{L}} z_i = y \). Let us suppose that \(y' \in C_x \) is \(\mathcal{H} \)-equivalent to \(y \). Then there exists a sequence of elements \(z_i' \notin e_x \), \(\mathcal{H} \)-equivalent to \(z_i \), for each \(i \), with \(\lim_{\mathcal{L}} z_i' = y' \). This is a contradiction since \(C_x \) is open in \(L \). Similarly we can see that for each \(y \in \tilde{C}_x \) there exists an \(\mathcal{H} \)-equivalent point \(y' \in \tilde{C}_x \). By proposition 2 we can define \(W_x = f(\tilde{C}_x) \cap \tilde{C}_x \) which is the border of \(N \).

We can define the action of \(Z \) on \(L \) by isometries : \(m(x) = f^m(x), m \in Z \). This action is free and properly discontinuous. It implies that the quotient space \(\frac{L}{Z} \) has a structure of differentiable manifold and the projection \(L \rightarrow \frac{L}{Z} \) is differentiable. When \(L \) is simply connected then the isometry group of \(\frac{L}{Z} \) is isomorphic to \(\frac{N(Z)}{Z} \) ![5] where \(N(Z) \) is the normaliser of \(Z \) in the group of isometries of \(L \).

If we assume that the vector field \(v \) is a parallel one then it has to be a complete Killing vector field. Welsh [7] has proven that if a Riemannian manifold admits a complete parallel vector field then either \(L \) is diffeomorphic to the product of an Euclidean space with some other manifold \(L' \) or else there is a circle action on \(L \) whose orbits are not real homologous to zero. In our case the one-
parameter subgroup of isometries generated by v cannot induce an S^1 action (in this case its orbits are closed geodesics) so the latter possibility is excluded. (It is in agreement to Yau result [8] that the identity component of the isometry group of an open Riemannian manifold X is compact if X is not diffeomorphic to the product of an Euclidean space with some other manifold.) On the other hand we have Gromoll and Meyer result [2] that the isometry group of a complete open manifold with positive curvature is compact and that a Killing vector field cannot have non-closed geodesic orbits. In this way the corollary 3 is proven.

BIBLIOGRAPHIE

