P. HELLEKALEK
GERHARD LARCHER
On functions with bounded remainder

<http://www.numdam.org/item?id=AIF_1989__39_1_17_0>
ON FUNCTIONS WITH BOUNDED REMAINDER

by P. HELLEKALEK & G. LARCHER

0. Introduction.

Let λ denote normalized Haar measure on the one-dimensional torus \mathbb{R}/\mathbb{Z}. The following two classes of λ-preserving measurable transformations on \mathbb{R}/\mathbb{Z} are important in ergodic theory as well as in the theory of uniform distribution modulo one.

Let α be an irrational number and $T : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, $Tx := \{x + \alpha\}$, $\{\cdot\}$ the fractional part. T is called an "irrational rotation" on \mathbb{R}/\mathbb{Z}.

Let $q \geq 2$ be an integer and $T : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$, $Tx := x - (1 - q^{-k}) + q^{-(k+1)}$, whenever $x \in [1 - q^{-k}, 1 - q^{-(k+1)}[$, $k = 0, 1, \ldots$. T is called a "q-adic von Neumann-Kakutani adding machine transformation" on \mathbb{R}/\mathbb{Z}. In the following, T will be called a "q-adic transformation".

Let $\varphi : [0, 1] \to \mathbb{R}$ be a Riemann-integrable function with $\int_0^1 \varphi(t) \, dt = 0$ and let T be either an irrational rotation or a q-adic transformation on \mathbb{R}/\mathbb{Z}. Define

$$\varphi_n(x) := \sum_{k=0}^{n-1} \varphi(T^k x),$$

where $x \in \mathbb{R}/\mathbb{Z}$ and $n \in \mathbb{N}$ (we shall always identify \mathbb{R}/\mathbb{Z} with $[0, 1]$).

Key-words : Skew products – Adding machine transformation – Ergodicity.
A.M.S. Classification : 28D05, 11K38.
The following two questions are of importance in ergodic theory – for the study of skew products – as well as for the study of irregularities in the distribution of sequences in \(\mathbb{R}/\mathbb{Z} \):

1. Under which conditions (on \(\varphi \) and \(x \)) one has \(\sup \limits_{n} |\varphi_n(x)| < +\infty \)?

2. What can be said about limit points of \((\varphi_n(x))_{n \geq 1} \)?

The classical example. — Let \(\varphi(x) = 1_{[0,\beta]}(x) - \beta \), \(0 < \beta < 1 \). In this now “classical” example, the first question leads to the study of irregularities in the distribution of the sequence \((T^n x)_{k \geq 0}\), \(\varphi_n(x) \) being the so-called discrepancy function. For \(x = 0 \) one gets well-known sequences: in the first case \(\{k\alpha\}_{k \geq 0} \), in the second case the Van-der-Corput-sequence to the base \(q \).

For this example, the first question has been solved completely by elementary and by ergodic methods (for the first type of \(T \) see Kesten [8] and Petersen [11], for the second type Faure [2] and Hellekalek [4]). The numbers \(\beta \) with \(\sup \limits_{n} |\varphi_n(0)| < +\infty \), respectively \(\sup \limits_{n} |\varphi_n(x)| < +\infty \), are all known.

The second question is closely related to ergodicity of the skew product (cylinder flow) \(T_\varphi : T_\varphi(x,y) = (Tx,y + \varphi(x)) \) on the cylinder \(\mathbb{R}/\mathbb{Z} \times \mathbb{R} \) (see Oren [10] and Hellekalek [5]). In exactly this context Oren has solved the problem.

In this paper we shall be interested in question 1,2 and ergodicity of the cylinder flow \(T_\varphi \) on \(\mathbb{R}/\mathbb{Z} \times \mathbb{R} \) in the case of a \(q \)-adic transformation \(T \) and \(\varphi \in C^1([0,1]) \).

1. Results.

Throughout this paper we shall assume \(q \geq 2 \) to be an integer and \(T \) to be a \(q \)-adic transformation on \(\mathbb{R}/\mathbb{Z} \).

Theorem 1. — Let \(\varphi \in C^1([0,1]) \), let \(\int_0^1 \varphi(t) \, dt = 0 \) and \(\varphi(1) \neq \varphi(0) \). Then every number \(c \) such that \(|c| \leq |\varphi(1) - \varphi(0)|/2 \) is a limit point of the sequence \((\varphi^k(x))_{k \geq 0}\) for almost all \(x \in \mathbb{R}/\mathbb{Z} \), in particular for any \(x \) normal to base \(q \).

Theorem 2. — Let \(\varphi \in C^1([0,1]) \), let \(\int_0^1 \varphi(t) \, dt = 0 \) and let \(\varphi' \) be Lipschitz continuous on \([0,1]\). Then
(1) $\varphi(0) = \varphi(1) \Rightarrow \sup_{n} |\varphi_n(x)| < \infty$ for all $x \in \mathbb{R}/\mathbb{Z}$;

(2) $\sup_{n} |\varphi_n(x)| < \infty$ for some $x \in \mathbb{R}/\mathbb{Z} \Rightarrow \varphi(0) = \varphi(1)$;

(3) $\varphi(1) < \varphi(0) \Rightarrow -\infty < \liminf_{n \to \infty} \varphi_n(0)$ and $\limsup_{n \to \infty} \varphi_n(0) = +\infty$;

(4) $\varphi(1) > \varphi(0) \Rightarrow -\infty = \liminf_{n \to \infty} \varphi_n(0)$ and $\limsup_{n \to \infty} \varphi_n(0) < +\infty$;

(if $\omega(\delta) := \sup\{||\varphi'(x) - \varphi'(y)|| : |x-y| < \delta$, $0 \leq x, y \leq 1\}$, $\delta > 0$, denotes the modulus of continuity of φ', then φ' called Lipschitz-continuous if $\omega(\delta) \leq L \cdot \delta$, $\forall \delta > 0$, L a positive constant).

The reader might want to compare theorem 2 (1) with theorem 7.8 in [7], and theorem 2 (3) and (4) with results on the one-sided boundedness of the discrepancy function (see [1]).

THEOREM 3. — Let $\varphi \in C^1([0,1])$ and let $\int_0^1 \varphi(t) \, dt = 0$. Then $\varphi(1) \neq \varphi(0) \Rightarrow \forall \varepsilon \in \mathbb{R}/\mathbb{Z}$ normal to base $q : (\varphi_n(x))_{n \geq 1}$ is dense in \mathbb{R}.

In particular, if $\varphi(1) \neq \varphi(0)$ and if x is normal to base q, then
\[\liminf_{n \to \infty} \varphi_n(x) = -\infty \text{ and } \limsup_{n \to \infty} \varphi_n(x) = +\infty.\]

The reader might want to compare theorem 3 with corollary C in [10].

THEOREM 4. — Let φ be as in theorem 3 and let $T_\varphi : \mathbb{R}/\mathbb{Z} \times \mathbb{R} \to \mathbb{R}/\mathbb{Z} \times \mathbb{R}$, $T_\varphi(x, y) = (T x, y + \varphi(x))$. Then

(1) $\varphi(1) \neq \varphi(0) \Rightarrow T_\varphi$ ergodic;

(2) let φ' be Lipschitz-continuous on $[0,1]$. Then T_φ is ergodic if and only if $\varphi(1) \neq \varphi(0)$.

2. The proofs.

Let $A(q) = \left\{ \sum_{i=0}^{\infty} z_i q^i : z_i \in \{0,1,\ldots,q-1\} \right\}$ denote the compact Abelian group of q-adic integers with the metric
\[\rho(z, z') := q^{-\min\{i : z_i \neq z'_i\}}\]
for $z = \sum_{i=0}^{\infty} z_i q^i \neq z' = \sum_{i=0}^{\infty} z'_i q^i$ and $\rho(z, z) := 0$.

The homeomorphism $S : A(q) \to A(q)$, $Sz = z + 1$ $(z \in A(q))$, $1 := 1 \cdot q^0 + 0 \cdot q^1 + 0 \cdot q^2 + \cdots$ has a unique invariant Borel probability measure on $A(q)$: the normalized Haar measure. The dynamical system $(A(q), S)$ is minimal (see [4]).

The map $\Phi : A(q) \to \mathbb{R}/\mathbb{Z}$, $\Phi\left(\sum_{i=0}^{\infty} z_i q^i\right) := \sum_{i=0}^{\infty} z_i q^{-(i+1)} \mod 1$, is measure preserving, continuous and surjective.

The q-adic representation of an element x of \mathbb{R}/\mathbb{Z}, $x = \sum_{i=0}^{\infty} x_i q^{-(i+1)}$ with digits $x_i \in \{0, 1, \ldots, q-1\}$, is unique under the condition $x_i \neq q-1$ for infinitely many i. From now on we shall assume this uniqueness condition to hold for all x. Numbers x with $x_i \neq 0$ for infinitely many i will be called non-q-adic. In the following $z = z(x)$ will denote the element

$$z = z(x) := \sum_{i=0}^{\infty} x_i q^i$$

of $A(q)$ associated with x. One has

$$Tx = \Phi(z + 1)$$

and it is elementary to see:

- $T \circ \Phi(z) = \Phi \circ S(z)$, $\forall z \in A(q)$
- $x \in [aq^{-k}, (a+1)q^{-k}]$, $0 \leq a < q^k$, $k = 1, 2, \ldots$ \Rightarrow $T^k x \in [aq^{-k}, (a+1)q^{-k}]$ and therefore $|T^k x - x| < q^{-k}$.
- T permutes the open elementary q-adic intervals $]aq^{-k}, (a+1)q^{-k}[$, $0 \leq a < q^k$, of length q^{-k}, $k = 1, 2, \ldots$.

Proposition 1. Let φ be continuously differentiable on the closed interval $[0,1]$ and let $\int_0^1 \varphi(t) \, dt = 0$. If ω denotes the modulus of continuity of φ', then for all $k \in \mathbb{N}$ and for all $x \in \mathbb{R}/\mathbb{Z}$

$$\varphi_{q^k}(x) = (\varphi(1) - \varphi(0))(\rho_k + \sigma_k - 1/2) + O(\omega(q^{-k}))$$

$$(1) + O(\rho_k \cdot \omega(c(q) \cdot (q^k - z(k)))^{-1} \log(q^k - z(k))))$$

$${} + O(\sigma_k \cdot \omega(c(q) \cdot z(k))^{-1} \log z(k)))$$,

where

$$x = \sum_{i=0}^{\infty} x_i q^{-(i+1)}$$

$$z = z(x) := \sum_{i=0}^{\infty} x_i q^i$$
z(k) := \sum_{i=0}^{k-1} x_i q^i \quad k = 1, 2, \ldots
\rho_k := (q^k - z(k)) \cdot \Phi(z - z(k))
\sigma_k := z(k) \cdot \Phi(z - z(k) + q^k)

and c(q) is a constant that depends only on q. The \(O\)-constants that appear in identity (1) are all bounded from above by a constant that depends only on q and \(\varphi\).

Proof. — It is easy to prove

\[\varphi_k(x) = \sum_{i=0}^{q-1} \varphi(a_i q^{-k}) + \sum_{i=0}^{q-1} \varphi'(a_i q^{-k})(T^i x - a_i q^{-k}) + O(\omega(q^{-k})) , \]

where \(a_i\) is the uniquely determined integer with \(0 \leq a_i < q^k\) and \(T^i x \in [a_i q^{-k}, (a_i + 1)q^{-k}]\). From proposition 1 in [6] it follows that

\[\sum_{i=0}^{q^k-1} \varphi(a_i q^{-k}) = -(\varphi(1) - \varphi(0))/2 + O(\omega(q^{-k})) . \]

Further

\[T^i x - a_i q^{-k} = \begin{cases}
\Phi(z - z(k)) & 0 \leq i < q^k - z(k) \\
\Phi(z - z(k) + q^k) & q^k - z(k) \leq i < q^k .
\end{cases} \]

By theorem 5.4, chapter 2 of [9]

\[(q^k - z(k))^{-1} \sum_{i=0}^{q^k-z(k)-1} \varphi'(a_i q^{-k}) = \varphi(1) - \varphi(0) + O(\omega(D_{q^k-z(k)})) , \]

where \(D_{q^k-z(k)}\) denotes the discrepancy of \((a_i q^{-k})_{i=0}^{q^k-z(k)-1}\). As \(a_i q^{-k} = \Phi(z(k) + i)\), this is a string in the Van-der-Corput-sequence to base q, and therefore the following discrepancy estimate holds (see [9] chapter 2, theorem 3.5 for the idea of the proof):

\[D_{q^k-z(k)} \leq c(q)(q^k - z(k))^{-1} \log(q^k - z(k)) , \quad k = 1, 2, \ldots , \]

\(c(q)\) a constant that depends only on q.

With the same arguments one proves

\[z(k)^{-1} \sum_{i=q^k-z(k)}^{q^k-1} \varphi'(a_i q^{-k}) = \varphi(1) - \varphi(0) + O(\omega(c(q)z(k)^{-1} \log z(k))) . \]
COROLLARY 1. — Let \(n \in \mathbb{N} \), \(n = \sum_{i=0}^{s} n_i q^i \), with \(n_i \in \{0,1,\ldots, q-1\} \), \(0 \leq i \leq s \), \(n_s \neq 0 \), and let \(n(k) := \sum_{i=0}^{k-1} n_i q^i \) if \(k = 1, \ldots, s+1 \), \(n(0) := 0 \).

If \(\sum_{k=0}^{s} \) denotes \(\sum_{k \in k \neq 0} \) then

\[
\varphi_n(x) = \sum_{k=0}^{s} \sum_{\ell=0}^{n_k-1} q^{k-1} \sum_{j=0}^{\ell} \varphi(T^{n(k)+\ell q^k+j} x).
\]

Let

\[
T^{n(k)+\ell q^k} x := x_{k,\ell} = \sum_{i=0}^{\infty} x_i^{k,\ell} q^{-(i+1)}
\]

\[
z^{k,\ell} := \sum_{i=0}^{\infty} x_i^{k,\ell} q^i
\]

\[
z^{k,\ell}(m) := \sum_{i=0}^{m-1} x_i^{k,\ell} q^i \quad (m = 1, 2, \ldots)
\]

\[
\rho_{k,\ell} := (q^k - z^{k,\ell}(k)) \cdot \Phi(z^{k,\ell} - z^{k,\ell}(k))
\]

\[
\sigma_{k,\ell} := z^{k,\ell}(k) \cdot \Phi(z^{k,\ell} - z^{k,\ell}(k) + q^k).
\]

Then proposition 1 implies:

\[
\varphi_n(x) = (\varphi(1) - \varphi(0)) \sum_{k=0}^{s} \sum_{\ell=0}^{n_k-1} (\rho_{k,\ell} + \sigma_{k,\ell} - 1/2) + \mathcal{O}\left(\sum_{k=0}^{s} n_k \omega(q^{-k})\right)
\]

\[
+ \mathcal{O}\left(\sum_{k=0}^{s} \sum_{\ell=0}^{n_k-1} (\rho_{k,\ell} \omega(c(q)(q^k - z^{k,\ell}(k))^{-1} \log(q^k - z^{k,\ell}(k)))
\]

\[
+ \sigma_{k,\ell} \omega(c(q)z^{k,\ell}(k)^{-1} \log z^{k,\ell}(k))\right).
\]

The \(\mathcal{O} \)-constants in identity (2) are bounded from above by a constant that depends only on \(q \) and \(\varphi \).

Proof of theorem 1. — Let \(x \) be normal to base \(q \) and let \(d = 0, d_0 d_1 d_2 \cdots \) be an arbitrary number in \([0,1[\). For any index \(k \) such that
\(x_k < q - 1 \) we have
\[
\rho_k + \sigma_k = (q^k - z(k)) \sum_{i \geq k} x_i q^{-i-1} + z(k) \left(\sum_{i \geq k} x_i q^{-i-1} + q^{-k-1} \right)
\]
\[
= \sum_{i \geq 0} x_i q^{-|i-k|-1} .
\]

Let \(\varepsilon > 0 \) be arbitrary. Choose \(m \) such that \(q^{-m} < \varepsilon \). As \(x \) is normal there are infinitely many \(k \) such that \(x_k < q - 1 \)
\[
|\rho_k + \sigma_k - d| = |0, x_k x_{k+1} x_{k+2} \cdots + 0, 0x_{k-1} x_{k-2} \cdots x_0 - d| < q^{-m}
\]
(this imposes a condition on the digits \(x_k, x_{k\pm 1}, \ldots, x_{k\pm m} \))
\[
\quad x_{k-m} = q - 1 , \quad x_{k-m-1} = 0 .
\]
Then
\[
z(k) \geq q^{k-m} , \quad q^k - z(k) \geq q^{k-m-1}
\]
and, if we choose \(k \) sufficiently large,
\[
\omega(q^{-k}) < \varepsilon \quad \text{and} \quad \omega(c(q)q^{-k+m+1} \log q^k) < \varepsilon .
\]
If we put \(c := (\varphi(1) - \varphi(0))(d - 1/2) \), then it follows directly that
\[
|\varphi_{q^k}(x) - c| = O(\varepsilon) .
\]

Proof of theorem 2. — (1) : Let \(\varphi(1) = \varphi(0) \). It is \(\Phi(z - z(k)) < q^{-k} \)
and \(\Phi(z - z(k) + q^k) < q^{-k} , k = 1, 2, \ldots \). Hence for the third term in
identity (2) we get the estimate
\[
\left(3 \sum_{k=0}^{s} \sum_{t=0}^{n_k-1} (\rho_k, t \cdots + \cdots \log z^k, t(k)) \right) \leq 2q Lc(q) \sum_{k=0}^{\infty} q^{-k} \log q^k < +\infty .
\]
Thus the first part of the theorem is proved.

(2) : Let \(\sup |\varphi_n(x)| < +\infty \) for some \(x \in \mathbb{R}/\mathbb{Z} \) and let \(z := z(x) \). The
map \(\varphi \circ \Phi : \mathbb{A}(q)^n \rightarrow \mathbb{R} \) is continuous and \((\mathbb{A}(q), S) \) is a minimal (topological)
dynamical system. We have
\[
\sup_n |\varphi_n(x)| = \sup_n \left| \sum_{k=0}^{n-1} \varphi \circ \Phi(S^k z) \right| < +\infty .
\]
By theorem 14.11 of [3] there is a continuous function \(g : \mathbb{A}(q) \rightarrow \mathbb{R} \) such that
\(\varphi \circ \Phi(z) = g(z) - g(Sz) , \forall z \in \mathbb{A}(q) \). Hence
\[
-(\varphi(1) - \varphi(0))/2 = \lim_{k \to \infty} \varphi_{q^k}(0) = \lim_{k \to \infty} \sum_{i=0}^{q^k-1} \varphi \circ \Phi(S^i 0)
\]
\[
= \lim_{k \to \infty} (g(0) - g(q^k)) = 0 ;
\]
(here we use proposition 1 in [6] to prove the first equality).

(3) : We shall prove \(-\infty < \liminf_{n \to \infty} \varphi_n(0)\), then part (2) will imply the remaining statement. Because of identity (2) and inequality (3) it is enough to show, for \(x = 0\),

\[\Sigma_n := \sum_{k=0}^{s} \sum_{\ell=0}^{n_k-1} (\rho_k,\ell + \sigma_k,\ell - 1/2) \leq K , \forall n \in \mathbb{N} \]

with some constant \(K\). If \(x = 0\) then \(z^k,\ell = n(k) + \ell q^k\) and \(z^k,\ell(k) = n(k)\). Hence \(\rho_k,\ell = (q^k - n(k))\ell q^{-(k+1)}\) and \(\sigma_k,\ell = n(k)(\ell + 1)q^{-(k+1)}\). Thus

\[\Sigma_n = \sum_{k=0}^{s} n_k((n_k - 1)/(2q) + n(k)q^{-(k+1)} - 1/2) . \]

The statement then follows because \((n_k - 1)/(2q) + n(k)q^{-(k+1)} - 1/2 < 0\).

(4): The idea of the proof is the same as in (3).

Remark. — In theorem 2 (1), (3) and (4) one can weaken the condition on the modulus of continuity of \(\varphi'\) to \(\omega(\delta) = O((\log \delta)^{-1-\varepsilon})\) with some \(\varepsilon > 0\).

Proof of theorem 3. — The idea of the proof is as follows. Let \((k_m)_{m \geq 1}\) be a strictly increasing sequence of positive integers. If \(n = q^{k_1} + \cdots + q^{k_s}\) then

\[\varphi_n(x) = (\varphi(1) - \varphi(0)) \sum_{m=1}^{s} (\rho_m + \sigma_m - 1/2) + \mathcal{O}\left(\sum_{m=1}^{s} \omega(q^{-k_m})\right) \]

\[+ \mathcal{O}\left(\sum_{m=1}^{s} \rho_m \omega(c(q)(q^{k_m} - z^{k_m}(k_m))^{-1} \log(q^{k_m} - z^{k_m}(k_m)))\right) \]

\[+ \sigma_m \omega(c(q)(z^{k_m}(k_m))^{-1} \log z^{k_m}(k_m))) \]

with \(x = 0, x_0 x_1 x_2 \cdots, z = z(x) = \sum_{i=0}^{\infty} x_i q^i, z^{k_m} = z + q^{k_1} + \cdots + q^{k_{m-1}}\) and, if \(x_m \leq q - 2\),

\[\rho_m + \sigma_m = 0 , \ x_k x_{k+1} \cdots + 0 , \ 0 x_{k-1} x_{k-2} \cdots x_0 . \]

Now, let \(d \in \mathbb{R}, \varepsilon > 0\) and \(x \in [0,1]\) normal to base \(q\) be given. We shall prove that there is a positive integer \(m_0\) and a strictly increasing sequence \((k_m)_{m \geq m_0}\) such that

\[|\varphi_n(x) - d| < \varepsilon \text{ for all } n = q^{k_{m_0}} + \cdots + q^{k_s} \text{ sufficiently large.} \]
Let m_0 be such that $\sum_{m \geq m_0} q^{-m} < \varepsilon$. Let $(a_m)_{m \geq m_0}$ be a sequence in $[0,1[$ such that
\[
d = (\varphi(1) - \varphi(0)) \sum_{m \geq m_0} (a_m - 1/2).
\]
The number x is normal to base q. Hence there are infinitely many $k = k(m)$ such that
1. $x_k \leq q - 2$
2. $x_{k-2m} = 1$

 $x_{k-2m-1} = x_{k+2m} = x_{k+2m+1} = 0$
3. $|\rho_k + \sigma_k - a_m| < q^{-m}(\varphi(1) - \varphi(0))^{-1}$, $\forall m \geq m_0$;
\[
\text{(this condition defines a string of digits } x_{k-2m+1}, \ldots, x_{k+2m-1}).
\]
Hence we may choose a strictly increasing sequence $(k_m)_{m \geq m_0}$ such that these three conditions hold for every k_m and such that
4. $k_m + 2m + 1 < k_{m+1}$
5. $\sum_{m \geq m_0} \omega(q^{-k_m}) < \varepsilon$
6. $\sum_{m \geq m_0} \omega(c(q)q^{-k_m+2m+1}\log q^{k_m}) < \varepsilon$.

Then if $n = q^{k_{m_0}} + \cdots + q^{k_s}$ ($s \geq m_0$),
\[
|\varphi_n(x) - d| = O(\varepsilon),
\]
and therefore the sequence $(\varphi_n(x))_{n \geq 1}$ is dense in \mathbb{R}.

Remark. — Theorem 3 gives an alternative to the proof of theorem 2 (2), this time without a condition on the modulus of continuity of φ':

If $\sup_n |\varphi_n(x)| < \infty$ for some $x \in [0,1[$, then this holds for all x by the theorem of Gottschalk and Hedlund. Hence $\varphi(1) = \varphi(0)$, otherwise a contradiction to theorem 3 would arise for any x normal to base q.

Proof of theorem 4.

(1) is proved in the very same way as the theorem of [6].

(2): Let L_2 stand for $L_2(\mathbb{R}/\mathbb{Z}, \lambda)$. Then $\varphi(1) = \varphi(0)$ implies $\sup_n \|\varphi_n\|_{L_2} < +\infty$. By Lemma 2.2 in [4] there exists an element g of L_2 such that $\varphi = g - g \circ T$ (mod λ). This implies that $(x,y) \mapsto$
\((Tx, y + \varphi(x) \mod 1)\) is not ergodic on \(\mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}\) and therefore \(T_\varphi\) cannot be ergodic on \(\mathbb{R}/\mathbb{Z} \times \mathbb{R}\) (see [5], part. I : remarks).

\[\square\]

BIBLIOGRAPHIE

Manuscrit reçu le 17 juillet 1987,
révisé le 7 octobre 1988.

P. HELLEKALEK & G. LARCHER,
Institut für Mathematik
Universität Salzburg
Hellbrunnerstraße 34
A-5020 Salzburg (Austria).