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PARTIAL SUMS OF TAYLOR SERIES ON A CIRCLE

by E.S. KATSOPRINAKIS and V.N. NESTORIDIS

1. Introduction.

In connection with a theorem of Marcinkiewicz and Zygmund (see [4],
[5] Vol. II, p. 178 or [1]) S.K. Pichorides suggested to the first author to
examine, as a thesis problem (see [2]), the power series

i> "̂'
n=0

with the following special property (a) :

(a) : For every z in a nondenumerable subset E of the unit circle T ,
all partial sums

n

Sn(^)=^CkZk

k=0

lie on the union of a finite number of circles, C^(z), 62 (^ ) , . . . , CM(^)(^), in
the complex plane.

In [3], which contains the main results of [2], the following character-
ization has been obtained :

THEOREM A. — Let
00

E^2"
71=0
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be a power series with complex coefficients. Then, this series has the
property (a), if and only if, (b) holds :

(b) : The above series has a representation of the form :
00 00

^^n = G^z) + (eitz)^F(e^tz) ̂ (e^z)^,
n=0 m=0

where t is a real number, fjL.p are integers, 11 > 0, p > 1, and G,F are
polynomials satisfying degG < ̂  or G =. 0, and degF < p or F = 0.

It is easy to check that a power series, which has a representation of
the form (b), is (C, 1) summable to a finite sum o~(z), for all, but a finite
number of z, z € T ; further, all its partial sums Sn (z) lie on the union of a
finite number of concentric circles with center cr(z). Moreover, the angular
distribution of the sequence {|§n(^)} around cr{z), is uniform, for all, but
denumerable many z, z in T. :

The difficult part of theorem A is the implication (a) =^ (b). The effort
is to control the Taylor coefficients Cn and establish a kind of periodicity
among them. The proof uses the full hypothesis, that all partial sums lie
on the union of a finite number of circles.

J.-P. Kahane asked whether it is possible to obtain the same result
using only one circle C{z) containing infinitely many partial sums, but not
all of them. For instance, one can suppose that C(z) contains all s^(z),
with v in an infinite or finite arithmetic progression; what is then the
conclusion ?

The above question led us to introduce the notion of "continuation"
of a polynomial with respect to a family of circles of special type. More
precisely, we consider any family of circles C(z), z 6 T, with centers
B(z) -+- zx[A(z)/Q(z)} and radii \zxA(z)/Q(z)\, where A > 1 is an element
of the set Z of integers and B.A.Q are polynomials. We suppose that A
and Q do not have common factors, A(0)Q(0) / 0, degA < degQ and
degB < A or B = 0, where degY denotes the degree of the polynomial Y.
In particular, the family of circles, defined by three different partial sums
of any power series, is of this type. Further, if P is any polynomial, then
we call the polynomial R(z) =. B(z) + zxP(z) a "continuation" of B with
respect to C(z), if R(z) lies on C(z) for infinitely many z in T. Then the
main results of this paper are given by the following theorems B, C. For

CO

simplicity we write ̂  instead of V^.
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THEOREM B. — Let A,A,B,Q and C{z) be as above. Then every
continuation of B with respect to C(z) is a partial sum of the Taylor
development ̂ bnZ71 of the "center function" g(z) = B(z)-{-zx[A(z)/Q(z)]
ofC(z). It follows that the set of continuations ofB with respect to C(z)
is at most countable.

THEOREM C. — Let A,A,JE?,Q and C(z) be as above. Then the
following (i), (ii), (Hi) are equivalent :

(i) The set of continuations of B with respect to C{z) is infinite.

(ii) Q(z) is a non constant factor of a polynomial of the form 1 — (e^z)^,
where t 6 R and p € Z, p > 1.

(iii) There is a power series ̂  ̂ n^ with the following two properties :

(*) S ̂ n^ ls not a polynomial.
(**) There is an infinite subset S of {0,1,...}, such that, for all v in

5, the partial sums s^ of ̂  bnZ'^ are continuations of B with respect to
C(z).

If a series ̂  bnZ71 satisfies (*) and (**), then this series is unique and
coincides with the Taylor development of g(z) = B(z) + z^^^z) / Q{z)\ ;
moreover, we have :

00 00

^ bnzn = B{z) + {e^tz)XF(e^tz) ̂  (e^)^,
n=0 m=0

where t E R , p ^ . Z , p > l and F is a non identically zero polynomial with
degF < p. Further, any continuation of B with respect to C(z) is a partial
sum of this series.

Theorem C answers in the affirmative part of the question of J.-P.
Kahane. We prove theorems B and C in §2. The methods of proof are
different than the methods in [3]. We use factorization and thus, we deal
with the zeros of certain polynomials instead of their coefficients.

In §3 we derive stronger versions of theorem A and give complete
answer to the question of J.-P. Kahane (see prop. 8 and prop. 9). In
particular proposition 9 is a finite version of theorem A. The proof of
proposition 8 could be shortened by avoiding the notion of continuation. We
did not follow this approach in order to obtain also the results of proposition
9 and study in more detail continuations, which we think that they present
some interest in themselves. Section 4 contains remarks, examples and open
questions.
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2. Proof of the main results.

Three complex numbers wi, w^, ws do not lie on a straight line, if and
only if, the system |A;|2 = \w^ - wi - fc|2 == |ws - wi - k\2 has a unique
complex solution k / 0. In this case, W i , W 2 , W s determine a unique circle
containing them, with center Wi +A; and radius |A;|. The above system takes
the form of a linear system with unknows k and Jfc, as follows :

(W2 - W^)k + (W2 - Wi)A? = (W2 - Wi)(w2 - Wi)

(^3 - Wi)A; + (^ - Wi)fc = (W3 - Wi)(w3 - Wi) .

Let ^1,^25^3 be three integers, such that, 0 < v^ < 1/2 < ^3. If
the partial sums of a power series, with indices ^1,^25^3, are different as
polynomials, then, for all, but finitely many z, z € T, the complex numbers
s^(z),s^(z),s^(z) do not lie on a straight line. So, they define a unique
circle C(z) containing them. In order to see this, we can set :

s^(z) = Pi(^), s^(z) = P,(z) + z^P^z),

and
S^(Z) = P,(Z) + Z^P^Z) + ̂ +^P3(^),

where A, /A ,g are integers, A > 1/1, ^ = deg?2, q > 1 and Pi,P2,?3 are
polynomials, with P2(0)?3(0) / 0. We also denote v = deg?3. Since
~z = 1 / z for z in T, it follows that z^~P^(z), z^^z}, are restrictions on
T of two polynomials with non-zero constant terms and degrees /z and v^
respectively. After this notation we have to examine the following system :

z-^->[^p^)]k{z) + z^P^z)k(z) = z-^P^z)[z^{z)}

z-^^-^P^zWz) + z^^P^kiz) = z-^P^z^P^z)}

^P^z)[z^{z)} + z-^-P^z^P^z)].

The determinant D(z) of this system is the restriction on T of a non
identically zero rational function; more precisely, we have :

D(Z) = ^-'^-l^-l'{^2q+tt+VP3(^)[z^(^)}-P^z)[zvP3(^)}}

and
deg^+^I?^)] = 2{q + fi + v) > 2q > 2.

For each z in T, such that D(z) -^ 0, the unique solution k(z) is :

k(z)=z>[Al(z)/Q,(^)},
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where
Ai(z) = P^z^P^z)} + z^P^Ps^z^z)},

Q,(z) = P^z^P^z)] - z2('+^l+VP3(z)[z^(z)}.

We observe that Ai,Qi are restrictions on T of two polynomials, which,
for simplicity, we denote again by Ai,Qi? respectively. Further, we have :

Ai(0)Qi(0) ^ 0 , degAi = q + 2/^ + Iv

and
deg Qi = q + deg Ai > 1 + deg Ai > deg Ai.

Since AiD is a non identically zero rational function, the set 0 = {2? € T :
A-i(z)D(z) = 0} is finite. Then, for every z in T — n, the system considered
above has a unique non-zero solution k(z) ; thus, for each z € T — 0, the
complex numbers s^(z),s^(z), s^(z) do not lie on a straight line and they
define a unique circle C(z) containing them, with center : Sy^ (z) + k{z) =
s^(z) + zx[A-i(z)/Q]_(z)} and radius \k(z)\ -f- 0. Since A > v\ and s^(z) =
s^(z) + z^P^^z), we see that s\-i(z) =. s^(z). Further, we can write
Ai(z)/Qi(^) = A{z)/Q(z), where A,Q are polynomials without common
factors; then, A(0)Q(0) ^ 0 and deg Q- deg A = degQi -degAi = q > 1.
Since k(z) is known and non zero on the infinite set T — f^, it has at most
one rational extension W ^ 0, which in turn has a unique decomposition
W(z) == zx[A(z)/Q(z)}, where A is an integer and the polynomials A,Q do
not have common factors and satisfy A(0) -^ 0 and Q(0) = 1. Thus, we
have proved the following :

LEMMA 1. — Let

E^"
n=0

be a power series with complex coefficients and v\, ^25 ̂ 3 t>e three integers,
such that 0 < v\ < v^ < ^3. If the partial sums of the above series, with
indices ̂ i, ^2 5 ^3 5 ar^ different as polynomials, then there exist a finite subset
Q of the unit circle T, an integer \ > v\ and two polynomials A, Q without
common factors, which satisfy A(0) -^ 0, Q(0) = 1 and deg A < deg Q, such
that the following holds :

For every z in T — 0 we have A(z)Q(z) 7^ 0 and the complex numbers
s^ (z), s^ (z), 5^3 {z) do not lie on a straight line; they define a unique
circle C(z) containing them, with center s^(z) + zx[A(z)/Q(z)} and
radius |^[A(^)/Q(^)]|^ 0.
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The polynomials A,Q and the integer X with the above properties are
uniquely determined by 5^,5^,5^3. The integer \ is the least element
of the set Z of integers, such that, X > v\ and c\ ^ 0. Thus, we have
s\--t = s^.

Lemma 1 leads us to consider polynomials B,A,0 with A(0) -^ 0,
Q(0) = 1, degA < degQ, and an integer A > 1, such that, A > degB or
B = 0. We suppose that A,Q do not have common factors. For every z
in T, such that A(z)Q(z) / 0, we denote by C(z) the circle with center
g(z) = B(z) + zx[A(z)/Q(z)} and radius \zxA(z)/Q(z)\. We also consider
the factorization :

A(z)=c]^[(l+ajz),
3^1

where c is a non-zero complex number, I is a finite set and aj are non-zero
complex numbers, for all j in I . The following definition will be useful for
our purposes :

DEFINITION 2. — Let A,A,B,Q and C(z) be as above. IfP is
any polynomial, then the polynomial R(z) = B{z) + zxP{z) is called "a
continuation of B with respect to C(z)", if R(z) lies on C{z) for infinitely
many z in T.

Now, by an application of the reflection principle, we prove our basic
lemma :

LEMMA 3. — Let A,A,B,<9 and C(z) be as above. If R is any
polynomial, then, (i), (ii), (Hi) are equivalent :

(i) R(z) € C(z) holds for every z in T with A(z)Q(z) ̂  0.

(ii) R(z) € C(z) holds for infinitely many z in T.

(iii) There exist 7 C G, H = 1, k C Z and J C I with \dj\ / 1 for all j
in J, such that, the following identity of rational functions holds :

[R(z) - B(z)\Q(z) - z>A(z) ̂  , ̂ r z+a,=^n
3^J

zxA(z) ' 11 1 + d j Z '

Proof. — (i) =^ (ii) is obvious.

(ii) =^ (iii). For every z in an infinite subset E of T we have
R(z) e C7(z), which implies that

\R(z) - B(z) - ̂ [A(^)/Q(z)]| = |^A(^/Q(^)| ;



PARTIAL SUMS OF TAYLOR SERIES ON A CIRCLE 721

thus, the function y(z) •= [^) - B^Q(•Z) ~ z A^ satisfies \y(z)\ = 1,
Z ^\\^Z)

for all z G E. It follows that the rational function f(z) = (p(z) — [^C^"1)]"1

vanishes on the infinite set E C T. Thus, f(z) '=. 0 and (p{z) = [^C^"1)]"1 ;
it follows that the map z —> ('z)~1 induces a bijective correspondence among
zeros and poles of y?, preserving multiplicities. From the definition of (p we
see that, if b ̂  0, oo is a pole of ip with multiplicity m, then 6 is a zero of
A with multiplicity m1 > m. Since

A^)=cJ](l+a^),
3^1

it follows that,
/ \ k TT z + a?^^niT^.

with 7 6 (7, |7| = 1, k € ^ and J C I . If for some j €: J we have |a^[ = 1
then the factor (^ + Oj)/(l + Oj^) equals aj and can be absorbed in the
constant 7 : so, the particular j can be deleted from J. In this way we
have \dj\ -^- 1 for all j in J, as requested. We also notice that the function
(p is the quotient of two finite Blaschke products.

(iii) => (i). Since ^zk TT -———— •=- 1 for all z in T, we have
j€J L + a^

\[R(z) - B(z)]Q{z) - zxA(z)\ = \zxA(z)\ on T ; this implies

\R(z) - B(z) - z>[A{z)|Q{z)}\ = \z^A{z)IQ(z^

for all z in T, such that Q(z) / 0. This gives (i). D

Lemma 3 yields the following :

PROPOSITION 4. — Let A,A,B,Q and C(z) be as in definition 2.
IfP is any polynomial, then the following are equivalent :

(i) B(z) + zxP(z) E C(z) holds for all z in T with A(z)Q(z) ̂  0.

(ii) B(z) + z^P{z) is a continuation of B with respect to C(z).

(iii) TAere exist 7 € (7, H = 1, k € Z and J C I with \dj\ ̂  1 for all j
in J, such that : ^^•m
where

Lj(z)=c]^(z+a,) JJ (l+a,z).
jeJ jei-J
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Further, k > degP and P(0) ^ O i f P ^ O ; ifP EE 0, then k = 0.

Proof. — A straightforward application of lemma 3 to the poly-
nomial R(z) = B(z) + zxP(z) gives the equivalence of (i), (ii), (iii).
Since degLj(z) = cardJ = degA(z) < degQ(z), we see that k =
degP + degQ - degA > degP > 0 and P(0) = A(0)/Q(0) / 0, when
P ̂  0. If P == 0, then we have deg A = k -h deg Lj, which gives k = 0. D

Now, with the aid of proposition 4, we can prove that every continua-
tion of B with respect to C(z) is a partial sum of the Taylor development of
the center function g(z) = B(z) + zx[A(z)/Q(z)}. More precisely we have :

THEOREM 5. — Let A, A, B, Q and C(z) be as in definition 2. Then,
every continuation ofB with respect to C(z) is a partial sum of the Taylor
development ̂ b^ of the center function g{z) = B(z) + zx[A(z)/Q(z)}.
It follows that the set of continuations ofB with respect to C(z) is at most
countable and if R\^R^ are two continuations with degfii < deg-Rs or
Ri =0, then jRi is an initial part of R^.

Proof. — Let R(z) EE B(z) + zxP(z) be a continuation of B with
respect to C{z), where P is a polynomial. If P = 0, then, R = B is a partial
sum of the Taylor development of g(z), because A(0)Q(0) -f- 0, A > 1 and
A > degB or B = 0. If P ̂  0, then,p(^'5^t•^
according to proposition 4. Since degP < k and Lj(0)Q(0) ^ 0, we see

A
that P is a partial sum of the Taylor development of —. This implies the

~u
result and completes the proof. D

If the set of continuations of B with respect to C(z) if finite^ then,
according to theorem 5, there is a partial sum SN of the Taylor development
of B(z) + zx[A(z)/Q(z)] with the following two properties :

(a) SN is a continuation of B with respect to C(z).

(f3) every continuation of B with respect to C{z) is an initial part of
S N '

Obviously, SN is unique.

Next, we consider the case of infinitely many continuations of B with
respect to C(z).
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THEOREM 6. — Let A, A, B, Q and C(z) be as in definition 2. Then,
the following (i), (ii), (Hi) are equivalent :

(i) The set of continuations ofB with respect to C(z) is infinite.

(ii) Q{z) is a non constant factor of a polynomial of the form 1 — (e^tz)p,
where t € R and p C Z, p > 1.

(iii) There is a power series ̂  bnZ71 with the following two properties :

(*) S ̂ zn ls not a polynomial.
(**) There is an infinite subset S of {0,1,. . .}, such that, for all v

in 5, the partial sums Sy of^bn^ are continuations ofB with
respect to C(z).

If a series ̂  bnZ71 satisfies ( ^ ) and (^), then this series is unique and
coincides with the Taylor development ofB(z)+zx[A(z)/Q(z)} ; moreover,
we have :

CO 00

^ bnz" = B(z) + (e^z^F^z) ̂  (e^z)^,
n=0 ?n==0

where t ^ : R , p ^ Z , p > l and F is a non identically zero polynomial with
degF < p. Further, any continuation ofB with respect to C{z) is a partial
sum of this series.

Proof. — (i) => (ii). Since the number of subsets of the finite set I
is 2cardJ = 2^^ and we have infinitely many continuations B(z)+zxP(z)
of B with respect to C(z) (in fact 1 + 2degA different continuations are
sufficient), there are two distinct continuations with the same J C I (see
prop. 4). Then, there are ^,6 in (7, |7| = \6\ = 1, /^,/A in Z, 0 < K < /^,
and one subset J of J, such that, B(z) + z^P^z), B(z) + z^P^z) are
continuations of B with respect to C(z) and the polynomials Pi and P^
satisfy degPi / deg?2 (see theorem 5) and

^^"•^ ^^• î'-
Therefore, A(z)[l - (6/^z^} = [P^z) - (S/^z^P^z^z) : (J). But,
A and Q do not have common factors; thus, if K, < /z, then Q(z) is a factor
of 1 - (e^z)^ where p = p. - K > 1, p C Z, t E R and ^7 = e^-^. Since
deg Q > deg A > 0, the polynomial Q is a non constant factor of 1 - (e^tz)p.
If /t = /2, then, deg Pi ^ deg Pa and (J) imply deg A > degQ, which is in
contradiction with deg A < degQ.
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(ii) =^ (hi). We consider the power series :
00

^b^^B^+z^A^/Q^z)}.
n=0

Since A ^ 0 and Q is a factor of 1 - (e^z)^ we find a polynomial F ^ 0,
such that ^[A(z)/Q(z)] = (e^tz)XF(e^tz)/[l - (e^)^]. We observe that
degA < degQ yields degF < p. Thus, we have :
_^ 00

^ b^ = B(z) + z^WIQ^z)} EE B(z) + {e^tz)XF{eitz) ̂  (A)^.
^^ m=0

Since F ̂  0 and deg F < p this power series is not a polynomial; it follows
that, for every v = A - 1 + up, n = 0,1 ,2 , . . . , we have :

..(.) = B(z) + (e^tz)x . ̂ [̂1 - (AH = B(.) + .AP(.),

where P is the polynomial P(z) = A(z)[l-(eitz)np}/Q(z) = e^F^z^l-
(e^)^]/[l - (e^z)^. It follows that Sy are continuations of B with respect
to (7(2;), for all v = \ - 1 + np, n = 0 , 1 , 2 , . . . . Therefore, ̂  6^^71 satisfies
(*) and (**).

(iii) => (i). Let ̂  ̂ ^n be a power series satisfying (*) and (**). Since
^bnZ71 has infinitely many non-zero coefficients there is an infinite subset
6" of 5, such that, Sy / s^, for all ^,/A in 5", v ^ p,. According to (**), s^
is a continuation of B with respect to C(z), for each i/ in 5" ; thus, there
are infinitely many different continuations. This gives (i).

Suppose now that ^bnZ71 is a power series satisfying (*) and (**).
Then, according to theorem 5, ^ 6^ has infinitely many partial sums,
which are simultaneously partial sums of the Taylor development of the
center function g(z) = B(z) + zx[A(z)/Q(z)}. Since ^bnZ71 is not a poly-
nomial, we see that ^bnZ71 coincides with the above Taylor development.
Further, theorem 5 implies that every continuation of B with respect to
C(z) is a partial sum of ̂  bnZ71. Finally, we have already seen, in the proof
of (ii) => (iii), that :

00 00

^ buz" := B(z) + (e^tz)XF(e^tz) ̂  (e^)^.
n=0 rn=0

This completes the proof of theorem 6. D
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3. Further results.

In this section, we use the previous results to derive stronger versions
of theorem A. We first prove :

00

PROPOSITION 7. — Let V^ CnZ71 be a power series with complex
n==0

coefficients. Then, (i), (ii), (Hi) are equivalent :

(i) There exist an infinite subset S of{0,1,2, . . .} and a family of infinite
subsets EM-, M = (mi, m2,7723,7714) € 54, of the unit circle T, such that,
for every M = (7711,7712,7713,7714) in 54 and every z in EM, the complex
numbers Smi(z),Sm2(z),Sm,s{z),Sm^z) lie on a circle CM(Z).

(ii) There exist t ^ R , p ^ Z , p > l , ^ ^ Z , ^ > Q and polynomials G, F
satisfying fi > deg G or G =. 0 and p > deg F or F = 0, such that :

00 00

^ CnZn EE G(e^) + (e^tzyF(e^tz) ̂  (A)^.
n=0 m=0

(hi) There exist t € R and r in {0,1,2,. . .}, such that, the sequence
{dn}, n > 0, defined by ̂  CnZn = ̂  d^zY, is periodic for n > r.

Proof. — (i) =^ (ii). If ^CnZ71 is a polynomial, then obviously (ii)
holds. Therefore, we assume that infinitely many coefficients Cn are non-
zero. Thus, if v\ = min5', we can find ^2^3 € S, such that, v\ < v^ < ^3
and the partial sums of ^c^z71, with indices ^1,^25^3? are different as
polynomials. We fix two such indices v^ and 1/3 ; then, according to lemma
1, there is a finite subset fl, of T, such that, for every z in T — Q, the
complex numbers s^(z),s^(z),s^(z) define a circle C(z) ; further, there
are A,A,Q and B =. s^, which determine the center and the radius of
C(z), as in lemma 1. By the same lemma we know that A is the least
integer greater than 1/1, such that c\ ̂  0 ; it follows that for every n > 1^1,
the partial sum Sn is of the form Sn = s^ +zxPn, where Pn is a polynomial.
We observe that, for every 1/4 in S and every z in the infinite subset EN — ̂
of T - 0, where N = (1/1, ^2, ̂ 3^4) ^ 54, we have :

s^{z) ^ s ^ ( z ) ^ s ^ ( z ) and s^(z),s^(z),s^(z) € C(z) H CN^Z).

It follows that the circles C(z) and CN^Z) coincide, for every z in EN — fl,
and every 1/4 in S. Therefore, for each v e <?, we have s^ G C(z) for
infinitely many z in T. Since ^ > v\ and 5^ = s^ + zxP^, we see that s^ is
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a continuation of B with respect to C(z). Thus, our series satisfies (*) and
(**) of theorem 6. Now, the same theorem assures that :

00 00

^ Cnz71 EE B(z) + (eitz)XF(e^tz) ̂  (e^)^,
n=0 m=0

with degF < p. This gives the result with ^ = A and G the polynomial
defined by G^z) EE B(z) = s^(z).

(ii) =^ (hi). Since degF < p, we can write :
p-i

F(w)=^^w71.
n=0

We observe that d^^p^q = Oq for all K e Z, ^ > 0 and 9 = 0 ,1 , . . . , p - 1.
We set r = p. ; then {d^, n > r} is periodic with period p.

(hi) =^ (i). If ^CnZ71 is a polynomial, then, there is no e ^+, such
that, Cn = 0 for all n > no. Then (i) is valid with S = {no,no + 1,...}
and EM = r, M G 54. Therefore, we assume that our series is not a
polynomial. If p e Z, p > 1, is a period of {dn} n > r, then the polynomial
H(w) = dr + dr+iw + • • • + dr-{-p-lWP~l is non identically zero. It follows
that the set

E = {z e T : (e^tz)p + 1, H^z) ̂  0}

is infinite. Let S = {r + kp - 1 : A; = 1,2,3,...}. By a straightforward
calculation, we see that, for every v in S and every z in E, the partial sums
5^) lie on the circle C(z) with center :

E^^^+^^r^1 - (e^)^
n=0

and radius :
H^z) |^

11 - (e^tz)P | /

This gives (i) with EM = E and CM^) = C(z), for all M C 54. The proof
is complete, now. D

The following proposition is an immediate corollary of proposition 7.

PROPOSITION 8. — Let
00

Y^CnZ-

71=0

be a power series with complex coefficients and E cT and S C {0,1 ,2 , . . .}
be infinite sets. We suppose that, for every z in E, there is a circle C{z), such
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that, s^(z) e C(z) for all v in S. Then the above series has a representation
of the form :

00 00

^ c^ = G^z) + (e^z^F^z) ̂  (e^)^,
7i=0 m=0

where t is a real number, ̂  p e Z, p, > 0, p > 1, and G, F are polynomials
satisfying degG < [L or G EE 0 and degF < p or F EE 0. Further, G, F. /A
and t can be chosen so that deg G < mm S or G = 0.

Proof. — It suffices to apply proposition 7 with EM = E, for all
M == (7711,7712,7713,7714) € 54. D

Now, we give a finite version of proposition 8 :

PROPOSITION 9. — Let

R(z)=^c,zn

n=0

be a polynomial with complex coefficients and E an infinite subset otT.
We suppose that three initial parts

^k
^(^) = ̂ ^n,

n=0

k = 1,2,3, 0 < z/i < 1/2 < ^3 < q, of R are different as polynomials. We
also suppose that, for all z in E, R(z) lies on the circle C{z) determined
^7 s^{z)^ s^2{z)^s^3(z)• Then, the coefficients Cn, 1^3 < n < degR(z), are
uniquely determined from the coefficients Cn, v\ < n < ̂ 3, and the integers
^i, ^2, ^3. More precisely, R(z) is a partial sum of the Taylor development
J^bnZ71 of the unique rational function g, which gives the center of C(z).
We write :

s^(z) = Pi(^), s^(z) = P^z) + z^P^z),

and
s^(z) = P,(z) + z^P^z) + z^^P^z),

where A, ̂ q are integers, p. = deg?2, q > 1, Pi,P2,?3 are polynomials,
with P2(0)?3(0) / 0, and \ is the least integer satisfying A > 1/1 and
c\ / 0 ; we also denote by v the degree of P^. Then,

^)=P^)+.A.A1(^
Qi^)

where, the polynomials Ai,Qi are defined by the relations :
A,(z) = P^(z)[^P3(z)] + z^P^P^z^P^z)},
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Q,(z) = P^z^P^z)} - z^^P^z^P^

for all z in T.

Proof. — According to lemma 1, the circle C(z), \z\ = 1, denned by
s^ (z), s^{z), 5^3 (z), has center :,(,),?,(„ ̂ .^,
where A,Pi,Ai,Qi are as in the statement. Further, Ai/Qi and A are
uniquely determined from the coefficients Cn, v\ < n < 1/3 and the numbers
^1^2,^3' Since R is a continuation of s^ with respect to C(z), theorem 5
yields the result, n

Now, we prove a lemma which, combined with proposition 7, yields
another version of theorem A.

LEMMA 10. — Let
00

E^"
n=0

be a power series with complex coefficients, m > 1 be an integer and
let E be an infinite subset of the unit circle T. We suppose that, for
every z in E, there are m circles C^(z),C^(z),... ,C^(z), such that, for
all n = 0,1,2,3,. . . , we have

m

Sn{z)e\JC,(z).

J=l

Then, there exist an integer jo in { l ,2 , . . . ,m}, an infinite subset S of
{0,1 ,2 , . . .} and a decreasing family of infinite subsets Ey of E, v e 5,
such that s^(z) € C^(^), for all v in S and z in Ey.

Proof. — For n = 0 ,1,2, . . . , and z in E, we set :

t{n, z) = mm{j e { 1 ,2 , . . . , m} : Sn(z) e Cj(z)}.

Since E is infinite and the set {1 ,2 , . . . ,m} is finite, there is an infinite
subset EQ of E, such that, the map :

E3 z-^t(0,z) € { l , 2 , . . . ,m}

is constant on EQ. Let to be the constant value of this map restricted on
EQ. Then we have so(z) C Cto(z), for all z in EQ. Suppose that we have
defined EQ, E ^ , . . . , £^, infinite subsets of E and to , t^ , . . . , 4 elements of




