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DISTRIBUTION FUNCTION INEQUALITIES
FOR THE DENSITY OF THE AREA INTEGRAL

by R. BANUELOS (*) & Ch.N. MOORE (**)

0. Introduction.

Let Xf be a continuous martingale starting at zero and define X* =
sup^>o ?1 8Ln^ ^(^O == (^0^ where {X} is the quadratic variation process
at time oo. The Burkholder-Gundy inequalities state that for 0 < p < oo,

c,\\X^\,<\\S{X)\\,<C,\\X-\\^

where Cp and Cp are constants depending only on p. In [4], M. Barlow
and M. Yor proved that the maximal local time of Xf also has Lp norm
equivalent to the L9 norm of S(X). More precisely, let L(t;a) be the local
time at a and let L* = sup{L(oo;a) : a € R}. The occupation of time
formula [16] gives

(0.1) f f(X,)d(X),= [ f(a)L(^a)da
J o JR

for all Borel functions / in R. If we take / •= 1, it follows from this that

a \2 ( r x - \ ^
S(X)= L(oo;a)da = { L(oo;a)da

( / \J-x- )
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and therefore
(0.2) S(X)<V2(X^)^(L^k.
This, the Cauchy Schwarz inequality and the Burkholder-Gundy inequal-
ities above give that ||5(A)||p < Cp||L*||p for all 0 < p < oo. Thus, it is
natural to ask if the opposite inequality holds. The result of Barlow and
Yor [4] is precisely this. Let 0 < p < oo. Then
(0.3) ||L*||p<CV5(A)||p.

The original proof of (0.3) given in [4] made use of the Ray-Knight
theorem on the Markov structure of the Brownian local time. In [5], the
same authors gave a different proof based on Tanaka's formula and a real
variable lemma of Garsia, Rodemich and Rumsey. However, more recently,
R. Bass [6], and independently, B. Davis [12], have shown that the good-A
inequalities between X* and S(X) used by Burkholder and Gundy in their
proof of their inequalities continue to hold for L* and 5'(.Y).

In the setting of harmonic functions, the nontangential maximal
function is the analogue of A"* and the Lusin area function is the analogue of
S(X). In [14], R. Gundy introduced a new operator on harmonic functions
which he called the maximal density of the area integral; it is a harmonic
function analogue of L . The purpose of this paper is to prove good-
A inequalities between the maximal density of the area integral and the
nontangential maximal and Lusin area functions. Besides answering the
question posed in Gundy [15], page 9, our good-A inequalities and the
methods of Burkholder and Gundy [9] can be used to give a different proof
of the recent results of J. Brossard [7] on the local properties of the maximal
density. We also prove a Kesten type law of the iterated logarithm for
harmonic functions. Our Theorems 1 and 3 below are for Lipschitz domains.
However, all our results are new even in the case of IR^_.

Let u be a harmonic function in the upper half space R^.4"1 ==
{ ( x . y ) C R ' ) J r [ : ,</ > 0}. For a > 0,.r e H" and i) > 0, we set
r\(:r,^) -= { { ' ^ . t ) '. l.s' — .r < (\(t — y ) } which is a cone having a vertical
axis and vertex ( . / ' , < / ) . When y = 0 we simply write r^(.r). We define the
nontangential maximal function and the Lusin area function of u by

A^(.r,Y/) = s u p { | / / ( 5 , Q | : ( s . t ) C Fo ( .? • ,< / )} ,

((u) / /• , •> \ 'A^(.r, .<7)= / ( t - y ^ - ^ V u ^ . ^ d s d t } .
\-f\ . ( . . . ) /

respectively. When /y = 0 we will simply write N^u(.r) and A^u(x). As is
well known. N^u and A,,ti have equivalent L1' norms for all 0 < p < oc.
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Let a € R and note that since u is harmonic on R7^'1, the function
(u — a)~^ is subharmonic and its distributional Laplacian, A('u — a)"^, is a
positive measure in R^1. We then define (a^ in Gundy [15])

A^((^);a)= / (<-2/) l-nA(^(^)-a)+(^^)
^r.,(:r^)

and

(0.5) Dau(x, y ) = sup{£^((a;, ̂ ); a) : a C R}

and refer to Dau(x, y ) as the maximal density at (x, y). Again, when y == 0,
we write these as Dau(x\a} and Dau(x) respectively.

In [16], Gundy and Silverstein proved a change of variables formula
for Dau((x,y)-,a) similar to (0.1) :

/ ^(5, t)f(u(s, t))\^u(s, t)^ds dt
(0.6) 7

= I ^(^VMA^.s.^-r)^^)^

whenever ^, / are Borel functions on R^1 and R. With ^(s,t) = (t -
^)l-n^^,(:..,)('s^) and / = 1 in (0.6), and the fact that /^(u - a)^ = 0 on
F a ^ x ^ y ) whenever |a| > Nau(x,y), we obtain

^N.,u{x,y)
(0.7) A2,u(x,y)= Dau((x,y);a}da

J - N . , u ( x , y )

and it is for this reason that Dau((x,y)-,a) and Dau(x,y) are called
the density of the area integral and the maximal density. Formula (0.7)
immediately gives an inequality similar to (0.2) and, as in the martingale
case, it follows that ||A^(;r)||p < C p\\D au{x)\\p for all 0 < p < oo. In [14],
Gundy showed that if n = 1 then for 0 < p < oo we also have

(0.8) \\Dau(x)\\p < Cp\\A,u(x)\\p

which provides a harmonic function analogue of (0.3). In Gundy's proof
he shows that Dau(x) < C'aEX'(L*(u)), where Ex represents expectation
with respect to Brownian motion conditioned to exit the upper half-space
at x, Ca is a constant depending on a, and L*(u) is the maximal local time
of the martingale u(Bt), where Bf is Brownian motion in R7^1. Then for
1 <, p < oo the inequality (0.8) follows from this and the Lp equivalence of
the Brownian maximal function and the nontangential maximal function.
The case 0 < p < 1 is obtained from this and what Gundy calls a "good-
enough A" inequality. In [16], Gundy and Silverstein give a proof of (0.8)
for all dimensions using real variable techniques. They adopt the second
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proof of Barlow and Yor of (0.3) to the harmonic function setting and
obtain "good enough A" inequalities for D^u and Nc,u. These lead to L^
inequalities such as (0.8) but are weaker than the results we will obtain; for
example, they are not sufficient to obtain the local results of Brossard [7]
or Corollary 2 and certainly not sufficient to prove Corollary 1. Our first
result is :

THEOREM 1.— Let ^ : R71 —> R be a Lipschitz function with
Lipschitz constant M. Let D = {{x,y) : x € R71,!/ > ^{x)} be the
Lipschitz domain above the graph of$. Suppose u is harmonic in D and
0 < a < 13 < 1/M. There exist constants K\,K^, C\,C^,C^, and C\ all
depending only on a, 0, n, and M, such that if X > 0 and 0 < e < 1, then
(a)
\{x € R71 : N^u{x^(x)) > K^D0u(x^(x)) < e\}\

< Ciexp f-^) \{x € R" : Nau(x^(x)) >\}[

and

(b)
\{x € R71 : Aau(x^(x)) > K^\D^u{x^{x)) < e\}\

< C^exp (-^ \{x € R" : A^u(x^(x)) > \}\.

One reason for proving subgaussian inequalities on Lipschitz domains
such as-(b), is that they immediately imply (using the Lipschitz domains
as stopping times) laws of the iterated logarithm for harmonic functions in
R^1. The following corollary of Theorem l(b) gives two equivalent laws of
the interated logarithm; an analogue of the lower half ofKesten's [19] LIL
for local time and an analogue of the upper half of Kolmogorov's classical
LIL for independent random variables. Of course, for Brownian motion this
is the trivial part of Kesten's Theorem. However, for harmonic functions
even this part is nontrivial. To see how this LIL is related to other LI Us
for harmonic functions, see [1].

COROLLARY 1. — Let 0 < a < ft and suppose u is a harmonic
function in R^1 with the property that there exists a point {xo.yo) € R^1

andanal>asuchthatAQ'u(xo,yQ)<oo.Then ,

(a) liminff1^10^^^^^^ 2 D^u(x^) ^ C > 0 for almost every xy^o \ A^u(x,y) )
with Aau(x^O) =00. ' ;



DISTRIBUTION FUNCTION INEQUALITIES 141

(b) lim sup AgU^^y) ___ < ^-i ^ ̂  ̂  ̂ ^ ̂ ^y ^
°̂ ^D^u(x,y)\og\ogD0u(x,y)

with Aau(x,0) = oo,

witA (7 depending only on a, /3, and n.

Our second theorem is similar to Theorem 1 (a) but with the roles
of Nu and Du reversed. However, we have not been able to obtain this
result for Lipschitz domains. For this theorem it will be necessary to work
with a slightly smoother version of Du. We fix a function ^ which has the
following properties : ̂  > 0 on R^supp^ C 2?(0,a) (here a > 0 is fixed),
Jp^ ^)dx = 1, and ^ is radial. We define ^i(x} = —^ip(x/t) and set

£

Dau(x;a) = 7 t^t(x - s)/^(u(s,t) - a)^dsdt,
(0.9) Jr^(x)

Dau(x) = S}ip{Dau(x'^a) : a € R}.
In practice, the versions (0.9) and (0.5) behave similarly, since given a > 0
and any 7 < a < 7' we can always find a C°° function -0 with ^ = 1 on
B(0,7), supp^ C B(O,Q;), so that Dau(x'^a) defined by (0.9) using this ^
is bounded below by D^u(x-,a) defined using (0.5) and dominated above
by Dyu(x; a) defined using (0.5).

THEOREM 2. — Let u be a harmonic function on R!̂ "1 and let
0 < a < f3 and define Dau(x) using (0.9). Then there exists constants
J<3,C'5,C6, depending only on a^^n and ^ and such that if \ > 0 and
0 < e < 1,
\{x € R71 : Dau(x) >K3\,N^u(x) < e\}\

<C,exp (zc6) \{x e R": Dau(x) > \}\ .

If we replace N^^u) by A^(u) we are able to prove this result in
Lipschitz domains. More precisely we have

THEOREM 3. — Let $ : R71 —> R be a Lipschitz function with
Lipschitz constant M. Let D = {(x,y) : x € R^y > ^(x)} be the
Lipschitz domain above the graph of$. Suppose u is harmonic in D and
0 < a < /? < 1/M. There are constants K^, €7 and Cg, depending only on
o;,/?,n, and M such that if\ > 0 and 0 < e < 1, then

\{x € R71 : Dau(x^(x)) > K^\ Aftu{x^{x)) < e\}\

< Crexp (zcs} \{x e R71 : Dau(x, W) > X}\ .
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The proof of this result is a combination of probabilistic and analytical
methods using the Barlow-Yor result together with estimates on Green
functions and harmonic measure in Lipschitz domains. If D = Wy'1 we
can give a purely analytical proof of this result but with e replaced by 62/3

which is not as sharp. Such a proof is presented in §5.

The following corollary answers a question of Gundy [15], p. 9; it
follows from Theorems 1, 2, and 3 by well known methods (see Burkholder
and Gundy [9]).

COROLLARY 2. — Let u be harmonic in R7^1. Let $ be a non-
decreasing function with ^(0) = 0 and such that for some constant
Go,^(2A) < (7o^(A) for all X > 0. Then

Ci ( ^(Dau(x))dx < ( ^{Aau(x))dx <C2 f <^(Dau(x))dx
JR" JR" Jn"

where C\ and C^ depend only on a,n, and Co-

A word about the proofs. In the case of the area function one has
a free local ^-estimate which comes essentially from Green's Theorem.
The global ^-estimate for the area integral also comes free from Green's
Theorem or the Fourier transform. In the case of the D-functional there are
no L^-estimates, local or global, which are as easy as in the area integral
case. This makes the proofs of the above results much more difficult in
comparison. To obtain a local ^-estimate needed for Theorem 2 we use
the theory of vector valued singular integrals together with the Garsia-
Rodemich-Rumsey lemma and for Theorem 3 we use the Barlow-Yor
result. It is interesting to note that in the martingale case, one does have a
free Z^-estimate which comes from the scaling properties of the local time.

The paper is organized as follows. In §1 we prove two lemmas which
are needed for the proof of Theorem 1 and Corollary 1 in §2. In §3, we prove
Theorem 2. In §4, we prove Theorem 3 and in §5 we present an alternative
analytic approach to Theorem 3 for the upper half space. In §6, we make
some comments as to the sharpness of our results.

Throughout the paper, the notation C, C\, Cs, Ca,(3^,n - • ' will be used
to denote constants depending only on Q;,/3,7 and n and whose value may
not be the same from line to line. For all our results below in Lipschitz
domains the apertures of the cones, a, /?,7, etc., are always assumed to be
smaller than the inverse of the Lipschitz constants of the domains even if
this is not mentioned.
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1. Two Lemmas.

Our first lemma is a P-functional analogue of an estimate for Au
and Nu found in [20], p. 207. Our second lemma is also a D-functional
analogue of a lemma for Au found in [2]. Unfortunately the proofs of these
lemmas are somewhat longer and more technical than their corresponding
results for Au.

LEMMA 1. — Suppose /3 > 7. There exists an absolute constant
C == G(/3,7,n) such that ifu is harmonic on H7^ and if (s,t) C I\(;r),
then t\\^u(s,t)\ < CD^u(x).

In the proof of Theorem 1 and its corollary we will need to compare
Df3u(x^yi} and D^u{x,y^) for ^2 > ^ / i . I f n = l i t i s clear that D^u(x,y^) >
D^u{x,y^}, but for n > 2 this is no longer clear. The next lemma allows
us to make the necessary comparisons.

LEMMA 2. — There exists a constant L depending only on f3 and n
such that if y\ < yo then D^u(x,yo) <^ LD^u(x^y\) for any x e IR".

Proof of Lemma 1. — Fix (s,t) = ZQ e F ^ ( x ) . We may assume that
u(zo) = 0, otherwise we consider the function u — u(zo). We first note that
there exists an 7-0 such that B(zo,4ro) C F ^ ( x ) with ro ~ Ct, where C
depends only on f3 and 7. For i = 1,2,3,4 w^e set Bz •==- B(zo,iro) and set
Mz = sup{|^(z,^/) | : ( z , y ) C Bi}. By the subharmonicity of |Vn| and the
change of variables formula (0.6) we have :

^|V^o)|2 < C f ^(z^y^y^dzdy
J B 2

=C f " / ^(u(z^}-a)+yl-^f " / ^{u{^,y)-a)J'yv~ndzdyda
J-M2 J B^

< CM^Dou(x).
J - M . J B

Thus we have :

(1.1) t\^7u(zo}\ <C^/M^

Using similar reasoning we can conclude that if { z , y ) C B^ then
y\Vu(z,y)\ < C^/M3 ^D^u(x). Since u(zo) = 0, and for ( z , y ) C B^
we have y ~ C ' 2ro, we then have the estimate

(1.2) M-2 < C^
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Now consider B^ and apply Green's theorem to \u(w) — a|, a e IR and
G(W,ZQ) = .—————^j- — ——x^f. (Technically, we must approximate

\u(w) — a\ by smooth functions of u(w) — a, and then take limits. See [15]
for such applications of Green's theorem.) We then obtain :

{ ^\u(w)-a\G(w,zo)dw=c^ { \u - a\da - C\a\.
JB^ ^ JQB^

Therefore, since A|iA(w) — a| = 2A(-u(w) — a)"1", we have :

(1.3) 1 - [ \u\da < C\a\ +C f ^(u(w) - a)~^G(w,zo)dw.
fo JQB^ JB^

We need to analyze the integral on the right hand side of (1.3). For
w e R^1, write w = (w.w7), w C R71, w1 > 0. Then,

/ A('u(w) - a^G^w, ZQ)(IW
J B 4

f C C
< \ A(n(w) -a)+G{w,zo)dw + / ^(u(w) - a)^-^dw

JBi JB^\BI TQ

< f ^(u(w)-a)^G(w,zo)dw+C [ A(^(w) - a)4-^')1-71^
JBI JB4\Bi

<, I A(-a(w) -a)^G(w,zo)dw+CDou(x).
JBi

Combine (1.3) with this last inequality to obtain

(1.4) — / \u\da < C\a\ + / A(^(w) - a)^~G(w,zo)dw + CD^u(x)\U _
r'Q JOB4 ' ' ' JB

Choosing a == M^ yields :

^ JQB^ J B i

(1.5) -^ f \u\da < C(M2 + D0u{x)).
^ J B ^

However, elementary estimates on the Poisson kernel for B^ show that for
z € -BS, \u{z)\ < Ur Jao MAT. Therefore, using this and (1.5) we conclude

(1.6) Ms <C(M2+D0u(x)).

If we substitute (1.6) into (1.2) we obtain

M2 ^ C^M^ + D^x) ^Dou(x)

so that M2 < CD^x). Then by (1.1), t\\/u(zo)\ < CD^u{x), which
completes the proof of Lemma 1.
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Proof of Lemma 2. — Without loss of generality, we may assume
that z/i = 0 and x = 0. For convenience we write r^(0,^/o) = r(yo). We
note that there exists a constant C^ depending only on f3 such that the
ball B((0,2/o),2C^/o) C F^(0,0). Set 5, = B((0,i/o),zC^/o) for z = 1,2. If
(x, t) C r(z/o)Bi, then t - yo w t and thus, if a € R,

/ A (^(5, <) - a)^ (t - yo^ds dt
... ^ •^(yoABi

< C / A (2A(5, ^) - a)4" t^ds dt < CDffu(0).
• /^(^)\Bl -

Let G(w,z) be the Green's function for B^. Let w = (s,t) € F^/o) n Bi.
Then we have the estimates :

(t - z/o)1-71 ̂  |w- (O.^/o)!1-71 ̂  G(w, (0,2/o)).

Therefore, using this and Green's theorem, we have :

/ A {u(s, t)- a)4- (t - yo^ds dt
Jr(yo)DBi

(L8) < C ( A (ZA(W) - ̂ + G (w, (0, yo)) ^w
JB-2

= -n I ((^W - ̂  - (^(0, yo) - a)^ da(w).
1/0 JQB-i v /

However, B^ C 1^(0,0) and so by Lemma 1, t\Vu(s,t)\ < CD^O) for all
(5, t) e ^2. Then '(l.S) implies : -

(L9) / ^(u(s,t)-a)+(t-yQ)l-ndsdt<CDgu(0).
Jr(y^nBi ~ p' /

The lemma follows from (1.7) and (1.9).

2. The proof of Theorem 1 and Corollary 1.

With lemmas 1 and 2 proved, the proof of Theorem 1 follows the same
strategy used in [2} for the corresponding result for N^u and A^u. We first
construct a "sawtooth" region over {D^x, f>(x)) < e\} and then estimate
the nontangential maximal function or the area function on the boundary
of this region. Since the proofs of part (a) and part (b) are essentially the
same, we will only do part (b). The following proposition will allow us to
make the necessary estimates on the boundary of this sawtooth region.
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PROPOSITION 1. Suppose 0 : R" —> H is a Lipschitz function
and set W = { (x , t ) : x C H " ; t > ^(x)}. Suppose that p > a >
{},Dpu{x^)(x)) <, 1 for every x € IR", and that there exists a z^ C R"
for which A^u(zo,^(z^) < oo. Then ||A2^l(.^•,V;(.T))||^A/o < C where C is
a constant which depends on p.a^n and the Lipschitz constant of^.

Proof. Fix a cube Q C R", let Q' = {(x,^(x)) : x C Q} denote
the graph of Q^ and let .TO denote the center of Q. We now borrow a
construction from [2] page 646. Pick 7' and 7 so that p > 7' > 7 > a and
set W = (J F p ( x ^ ( x ) ) . Then trivially If C W. There exists an R > 0

.r€Q
with the following properties :

(i) Set P* = (.To,'0(:To) + W(Q)), where ^(^) denotes the^side length
of Q. Then for every P C (7, {^P + (1 - t ) P ' : { ) < t < l } CW.

(ii) For every P E Q' the cone r^(P) with aperture 7, vertical axis PP*,
vertex at P, and height /// = |P — P*| is completely contained in W.

(iii) For every P = (^(.T)) 6 Q', the cone I^(P) with vertex at P,
vertical axis {(x, ̂ (x) -h .s) : s > 0}, and height /// == ^(^o) + RC(Q) - ̂ (x)
is completely contained in the cone T^(P) given by ii).

We assume that R is the smallest such constant for which i), ii) and
iii) holds for all cubes Q C R^. Then the constant R depends only on p
and a and the Lipschitz constant of </;.

We now set Q = |j r^/(P) H { ( x , y ) : y < ^(xo) + 2R£{Q)}.
reQ'

The domain fl is Lipschitz and starlike with respect to the point P*.
Furthermore, Q has the property that there exists an 60 > 0 (eo depends
only on p and the Lipschitz constant of ^) such that for every point P € 9fl
there exists an e with 7 > e > Co so that the cone F^(P) with vertex at P,
height |P — P*|, aperture e and vertical axis PP* is completely contained
in n. In fact, for P € Q' C <9n, we may take F^(P) to be the cone given
by ii) above.

For P C Q' set Fi(P) = I^(P) where the latter is the cone given by
iii) above and set r2(P) = r,,(P)\ri(P). For j = 1,2, and x C Q, we set

i f YA^(rc,^(.r))= / \\7u{s,t)\2(t-^(x))}~ndsdt}
\ J r , { j : ^ { . r } ) j

so that A^u(x,^(x)) == A'fn(j;,^(.r)) + AJiA(j;,^(.r)). We need estimates
for A\u and A^u. We first estimate A^u.
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LEMMA . — Under the hypothesis of the proposition we have

\A^x^(x))-Ai(xo^(xo)\<C

for every x e Q. Here C is a constant which depends only on a, p , and the
Lipschitz constant of^.

The proof of this lemma is essentially the same as Lemma 6 of [2]. All
that is necessary is an estimate on (t-^-^(s))\^u(s^t-^^(s))\^s G R" , ^ > 0
and this is provided by Lemma 1. Note that this estimate and the fact
that A^u(zo^(zo)) < oo for some ZQ implies that A^u{x^(x)) < oo for
all x € Q. We now estimate A\u.

LEMMA 4. — Under the hypothesis of the theorem,

— ( Aiu(x^(x))dx<C
\V\ JQ

where C is a constant which depends only on p and the Lipschitz constant
of^.

Proof. — We may assume that u{P*) = 0 since both Du and
An remain unchanged if we add a constant to u. Recall that for every
P € ofl we have a cone r^(P) with vertical axis PP* and such that for
P e Q',ri(P) C ̂ (P) = r?(P). For P € <9n we set

Du{P'^a)= { .\(u(z,y)-a)+d((z,y),P)l-ndzdy^
J V ^ P }

Du(P) = sup{Du(P, a) : a (E R},

( ( YAu(P)= / \^u(z^)\2d((z^)^P)l-ndzdy,
\ J r " ( P ) )

and
Nu(P) = sup{[u(z^y)\: ( z ^ y ) e F^P)}.

Since Dpu(x,^(x)) < 1 for all x € R" then a slight variation of the proof
of Lemma 2 shows that Du(P) < C for all P C <9Q. Then by (0.7),
A^(P) < CNu(P) for all P e <9^. Therefore,

-7—— / A2u(P)da(P) < C——— ( Nu(P)da(P)
^{Q^) h^i ^(9^) Jm

^( 1<c(~(^ I Nu^d^P)}2
\a(9fl) J^ )

^(-T^/ Au{P)2da{P}V
\(T{d\l) Jofl )
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where the last inequality follows from Dahlberg [11]. The above inequality,
combined with the fact that ri(P) C r^(P) for P C Q' and the fact that
^ is Lipschitz allow us to conclude the Lemma.

We can now complete the proof of the proposition; Set CLQ =
Aj(.ro,^o)). Then

^ j \A^u(x^(x)) - aQ\dx

< ml / ^u(x^(x))dx+-.- / \A^u(x^{x))-aQ\dxw\ JQ iyi JQ
<c

by Lemmas 3 and 4. The proposition follows from this.

We are now ready to complete the proof of theorem Ib). Let E = {x :
Df3u{x,^(x)) < e\} and set T] = °—— and W = I ) r^x^(x)). Then

x^E
TV is a subdomain of D and 9W is the graph of a Lipschitz function, call
it ^(x). Thus, for x € E^(x) = ^(x). Now set p = —^—. By a slight

o
variation of the proof of Lemma 2 it follows that Dpu(x^(x)) < Le\ for
every x (E R71. Then by the proposition, ||A^iA(:r,^(:z'))|[5MO <: C(Le\)2.
(Note we may assume Aau(zo,^(zo)) < oo for some ZQ, for if not, then
the result is trivial). By Lemma 4 of [2], we then have the distributional
inequality,

{{x^R"'.A2,u(x^(x))>2X}\

< Cexp (-^(LeX)2} \{z € R71 : A^u{x^(x)) > A}|
\-cA /

for every A > 0. Here (7,c are constants which depend only on a,/3,n.
Substitute A = A2 into this inequality to obtain :

\{x € R71 : Aau(x^(x)) > V2\}\

< Cexp (^\ \{x e R71 : Aau(x^(x)) > A}|

for all A > 0. It is shown in [2], Lemma 11 that Aau(x,^(x)) <
L\Aau(x^(x)) where L\ is a constant depending only on a and n. Now
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set K = \/2Li. Then for every A > 0,

|{a; 6 R" :A^u(x, $(a-)) > K\, Dffu(x, $(a;)) < e\}
=\{x € E : Aau(a-, $(a;)) > jQ}|
=|{a; € £ : A<,u(a;,^(a;)) > KX}\

^ Cexp (—} \{x € R" : A^u(x^(x)) > -^-A}]

< Cexp (^ \{x € R" : A^u(x^(x)) > ———>}\

= Cexp (^\ \{x € R" : Aau(x,^(x)) > A}|

which completes the proof of Theorem Ib).

We now prove Corollary 1. The proof of a) is similar to the proof
of Theorem 2 in [3], however, there are some added complications in this
setting. Part b) follows from a) by noting that if a) holds at a point x, then

limsup Aau{x^ < 1.
v^° ^D^u(x,y)log\ogAaU(x,y} c

But if also Ac,u(x,y) —> oo as y —> 0, then this implies that

limsupf10^^^^!
y-^o \\ogDou(x,y)J

and thus, that

limsup (loglogA^^/i)<l
y-^o \\og\ogD(3u(x,y)) -

and b) follows.

Proof of Corollary la,).— Fix M; it suffices to consider those x
with \x\ < M. We first note that the hypothesis of the corollary imply
that Aau(x,y) < oo for all a- C R71 and y > 0. Then we may assume
that Df3u{x^,y^) < oo for some (.1*1,2/1) with |:ri| < M, otherwise the
result is trivial. Then for k = 1,2,... and |.r| < M, we may define

/ ^k \ ^
pk(x) = m{{y : D^u(x,y) < ——- }, where Co is a constant to beVologfc /

chosen later. Let 7 = 0—' and set Wk = |j r^(x,pk(x)). Then
{x:\x\<M}}

Wk is a Lipschitz domain, say QWk is the graph of rjk(x). Note that for
every x with \x\ < M we have rfk(x) < pk(x). Then we have :
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a) Set 7' = —^— so that a < 7' < 7 < /?. Then D^u(x,rjk(x)) <
/ 2^ \ ?

^ —i—. for all x e R71.\ Co log A; /

Proof : Let e > 0. Then (x,rfk(x) + e) e Wk so there exists ^ with
\x\ < M such that (x^k(x) +e) e r^^^(^)) C W,pfc(£)). Then
by a slight variation of Lemma 2, we conclude that Dyu(x,rjk(x)

( 2^ V
+ ^) < ̂  —,—, j . Fatou's lemma then implies a).

b) IfxE R71, then rf^x) < rfk(x).

Proof : Let (x,t) € W^ Then (5,^) e r^p^)) for some £ with
1^1 < M. But since pk+i(x) < pk(x) then (5,^) e I\(^+i(£)),
hence (5,^) e WA;+I. Thus, ̂  C TV^i and b) follows.

c) If \x\ < M and y < r)k(x) then Dffu(x,y) > (-2——} ?

VcologA;/

Proof : This follows from the fact that rfk(x) < pk(x) and the
definition of pk(x).

_S'mce Wk was defined using cones of aperture 7 < /?, then there exists
an M independent of k such that if \x\ > M then (x,r}k(x)) e I\// (3:1,2/1)

where 7" = and (a;i,?/i) is the point at which we have assumed

^(•^i^i) < co. Consider an x with \x\ > M. Then since (x,rik(x)) e
^'(^i^i) c r^i.^/i), Lemma 1 implies that (t - yi)\\7u{s,t - y^)\ <
CDftu(x^y^) for all (s,t) C r^((x,rfk(x)). Also, the hypothesis of the

corollary implies that if we take a" = a—a-^ then A^.u(x^y^ < oo.
We may assume a ' 1 < 7. Then we can conclude that

Aau(x,rjk(x)) <CA^u(x^y^+CD0u(x^y^)=C^

by splitting the integral defining Aa-u(x,rfk(x)) into an integral over a top
part of ra(x,rjk(x)) and estimating this by A^u(x^y^) and an integral
over the remainder of Ta(x,r]k(x)) and estimating this by the gradient
estimate above. (The proof is similar to that of Lemma 2 and so we omit it).
Hence, if we take A;o large enough, \{x € R71 : Aau(x,r]k(x)) > v^}] < C
for every k > ko, where C is a finite constant. Let k > fco, and apply


