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FINITE SUMS AND PRODUCTS OF COMMUTATORS
IN INDUCTIVE LIMIT C*-ALGEBRAS

by Klaus THOMSEN

0. Introduction.

The purpose of this paper is to extend some methods and results,
which were developed by Thierry Fack [9] and de la Harpe and Skandalis
[13], [14], from the framework of A-F-algebras to a larger class of induc-
tive limit C*-algebras; a class which contains the irrational rotation (7*-
algebras, for example. The building blocks for the inductive limits we want
to handle are of the form

C7(Xi) ̂  Mn, C G(X2) 0 Mn, C • • • © C(Xm) ̂  M^ ,

where M/g denotes the (7*-algebra of complex kby k matrices and the X^'s
are compact connected Hausdorff spaces. If there is a uniform bound on
the covering dimension, dim(X), of the compact spaces involved (see for
example [7] for the definition of the covering dimension), we are able to
extend the result [9], Theorem 3.1, of Fack; in fact even slightly beyond
the case where the inductive limit is simple. The right condition for the
proof to work is that the inductive limit (7*-algebra A should satisfy that
Ko(A) has large denominators; i.e. for any a > 0 in KQ^A) and any n C N
there should be a b € Ko(A) and m € N such that nb < a < mb, see
[15], Definition 2.2. This condition is always satisfied when A is simple
and not finite dimensional (as we prove in Remark 1.9 below), but it
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occurs more generally, even among AF-algebras; for example it always
holds when A = B (g) C, where B is any AF-algebra and C is a simple
infinite dimensional AF-algebra.

In order to extend the results of de la Harpe and Skandalis we have to
restrict the doss of compact spaces further. Specifically, we need to assume
that the involved spaces X have dim(X) ^ 2 and trivial second integral
(Cech-)cohomology; i.e. that ff^X.Z) = 0. With these restrictions we are
able to generalize first [13], Propositions 6.1 and 6.7, which characterize
the kernel of the universal de la Harpe-Skandalis determinant, and then
[14], Theoreme 8.7 and Theoreme 9.1, proving the essential simplicity of
the commutator subgroup in the group of invertibles and in the group of
unitaries. In order to summarize our main results we have to establish
the following notation. When A is a unital G*-algebra, we denote the
group of invertible elements by G1(A), the unitary group by U(A) and their
connected component of the identity by Gl(A)o and £/(A)o, respectively.
The universal de la Harpe-Skandalis determinant, introduced in [12], will
be denoted by Ay and the commutator subgroup of any group G will be
denoted by DG.

MAIN RESULTS. — Let A = lim (A^, ̂ k) be a unital inductive limit
k—>oo

of C* -algebras, where each A, is of the form A, = C(X^) 0 M^i) C
C(Xi2) (8) M^2) C • • • C C(Xin,) <S> A^(^), each X,k being a compact
connected Hausdorff space.

i) Assume there is some d e N U {0} such that dim(X^) < d for
all i ^ 1, k e { l ,2 , . . . ,n j and that Ko(A) has large denominators. If
a = a* C A and 6{o) = 0 for all fractal states 6 on A, then there are d+7

d+7
elements Xi, i == 1,2, . . . , d+7, in A such that a = ^ [^, x^}.

1=1
ii) Assume dim(X^) ^ 2 and H2(Xik,l) = 0 for all i > 1, k e

{1 ,2 , . . . . n,}, and that Ko{A) has large denominators. Then D Gl(A)o =
[x e Gl(A)o : Ar(a-) = 0} and DU(A)o = {u e U{A)o : Ar(^) = 0}.

iii) Assume dim(X,fc) < 2 and H2^,!) = 0 for all i > 1,
k C { 1 , 2 , . . . , nj, and that A is simple. If G is a subgroup of U{A) which
is normalized by DU(Ao) and is not contained in the center ofU(A), then
DU(A) = DU(A)o CG. Q

We also prove the version of the last mentioned result, iii), for the
group of invertibles in place of the unitaries. The method of proof for
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these results are the same as the original ones for AF-algebras and the
main contribution here consists in obtaining the appropriate substitutes for
trivial homogeneous C*-algebras of facts about matrix algebras which are
crucial for the proofs to carry over. Consequently, we refrain from repeating
the arguments of de la Harpe and Skandalis and limit part of the exposition
to indications of how their proof should be rearranged in order to work in
the more general setting.

The authors motivation for pursuing these generalizations of results of
Fack, de la Harpe and Skandalis is twofold. One purpose is to demonstrate
that our present insight into the structure of inductive limits of homo-
geneous C7*-algebras is now detailed enough to allow some very technical
arguments from the theory of AF-algebras to extend to a larger class. Un-
doubtedly this is possible also with other methods originally developed to
handle AF-algebras. And of course it is important to know that the conclu-
sions about the structure in simple AF-algebras obtained by Fack, de la
Harpe and Skandalis extend to C*-algebras such as the irrational rotation
G*-algebras, and in fact even beyond the class of C7*-algebras which are
topologically spanned by their projections. We remind the reader that a
series of (7*-algebras which were originally introduced by other means have
been shown to be inductive limits of finite direct sums of circle algebras
(7(T) 0 Mn. This is the case of the Bunce-Deddens algebras [10], the cros-
sed product (7*-algebras arising from a minimal homeomorphism of the
Cantor set [17], [5], Remark 4.3, and quite recently also the irrational rota-
tion G*-algebras [8]. Thus all these C*-algebras are covered by the above
theorem.
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1. The common kernel of the tracial states.

LEMMA 1.1 (cf. [9], Lemma 3.2). — Let A be unital C* -algebra and
n

ei, 6 2 , . . . , en orthogonal projections in A with ^ e^ = 1. If a = a* G A,
1=1
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then there is an element u € A such that a- ̂  e,a^ = [u, n*].
1=1

Proof. — Let A^, % = 1,2,... ,n, be pairwise distinct real numbers.
ForiJ = l ,2 , . . . ,nset /3(zj ) = (4(A,-A,))-1 if i ̂  j and f3(ij) = 0 if
z = j. Then {Xj-\j){f3{ij)-(3(j,i)) = 1/2 for all z ^ j. Set

n n
u =^xie^- ̂  /^.^(e^-e^-ae,) . n

1=1 ij=i

LEMMA 1.2 (cf. [9], Lemma 3.3). — Let A be a C*-algebra and
61,62^3,... ,en orthogonal projections in A such that ei -< e^ -< 63 ^
• • • ^ e n . I f a = a * e A , there is an element u e A and an element y e A,
such that a = [n, ̂ *]+^/ and e^e, = 0, % = 1 ,2 , . . . , n-1.

Proof. — For each i = 1, 2 , . . . , n-1, choose a partial isometry ̂  e A
such that ̂ * = e, and v,*^ < e,+i. Set .ri = eiaei and set

Xi = ̂ ae,4-^*_ia^_i+^*_i^*_2a^-2^-i+ • • •

+^*_1<_2 • • • ̂ a^l^2 • • • Vi-2Vi-l ,

n-1 y ____ .
i = 2,...,n-l. Let u = ^ (vw)+^+^*\/(^)^), where (a-,)+ and

1=1 v /
(xi)- denote the positive and negative part of ^, respectively. Then
y = a-[u, u*} will have the right properties, n

In the following Tr will denote the usual trace on Mn obtained by
adding the diagonal entries.

PROPOSITION 1.3. — Let X be a compact Hausdorff space and
n e N. If a = a* C C(X) (g) M^ and Tr{a(x)) = 0 for all x C X, we
have elements u, v e C(X) (g) Mn such that a = [u, u*] +[v, v*].

Proof. — Let pi, p ^ , . . . , pn be orthogonal non-zero projections in Mn
with sum 1 and set e, = 1 (g) ?„ i = 1,2, . . . ,n. By Lemma 1.2 there
are elements ̂  e C(X) (g) M^ such that a = [v,v^+y and e^e, = 0,
z = 1,2,3, . . . . n-1. Applying Lemma 1.1 to y , we find ZA e C(X) 0 M^
such that y = [u, u^e^Cn. Thus a = [u, u*]+[^ ^*]+en2/en. In particular,
^(enye^x)) = 0 for all x e X which implies that enyen =0. D

While Proposition 1.3 is a quite satisfying result as far as trivial
homogeneous C*-algebras are concerned, it is of little use when dealing
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with inductive limits of homogeneous G*-algebras because the norms of
u and v increase with the size of the matrix algebra. However, it follows
rather painlessly from Proposition 1.3 that, when A is the inductive limit
of a sequence of finite direct sums of trivial homogeneous (7*-algebras and
a == a* G A is a selfadjoint element such that uj(a) = 0 for all bounded traces
LJ on A, then a can be approximated arbitrarily closely by two selfadjoint
commutators. But to obtain qualitatively better results for such inductive
limits we have to control the size of the elements in the commutators.

LEMMA 1.4. — Let X be a compact Hausdorff space of covering
dimension < d, d € Nu{0}. Let a = a* € C(X)^Mn such that Tr(a{x)) = 0
for all x € X and let e > 0. Let p e C(X) (g) Mn be a projection such that
pap = a.

Then there are elements v^,v^..., ̂ d+i C pC{X) (g) Mnp such that
lhj-11 < v^Hall1/2 for all j and

d+l

F-]L [^^l < e '
J=l

Proof. — By [9], Lemma 3.5, we can find for each re e X an open
neighbourhood V of x and an element c € pC(X) (g) Mnp such that
||c|| ^ \/2||a||1/2 and ||aQ/)-[cQ/),cQ/)*]|| < e for all y e V. Thus we get
by compactness a finite open cover {V, : i e 1} of X and elements c, e
pC(X) 0M,p such that ||c,|| < v/2||a||1/2 and ||aQ/)-[c,Q/),c^)*]|| < ^
for all y eVi.ie I . By Ostrand's theorem, cf. [7], Theorem 3.2.4, we may
suppose that

I = A U h U h U - • U Jd+i

and that V, n ^ = 0 for z , j e h, i ^ j, k = l ,2 , . . . ,d+l . Let
{fi '' i ^ 1} be a partition of unity subordinate to [Vi : i e I} . Then
set Vj(x) = ^ ^/fi(x)a(x), x e X, j = 1 ,2 , . . . , d+1. D

i^I,

LEMMA 1.5. — Let A be a unital G* -algebra. Letp e A be a projec-
tion and k eN an integer such that diag(l, 0 ,0 , . . . . 0) ^ diag(p,p,p,... ,p)
in M/c(A). Then every trace state ofpAp extends to a bounded trace on A.

Proof. — By assumption there are elements Vzj e A, ij =
1,2, . . . , A; such that E^j^*j = 1 and E<^j = ̂  It follows that

i^ ' ^j
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if (f> is a trace state on pAp, and (j) is the lower semi-continuous trace on A
extending ^, cf. [16], 5.2.7, then <^(1) = A;; i.e. 0 is bounded. D

Now we assume that A is the inductive limit C*-algebra, A =
lim (Afc,^)? with each Ai a finite direct sum Ai = C(X^) 0 M^J) (B

/C—^00

^?2) 0 ^(1,2) © • • • © (7(X^J 0 ^(^nz) °f trivial homogeneous (7*-
algebras. Assume that d € {0,1,2, . . .} and that each Xik is a compact
connected Hausdorff space of (covering dimension) dim Xik < d for all i.
Furthermore, we assume that A is unital, and can therefore assume that
each connecting *-homomorphism (j)k is unital. In the following we need
an additional assumption on the sequence (A^, <^) which ensures that the
methods from Thierry Fack's proof of [9], Theorem 3.1, can be adopted in
our setting. This condition is described in the following lemma and has the
nice property that it can be described both as a condition on the sequence
(A^,0fc), so that it is easy to realize in examples, or alternatively as a
condition on Ao(A), so that it can be checked in some situations where
the sequence building up A is not completely specified. We adopt now the
notation from [11]. In particular e^ is the unit of C(X^) 0 M^n C Ai
and fii : Ai —> A the canonical *-homomorphism. We will assume that
^ji^u) 7^ 0 for j > z, £ = 1 ,2 , . . . , r^. This is no restriction because, if
it was not the case, we could simply omit the direct summands of Ai for
which [ii(eis!\ =0.

LEMMA 1.6. — In the above setting, the following conditions are
equivalent.

a) For all i G N and all minimal non-zero central projections e^ 6 Ai,
we have

lim (min{rank(^(e^)/(; : k = 1,2, . . . ,n., rank^)^(e^)/,; 7^ 0}) = oo .
J->00

b) Ko(A) has large denominators in the sense ofNistor [15], Definition
2.2.

Proof. — a) ===^ b) : let p G A be a projection and let n € N. It
suffices to show that there is a projection q G A such that n[q] <^ [p] < m[q}
in Ko(A) for some m C N. Thus we can assume that p = /^(e) for some
projection e C A^. Write e = (ei, 6 2 , . . . , e^J, where e, G C{Xki) ̂ A^(^).

nk
Then [p\ = ̂  [/^(e-i)], so we can assume that e = en G C(X^n} ̂  M^ £}•

i=l
Choose j>_ k such that

min{rank(^/c(e), : i = 1,2 , . . . .n^, (/)jk{e)i -^ 0} > n+ d / 2 .
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For each i e {1,2,3, . . . ,nJ with the property that (f)jk{e)i ^ 0,
let qi e C'(X^) (g) M((^) be a projection of rank 1. Then n[<^] <
[0jfc(e)z] ^ (t(j,z)+d/2)[^] in Ko{Aj) by [II], Theorem 2.5, (c). So if
we set q = ^^j(^) (where we sum over z with (f)jk(e)i -^ 0) and

i
m = max{t(j,z)+ d/2 : <^(e)z ^ 0}, we have n[g] ^ [p] < m[g] as de-
sired.

b) => a) : it follows from [II], Lemma 2.4, that

min{rank<^(e^)fc : k = 1,2, . . . , n^ rank0^(e^)fc 7^ 0}

increases with j. Let n C N. Since KQ^A) has large denominators, there is a
j > i and a projection p e Aj such that n[p] < [^-z(e^)] < m\p} in ^o(A^)
for some m e N. By taking traces one finds that

min{rank^(e^)fc : k = 1,2,... ,7^, rank^(e^)fc ^ 0} > n . D

So now we assume that the two equivalent conditions of Lemma 1.6
are also satisfied. The next lemma generalizes [9], Lemma 3.6.

LEMMA 1.7. — In the above setting, there are sequences, {pn}, {<7n}
and {rn}, of projections in A such that

(i) Pi+^i+y"! = 1,

(ii) Pn ^ Qn ^ rn, {n > 1)

(iii) the Tn ^s are mutually orthogonal,

(iv) rn-l = Pn+Qn (^ > 2).

Proof. — Prom condition a) of Lemma 1.6 and the assumption that
the connecting *-homomorphisms are unital, it follows that lim min{t(fc,z):

k—^oo
i = 1,2 , . . . , rik} = oo. As soon as mm{t(k, i) : i = 1 ,2 , . . . , n^} > 5, there
are orthogonal projections p^ q[, r[ G Ak such that p[ -^ q[ -^ r[ in
Afc, 2rankr^ < ranker for all i = l , 2 , . . . , n f c , and p'l+g'i+r'i = 1. Set
Pi = /^(P'l), Qi = ̂ k(q[) and ri = ^k{r[). Now assume that p^ ^ and r,
have been constructed for i < n—1 and that ri = /^(^O for some k and
some mutually orthogonal projections r\ € Ak with 2^rank(r^• < ranker
for all j = 1 ,2, . . . , rik, i = 1 ,2, . . . , n-1. Since 2n-l rank«_i), < e^ for
all z = l , 2 , . . . , n f c , it follows from condition a) of Lemma 1.6 and [II],
Lemma 2.4, that

min{ rank e^^"1 rank ̂ fc^n-i)^ : z = 1,2,. . . ,n^-}
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becomes arbitrarily large with j. Choose j so large that the interval

]2n- lrank^(^_l),+2n^ ld/2,ranke^[

contains an element from N2n for all i = l ,2 , . . . , n^ . There is then a
projection / € Aj such that 2nrank/^ C^"1 rank^^r^i)^71-1^,
ranker for all i = l ,2 , . . . , r^ . To simplify notation, set a^ = (f>jk(^)^
£ = l , 2 , . . . , n — l . It follows from [II], Lemma 2.4, and the assumption
that the inequalities hold "at level k^\ that

2^rank(a^)i < ranker
n-l

for all % = 1,2,. . . ,r^-, ^ = 1,2,. . . ,n—l. Thus ^ rank (a^+ rank /^ <
^=1

ranker for all z. We can therefore assume, by increasing j further and
employing condition a) of Lemma 1.6 and [II], Lemma 2.4, in the same

n-l
way as above, that ^ rank(a^+rank/^+ d / 2 < ranker. Then

^=1
n-l

rank /,+ d/2 < rank fl-N^a^)
v H / i

for all % = l , 2 , . . . , n ^ . By [II], Theorem 2.5, there is then a projection
n-l

r^ < 1— ^ a^ in Aj equivalent to /. Note that 2rank(r^)^ = 2 rank/^ >
^=1

rank(^/i;(r^_i)^+ d / 2 for all %. By increasing j even further we can assume
that there is an even number ^ in each of the intersections

] rank((^«_i)),+ d/2, 2rank(^«_i)),-d[F|

] rank(^«_i)),+ d/2, 2rank«),-d[ ,

i == 1, 2 , . . . , rij; . Let e be a projection in Aj with rank e^ = 1/2 ^ for all i.
Then e ^ ^-fc«-i) m Aj by [II], Theorem 2.5. Let ^ < ^;c«-i) be a
projection equivalent to e in Aj. Set ^ = ^j(q'n) and p^ = /^(r^_i)—g^.
Since 2rank(g^)^ == 2 ranker >_ rank0^/(;(r^_i)^+ ^/2 for all z, we see that
rank (0^«_i)-^)z+ ^/2 ^ rank(^), for all i. Thus ̂ «-i)-9n ^ Qn
in Aj, again by [II], Theorem 2.5. It follows thatp^ ^ qn in A. Furthermore,
since ranker < rank(r^)i—d/2 for all %, we have that q^ ~ e ^ r^ in Aj. Set

n
^ = ̂ -«)- Thenpn ^ Qn ^ rn, rn-i = ̂ «-i) = Pn+9n and ̂  r, < 1.

1=1
Since also 271 rank(r^)^ < e^ for all z = 1 ,2 , . . . , n^ it follows that we can
construct the desired sequences by induction. D

THEOREM 1.8. — Let A be the inductive limit C*-algebra of a
sequence of finite direct sums of trivial homogeneous G* -algebras, each
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of which has a primitive ideal spectrum which is a compact connected
Hausdorff space of covering dimension < d. Assume that A is unital and
that KQ(A) has large denominators.

If a = a* € A and 0{o) = 0 for all tracial states 6 on A, then there
d+7

are d+7 elements Xi, i = 1 ,2 , . . . , d+7, in A such that a = ̂  [^, ̂ ].
^=1

Proof. — The proof is a repetition of Thierry Fack's proof of [9],
Theorem 3.1, with 2-3 minor modifications. Since it does not consume
more paper we give the complete proof here rather that just indicate
the necessary changes. We use the notation established above and as in
[9] we denote by Bo the set of selfadjoint elements in the C*-algebra
B that are annihilated by all fractal states of B. The proof starts by
choosing sequences of projections {pn}, {<2n}/{^n} meeting the conditions
of Lemma 1.7. We can assume that ||a|| < 1. By [9], Lemma 3.4, there are
elements u^v e A such that a = [n,n*]+[v,v*]+ai, where ai € r\Ar\
and ||ai|| <_ 3. Clearly, ai e Ao, so a\ C (riAri)o by Lemma 1.5.
We will construct by induction sequences of elements u(i,n) C r^Ar^,
i = 1 ,2,3, . . . , d+1, an = (r^Ar^)o, Vn.Wn € (r^+rn+i)A(7n+7n+i),

d+l
such that an = Z; [^(^^),n(z,n)*]+[^,^]+[wn,w^]+an+i, ||a^|| ^ 3/n,

2=1
| |n(%,n)|| ^ 2v/37n, i = l ,2 , . . . ,d+l , \\Vn\\ ^ 2-^, |K|| ^ 2-n, n e N.
Suppose (a i , a2 , . . . , an) , (n (z , l ) ,n (^ ,2 ) , . . . ,u (z ,n - l ) ) , z = l ,2 , . . . ,d+l ,
(^i, ^2? • • • 5 ̂ n-i) and (wi, W 2 , . . . , Wn-i) have been constructed. Note that
there is a unitary c € A and a projection r e Ak for some k such that
cr^c* == /^;(r). Set 6 = ca^c*. Then b C (^fc(r)A^(^))o and ^MA/^M
is the inductive limit G*-algebra of the sequence

rAfcr -^ ^(r)Afc+i^(r) ̂  ^+2^(r)A,+2^+2,fc(r) (^ .. . .
Let 6 > 0 be so small that 13 V26 < 2-n. Since, by [3], there is a
sequence {cj C ^(?-)A/^(r) such that b -==- ^[c^,c^], we can find j ^ k

i
and y € (0^(r)A^fc(r))o such that \\y\\ < 2\\dn\\ and ||^(^/)-&| < 6.
By Lemma 1.4 we can find «i, 5 2 , . . . , Sd^i e (f)jk{r)Aj(t)jk(r) such that
I I ^ H < \^y\\ for all z and

1 1 d+l

||?/-E^'<] ^^
1=1

d+1
Set n(z,n)=c*^(s,)c and 2;=^- ̂  ['a(z,n),n(z,n)*]. Then ^e(r^Ar^)o

1=1
and H ^ l l < 26. By [9], Lemma 3.4, there are elements Vn^Wn € (rn+
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rn-(-i)A(rn-Hn+i) such that \\Vn\\ < 3-/FJ, \\Wn\\ < ^V^FH" and 0^+1 =
z-[vn,v^]-[wn,w^] € Tn+iArn+i, ||an+i|| < 3||^||. Since (rnArn)o C
((^n+7n+i)A(7^-K^+i))o, we see that a^+i € ((7n+rn-t-i)A(rn+7n+i))o.
But the conditions of Lemma 1.7 implies that we can use Lemma 1.5 to
conclude that each fractal state ofryi-nAr^+i extends to a positive bounded
trace on (7n+7n+i)A(7n-h7n-n). Thus On+i e (7n+iArn+i)o. By the choice
of 6 > 0, ||u(^n)[[ < 2^/3/n, i = 1,2,. . . ,cM-l, ||an+i|| < 3/(n+l)
and H ^ n l l , \\Wn\\ <: 2-n. Thus we can construct the desired sequences by

00

induction. Set x\ = u, x^ = v, xi = ^ u(z—2,n), z = 3,4, . . . , d4-3,
n=l

^d+4 = E ^ ^d+5 = E ^ ^d+6 = E w^ and ^+7 = E w^ • D

% even z odd i even t odd

Remark 1.9. — If A is an inductive limit C*-algebra of the type
considered in this section and if A is simple then Ko{A) has large denomi-
nators unless A is finite dimensional. Since this is an important point for
potential applications of our results, we include a proof here. On the other
hand we shall not need the fact in the following and since all arguments
are fairly standard we only sketch them.

Assume first that there is no N € N such that HI = 1 for all
i >_ N. By compressing the given sequence of trivial homogeneous (7*-
algebras we can then assume that ni > 2 for all i. For fixed i € N and
^ € { 1 , 2 , . . . , rii}, the projection /^(e^) is non-zero in A because we have
deleted redundant summands of A^. Since A is algebraically simple there
is a finite set of elements xjc^ Vk m A such that ^Xk^i(e^)yk = 1. By a

k
standard approximation argument this gives us j > i such that the ideal
in Aj generated by <^(e^) is all of Aj. Thus rank (^(e^)^ 7^ 0 for all
k e {1 ,2 , . . . ,rij}. This shows that we can compress the sequence even
further and obtain that rank <^i+i(e^)fc 7^ 0 for all i G N, £ 6 {1 ,2 , . . . , n^},
k € {1 ,2 , . . . ,?7^4-i}. Since we still have ni > 2 for all z, it follows
that min{rank<^(e^)fc : k = l , 2 , . . . , n f c } > 2J-^-1 for all j > z,
i e { 1 , 2 , . . . , 72^} in the compressed sequence. Hence JCo(A) has large
denominators by Lemma 1.6. In the remaining case we can assume that
rii = 1 for all i. By Lemma 1.6 all we have to show is that t(z, 1) tends
to infinity when i does. Assume not. Then A is the inductive limit of a
sequence with A^ = C{Xi) 0M^v for all %, where X^ is a compact Hausdorff
space and N € N is fixed. Since /zi(l (g) M^v) is a full matrix algebra
in A, it follows that A c^ M^(B) where B is the relative commutant of
/Ai(l0M^v) in A. The elements of B can be approximated by elements from
/Xfc((7(XA;)0l), k € N, and thus B must be abelian. But then the simplicity
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of A implies that B = C, which is impossible because A was assumed not
to be finite dimensional. This contradiction shows that t(l^i) —> oo . D

2. The commutator subgroup of G1(G(X) (g) Mn).

For a unital (7*-algebra A, we let Gin (A) and Un(A) denote the group
of invertibles and unitaries, respectively, in Mn 0 A. To simplify notation,
we set Gli (A) = G1(A) and £/i(A) = U(A).

LEMMA 2.1. — Let A be a unital C*-algebra and ^1,^2, . . . ^Xn €
G1(A) such that XnXn-iXn-2'' • ̂ 2^1 = 1. Set d = diag(a;i, x^,..., Xn) €
Gln(A). Then d = (x,y) for some x C Un(A)o, y e Gln(A). Ifx, <E U(A),
Gl(A)o or U(A)Q for all i, we can choose y in Un{A), G\n{A)o and Un(A)o,
respectively.

Proof.— Set di = diag(l, rz-i, x^x\, x^x^x\,... ,Xn-iXn-2 " •^i).
Then

dd-i = diag(a;i, x^x^, x^x^x^... ,Xn-iXn-2" ' ^i, l) •

For a suitably chosen permutation unitary v C Mn we have (1 (g) v)dd^(l (g)
v)* = di, i.e. d = u~ld-iud^l where u = 1 <S> v. The lemma then follows
from the fact that the unitary group of Mn is connected. D

LEMMA 2.2. — Let X be a compact Hausdorff space and A ==
C{X) 0 Mn. There is an e = e(n) > 0 such that every unitary u C A with

n
\\u—l\\ < e and det(u(x)) = 1 for all x G X is the product u = Y[ (vi\Wi)

i=l
for some z^, Wi e U(A)o, i = 1, 2 , . . . , n.

Proof. — Let e < l^^. After n—1 applications of [13], Lemme
5.16, we get vi^wi e [/(A)o, i = 1 ,2 , . . . , n—1, and unitaries Si G C7(X),

n-i
\\Si-l\\ < 1/3, i = l , 2 , . . . , n , such that u = Y[ (vi.Wi) diag(5i,52,... ,Sn).

i=l
Since det(u(x)) = 1 for all x G X, s-^s^ • • • Sn = 1 and we can apply Lemma
2.1 to diag(5i,52,. . . ,5n). D

LEMMA 2.3. — Let X be a compact Hausdorff space. There is an
e = e{n) > 0 such. that every invertible y G A = C(X) (g) Mn with
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||2/-1|| < e and det(y(x)) = 1, x € X\ is the product y = Y[ (^,w,)

for some Vi.Wi e Gli(A)o, i = 1,2, . . . ,2n-l.

Proof. — If we set e(n) = I/^IO, the lemma follows from n-1
applications of [13], Proposition 5.12. Q

PROPOSITION 2.4. — Let X be a compact Hausdorff space and
A=C(X)(g)Mn. Then

DU(A)o = [u e U(A)o : det(u(x)) = 1, x e X}

and
DGl(A)o = {z e Gl(A)o : det(z(x)) = 1, ^ e X} .

Proof. — Let z e Gl(A)o such that det(z{x)) = 1 for all x e X. Since
^ € Gl(A)o, z = e^e^ . • . e"- for some a, € A. Then Tr f ̂  a,(a:)) e 27nZ

1 vl=l /

for all :r C X. Set /, = -^(a^-)) C C(X) and 6, = a,-/, ^ 1 e A,
z = l , 2 , . . . ,m . Then

^ = diag (ehln, ehln,..., e/l/n)ebleb2 • . . e^ ,

( m x
where fa(.r) = Tr ^ a,(a;)J, .r € X. By Lemma 2.1 diag (e^, e'1/71,...,

e71/71) is a commutator of two elements of Gl(A)o so it suffices to show that
e^ G DGl(A)o for each i. Choose k e N so large that || exp6,/A;-l < e
where e = e(n) is the e of Lemma 2.3. Since Tr(bi(x)) = 0 for all x C X,
Lemma 2.3 implies that

^ =(eb^/k)k eDGl(A)o .

The unitary case follows in the same way by using Lemma 2.2 instead of
Lemma 2.3. Q

For the purpose of studying inductive limits of trivial homogeneous
G*-algebras, Proposition 2.4 suffers from the same weakness as Proposition
1.3 when compared with Lemma 1.4. We have too poor control over the
norms of the invertibles building up the commutators, or their distance to
1 to be precise. Furthermore, we have lost information about how many
commutators are involved. These weaknesses are removed by the following
lemmas which, however, forces us to restrict attention to a particular class




