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1. Introduction.

We study the interaction of high frequency solutions to semilinear
systems of the form

(1.1) Lu^f^x^u)

where L(t, rr, c^, 9x) is a first order symmetric hyperbolic system of partial
differential operators on R1"^^.

The waves have amplitude 0(1) and wavelength e tending to zero.
For the semilinear problems (1.1) this critical size is called weakly nonlinear
geometric optics. As epsilon tends to zero, nonlinear effects are negligible
for times o(l) and important for times 0(1).

(1) The authors gratefully aknowledge the support of NATO grant CRG 890904, NSF
grant DMS 9003256, and ONR grant NO 014 92 J 1245.
Key words : Geometric optics - Nonlinear waves - Crystal optics - Wiener algebra.
A.M.S. Classification : 35C20 - 35L60 - 35Q60 - 35B30 - 35B40 - 35L45.
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We construct solutions on a fixed time interval [0,t] which have
asymptotic description

(L2) ^(t, x) = U(t, x, t / e , x / e ) + o(l)
where the profile U(t, x, T, X)is almost periodic in T, X and is determined
by a system of equations which is easier to analyse or compute numerically
than (1.1).

In the introduction, we limit the discussion to constant coefficient
operators L and phases which are linear function of t, x. Thus

L=9^^A,9/Ox,.
The general case of variable coefficients with phases satisfying a coherence
assumption is presented in §3.

The main advance in this paper compared to earlier works is that it
treats multidimensional problems with profiles that are almost periodic
in T,X. Previous work for d > 1 required either quasiperiodicity in
X ([JMR4], [JMR5], [S]), small divisor assumptions on the phases, null
conditions on the nonlinearity permitting high order asymptotics ([D],
[JMR6]), or an oscillating plane hypothesis which forces the solutions to
resemble the case of d = 1.

The main novelty in the analysis is the space of profiles. We take
(1.3) U^x^X) = ^ u^x)e^™^

T^eHl+d

where

(L4) i^ll^^^llc'do^^CRrf)) < oo.

Here s > d / 2 so that for t,x fixed U(t,x,T,X) is an almost periodic
function of T, X with absolutely convergent Fourier expansion. That is,
U is an element of the Wiener algebra as a function of the fast variables.
The possibility of using this algebra to describe profiles was suggested in
([JMR4], [JMR5] §11).

The nonlinear function / is assumed to be real analytic in its
dependence on n, u. This restriction is imposed because the Wiener algebra
is invariant under such maps but not under general smooth functions (see
[Kat] Th. 8.6).

Solutions of form 1.3 arise as solutions of naturally related oscillatory
initial value problems.

(1.5) Lu6 = /(t, x, < ̂ ), ^(0, x) = r(rc,, x / e )
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where

(i-6) r(^x)= ^ a^xy^
uje^

is an almost periodic function of the fast variables X such that
(1.7) ^||aJ|^s(Rd) < oo.

i j j
Then there is a t > 0 so that 1.4 is valid with error o(l) in L°°([0,t] x R^).

The profile U is uniquely determined by a system of equations which
involve an averaging operator E defined on almost periodic functions of
T,Xby

(1.8) E(a(^ x)ei^T^•x^ = (II^a(t, x^e1^^
where Hr^ is the spectral projection of C^ onto ker(Z/(T,o;)). In particular
Hr,^ = 0 if T^UJ does not belong to the characteristic variety of L. The
system of equations determining U is then

(1.9) EU=U^ (7(0^0,X)=r(^X),

(1.10) E[L(D^)U + /(t, a;, £/(^ a;, T, X), Z7(t, .r, T, X))] = 0.

An innovation in this paper is that it is not difficult for us to
allow systems with characteristics of variable multiplicity, for example the
equations describing conical refraction in crystal optics (see §4). For that
system nonlinear effects couple the conical points with others so incoming
waves with spectrum far from the optic axis can trigger conical refraction.

The analysis of 1.5 is by decomposition into modes. Interaction
generates Z-linear combinations of phases and the solution is expressed as
sum of terms a^e^^ where the phase (p belongs to a countable Z-module.
Decomposing f{u^u) into such terms then inverting L is our approach.
The analysis is mode by mode. The key steps are to derive e independent
bounds for the inversion of L and then to analyse the asymptotics relying
on linear geometric optics.

In §2 we present some preliminaries on the invariance of almost pe-
riodic functions under real analytic maps. The Cauchy problem (1.1) is
discussed in §3. In §4 we present three examples. Example 2 is homoge-
neous oscillations analogous to homogeneous turbulence where the profile
equations have an interpretation as an infinite particle dynamical system.
Example 3 is the semilinear crystal optics mentioned above.
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2. Preliminaries on A.

Let A denote the Wiener algebra

(2.1) A = {u G ^'(R771) : u is a bounded Borel measure on R^}.

Then A is contained in C^R/") H L^R771). The norm in A is the total
variation of n,

(2.2) MA= H^llTot.Var. == / d\U\.
JR"1

Of basic importance in all the analysis to follow is the derivation of sup
norm estimates. For that we use elaborations of the elementary estimate

(2.3) ML- < (27^)-m/2||u||A.

DEFINITION. — For a positive integer m and a Banach space B,
A^R^ is the set of almost periodic B-valued functions on R171 with
absolutely summable Fourier coefficients. That is a e A{B,'Rrn) if and
only if

(2.4) a(Y)=^^eia•Y

where the sum is over a G R^^ and the coefficients da € B satisfy

(2.5) |H|A(B,R-1) '== ̂  \\^a\\B < 00.

The formulas

(2.6) a^V) = B - lim (2J?)-m f e-^ a(Y) dY
J^R.R^

show that the coefficients are uniquely determined.

DEFINITION. — For a e A^R77') the spectrum of a denoted
Spec(a) is the (countable) set ofae W^ such that da ^ 0.

PROPOSITION 2.1. — Suppose that the Banach space B is a space
of C^ valued functions on an open set f^ of Euclidean space and that B is
a function algebra in the sense that

(2.7) B C L°°(n : C^) and 3c > 0, Vb G B, \\b\\B > c\\b\\^^

(2.8) 3c>0, V & i , b 2 ^ B , b^eB and \\b^\\B < C\MB\MB.
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Suppose that / : Q x C^ x C^ —> C^ is entire in the sense that

(2.9) f(x^u^)= ^ f^W^
a,/3^(0,0)

where for all a, f3, multiplication by fa,p maps B into itself and for all
r > 0, there is a constant c(r) > 0 such that

(2.10) \\fa^b\\B < c(r)r-^ \\b\\a for all b C B, a, /3.

(i) Then for u e B, the function

(2.11) /(^) := f{x^u{x\u{x)) =^f^(x)u(xru(xf

belongs to B and the mapping sending u to f(u) maps B to itself and is
uniformy Lipschitzean on bounded sets in B.

(ii) If a e A(B,R771) then the function Y -^ f{a(Y)) belongs to
A(B,'Rm) and the map from A^R771) to itself so defined is uniformly
Lipschitzean on bounded sets.

Proof.

(i) That f(u) belongs to B is an immediate consequence of (2.8) and
(2.10).

To prove Lipschitz continuity consider the difference u^u^ — v^v^ for
a\ + |/?| ^ 0. Write

u^u0 - v^ = [v + (u - v)]^ + (u - v)f - v^.

The binomial theorem expresses the difference as a sum of terms

(u - v)^(u - vYW-^^Y-11 (a>} f^
V7/ W

with |7| + \f^\ ̂  0. There is a factor of u — v or u — v in each term. Thus,
that there is a constant C independent of a, f3 so that

K^ - V^\\B ̂  \\U - V\\BC^^(\ + \\U\\B + MB)^^.

The Lipschitz continuity follows. In the same way one shows that the
derivative of / at u in the direction h is equal to fu{u^u}h + f^{u^u)h.

(ii) The fact that / preserves A(JB, R771) and is bounded on bounded
sets follows from the fact that u —>• u is an isometry of A(B, R771) and the
map a, b —> ab maps A(B, R^to itself with

(2-!2) ll^llA^R771) < c||^||A(B,Rm)l|^||A(B,Rm)•
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To prove this consider the Fourier series

^El E ̂ ^y-
7 a+/3=7

The triangle inequality and PubinPs inequality yield

M|A(B,R") ^ E [ E ^MAIIs] <C^|MB]^|MB
7 a+/3=7

which is the desired estimate (2.12). D

Remark. — The proof of invariance is particularly simple for entire
real analytic functions. However, the Weiner-Levy Theorem shows that it
suffices for f{x^ C, 77) to be holomorphic in (^, r] on a neighborhood of the
values taken by u{x)^u(x}. We describe only the case of entire real analytic
/ leaving the modifications needed in the more general case to the interested
reader.

3. Highly oscillatory Cauchy problem.

The goal of this section is to study the oscillatory initial value problem

(3.1) L^x.Dt^ +/(t,^£,u£)=^, u£(0,x)=g£

where

(3.2) g£(x)=^(x^^x)/e)

(3.3) h£(t,x)=H^x^^x)/e)

with phases (p = ((/?o? • • • ? ^m) satisfying a restrictive coherence hypothesis.

The function f(t^ re, u, v) with f(t^ re, 0,0) = 0 is assumed to be smooth
in t, x and entire in ZA, v. Precisely

(3.4) f(t^ x, n, v) == ^ /^(t, x)u^
H+|/?|>o

where for all r > 0 and all 7 there is a constant c = 0(7, r) such that

(3.5) \D^f^(t,x)\ ̂  cr~^ for all \t\ ^ r, x C R^, a,/?.

Symmetric hyperbolicity assumption.

(3.6) L(t,x,Dt^) =Ao9t+^Aj{t,x)9j
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where the Aj are smooth k x k hermitian symmetric matrix valued functions
on a connected open neighborhood 0 of the origin in R1'^^ and Ao is strictly
positive.

Coherence assumption.

The phases belong to a real finite dimensional vector space ^ C
(7°°(0). The phases are assumed to be coherent in the sense that

(i) For each (p € <1> ^ 0, d^p is nowhere zero on 0, and, del L(t^ rr, dip)
is either everywhere zero or nowhere zero on 0.

(ii) There is a function (po e <1> \ 0 such that (^o|t=o = 0.

The reader is referred to [JMR3], [JMR4], [JMR5], [HMR] for a
discussion of this hypothesis. The function y?o is determined uniquely up to
a scalar multiple. Thus (?Q is a natural timelike function near (0,0). Making
a smooth change of independent variable we may suppose that

(3.7) ^o = t.

This done we make a change of dependent variable replacing u by (Ao)1/2^
which converts the equation

(3.8) Lu + f(t, x, u, u) == 0

to an equation of the same form with

(3.9) Ao = I .

The reason for working locally is that a coherent set of phases defined
locally need not have a global coherent extension.

Example. — The standard example of coherence is when L has con-
stant coefficients and ^ is the d+1 dimensional space of linear functions
of t, x. When d > 1 there are interesting examples which cannot be trans-
formed to such constant coefficient linear phase problems (see [JMR5] §3).

Denote by <I>° the set of restrictions of elements of <1> to (t = 0).

PROPOSITION 3.1 (Consequences of coherence).

(i) (̂  —> <^|t=o defines linear map of<I> onto ^° with nullspace equal
to Ry?o-

(ii) For any (p C <1>, the eigenvalues of the symmetric matrix
L(t,x^d(p(t^x)) do not depend on t ^ x . In addition their multiplicity is in-
dependent oft^x.
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(iii) For \ e ̂  \ 0, let A i , . . . , AM(^) denote the eigenvalues of L{d\).
The functions ̂  € ^ such that

(3.10) det(L(t, a;, d^(t, a;)) == 0 and ̂ =o = x|t=o

are precisely the functions ̂  = \ — \j(po. For each j, ker(L(t, a;, d^j(t^ x))
is a smoothly varying subspace ofCk and one has the orthogonal decom-
position

(3.11) C^ = Q)keT(L^x,d^^x)).

Proof.

(i) It suffices to show that if ^ 6 ̂  and ^(0, a*) ^ 0 then ^ € c<^o for
some c € R. Fix (O^x) € 0. Since ^ vanishes at t = 0, there is a constant
c such that d^(0^x) = cdy?o(0,^). Then '0 — cy?o ^ ^ o-^ has vanishing
differential at one point. Coherence implies that '0 — C(?Q = 0.

(ii) Coherence implies that the roots A of the polynomial det(L(t,.r,
—\d(p°+d(p) do not depend on t, x. However, with the normalizations (3.7)
and (3.9), these are precisely the eigenvalues of L{dip).

For an eigenvalue A the multiplicity is equal to

trace[(l/27r%) (f){z - L(d^))-1^]

where the contour is a small circle about A. This continuous integer valued
function must be constant.

(iii) Suppose that ^ € <I> satisfies (3.10). Fix (0,^) e 0. Then there is
a a € R such that d^(0,^) = d^fft^x) — o'd^po(0,x). Then ^ — \ + a(pQ is
an element of ^ whose differential vanishes at a point. Coherence implies
that ^ — \ + o~(po = 0.

In addition at t = 0 one has L(d(\ — aipo)) = L(d\) — al. By (3.10)
this is a singular matrix so at t = 0 there is a j so that a = Xj. As both
sides are constant, a = \j throughout 0, so ip == \ — Xj^po ^ V^-.

Finally, ker(L(d^j)) is the Aj eigenspace of L(d\) and the smooth
orthogonal decomposition follows. D

Remarks.

1. Hermitian symmetry implies that the eigenvalues of L(t^ a;, d(p(t^ x))
are real and their algebraic and geometric multiplicities are equal. The
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proposition shows that the eigenvalues and multiplicities are independent
of t,x.

2. It is important to note that this proposition does not say that the
multiplicity of the roots of det(-L(t, x^ r, ̂ ) =0 are independent of r, ̂ . For
example, consider the case of constant coefficients and linear phases. The
proposition then asserts that for r, ̂  fixed the multiplicity of the roots of
L(r, ̂ ) is independent of t, x which is obvious. A striking application in §4
is to the phenomenon of conical refraction which depends exactly on roots
of variable multiplicity with respect to T, ̂ .

3. Since the eigenvalues of L(t,.r,r,^) need not have multiplicity
independent of T,^ and need not be smooth functions of r,^, the eikonal
equation det(L(d'0)) = 0 may be singular. We do not know if it is possible
for there to be solutions other than those which belong to <I>. In case the
multiplicities are independent of$, part (iii) describes all solutions of (3.10).

4. The direct sum decomposition in (iii) shows that the solutions in
<!> suffice to solve the oscillatory initial value problems we encounter.

We work in a compact truncated conical neighborhood
^ = f^ == {(t, x) : \x\ < r - t/f3, 0 < t<, t^ == r/3}

where r and f3 are so small that f2 CC 0 and the boundaries are all spacelike
for L. The radius r will be decreased a finite number of times during the
proof.

DEFINITION. — For t e]0,^[ and s e N, B{s,t) is the set of
restrictions to Q of continuous functions oft with values in ̂ (R^). B{s^t)
is a Banach space with norm

\\u\\s,t= sup \\u{t,')\\H^{x:{t^e^})'
0<t<t

C^Q) is dense in B(s,t).

Choose a basis y?o = ^ ^i? ^25 • • • ? ̂ m of <I>. Then dim(^) = m + 1
and the last m basis elements restricted to t = 0 form a basis for <I>°.

Denote by Qo the initial section, that is {\x\ < r}.

Next we decompose initial oscillations
r^(;r)expz[(/^i(0,a1) + • • • + /^^n(0,a-))/£]

corresponding to the way these oscillations will be propagated by the
system. To understand the recipe, recall the explicit formula for the
constant coefficient initial value problem

L(A,,)n=0, u(^x)=ge^^ g e C^
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u(t,x) = ][^(E(,^)exp(z(T,,0 • (t,x))

where Tj are the roots of detL(r,^) = 0 and E denotes the projection on
ker(L(r,,0) along Rg(L(r,,0).

In our situation there is an analogous construction. For each ^ € R771,
Proposition 3.1, (iii) shows that there is a finite set of Q^(^) = (o^,^) G
p^i+m gQ ^g^ ^g solutions of the eikonal equation in <I> with initial data
<^i + • • • + ^m^m are equal to a^ • (p, u, = 1,. . . , M(^).

For <^ fixed and t,x in f^, Ck is a direct sum of the smoothly varying
eigenspaces of ^ Aj(t^x)9(^j(pj)/9xj which in turn are equal to the

j>i
nullspaces, ker(L(o;^ • dip)).

DEFINITION. — For a C Z14'771 let Ea(t,x) be the spectral projec-
tion on ker(L(^, x^ a ' d(p(t^ x)).

For F € A^H8^),^), let

r{x^)=^g^x)e^
be the Fourier decomposition of I\ The above remarks show that Id =
E^Ca7)^^ so

p-

^x) = ̂ E^(^(0,a-)^(a;),
^

a decomposition of g^ which appears in the next result.

THEOREM 3.2 (Uniform nonlinear existence). — Suppose that t\ €
]0,^[, N 3 s > d/2, H e A^^^R^), F € A^^o)^), and /
is as in (3.4). For e > 0 let
(3.12) h^t, x) = H{t, x, ̂  X ) I E , ̂ (t, x ) / e , . . . , ̂ m(t, x ) / e )

(3.13) g^x) = r(x, (^i(0, x ) / e , ̂ (0, .r)/£,... , (^n(0, .r)/£).

(i) Then, there is a t €]0, ^i] so that for aii 0 < e < 1, the initial value
problem
(3.14) Lu£+f(t,x,u£,u£)=h£, u£\t=o=g£

has a unique solution in C{fl. H {0 <: t <^ t}).

(ii) The solution u8 is given by ^(t^x^^x)/^) where U6^^^) e
A^s^R^)) satisfies

L^x^Dt^+e-1 Y^ Aj^x^k/Qx^Q^/QOk+f^^H^x^).
J,k>0
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(3.15) ^(O^oA,..., 0^)= ^ ̂ ^^x)g^x)}e^^^•e

^^m /-t

with notation as in the paragraph before the theorem. This symmetric
hyperbolic initial value problem uniquely determines U6, and the family
{^}^]o,i] is bounded in A(B(s,•h),Rl^rn)).

Remark. — The equations in part (ii) are sufficient but not necessary
for U E ( t ^ x ^ / e ) to satisfy (3.14). Similarly the initial condition for U is
sufficient but not necessary for (3.14).

Proof. — The proof is by Picard iteration, u5 = limzA6'^. The first
iterate U 6 ' 1 solves the linear problem which one gets by setting / = 0 in
(3.14). For y > 2 one solves the linear problems

(3.16) Lu^ = -/(^^-l,^^-l)+/l^ u^\t=o =^.

The key step is to obtain uniform bounds for ll'u^H^00. This is done
by writing u^" as ^a(3(t,x)ei(3•(p/£ and estimating the A^s^R^))
norm ofU6 := ̂ a^-0.

This in turn is done in two steps. The crucial step is to prove a uniform
estimate for high frequency monochromatic linear initial value problems
(Proposition 3.3). Superposition then yields A-estimates for linear initial
value problems (Corollary 3.4). Then the Picard iterated can be controlled.

PROPOSITION 3.3. — For each s € N there is a constant 7 > 0 so
that Vt e]0,t2[, ^ € ^, b € H8^), c C B(s,t) the solution of the linear
initial value problem

Lu = c(t,x)ei(p, u(0,x) = b(x)ei(p{o-x)

is given by u = a(t, x)e^ where a € B{s^t) satisfies

(3.17) \\a\\B^t)<^{\b\\H^w+t\c\\B^}'

Proof. — The case (p = 0 is the standard I? energy estimate for
symmetric hyperbolic systems. To treat (p -^ 0, write the equation for a as

La + zL(t, x, dt,a;^)a = c(t, a;), a(0, x) = b(x).

This is a symmetric hyperbolic initial value problem which determines a in
Q. When d(p is large there is a large variable coefficient lower order term
iL{d(p)a.
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The first indication that this is ok is that iL(d(p) is antisymmetric so
the standard energy method, multiply by u and integrate by parts in f^)
yields

IK^f^hWf+GfHa)!! \\c(a)\\da
Jo

where ||^(a)|| is the L2 norm of u on the crossection ^2 D {t = a}. Let
M(t) =. max ||'u(t)||2. Then the inequality yields

0<cr<t

M(t)<M(0)+GM(t)1/2 / llc^llda^MW+^M^^IIcll^o^)
Jo

and the case s = 0 of (3.17) follows.

Choose a norm in <I>, whose unit sphere is smooth. For \\ip\\ <, 1, the
coefficient iL{d(p) and its derivatives are bounded so a direct energy method
attack by differentiating the equation works to prove (3.17) for all s.

It is for derivative estimates when y? is large that the coherence
hypothesis is crucial.

Proposition 3.1 shows that for each t, x € f^ and (^ € <^, there is a
unitary matrix valued function U(t^x^) such that UL{t^x,d^(t,x))U* is
a real diagonal matrix independent of t, x.

Next we show that, as in the more general context of ([JMR4] §4), the
function U can be chosen to be homogeneous of degree zero in (p -^ 0 and
smooth in t, x near (t, x) = (0,0) uniformly in (p. That is, there is an open
neighborhood jV of (0,0) so that t, x —> U(t^x^) is a smooth function of
^, x for each (/?, and for each 7, there is a constant 0(7) so that

V^, \\D^ £/(.,. ,^) H^oo^) <c.

Note that no smoothness in (p is asserted.

The columns of £/* must be a smoothly varying (with respect to t, x,
not y?) orthogonal eigenbasis. For an eigenvalue of multiplicity ^ we must
choose an orthonormal basis for the eigenspace E^(t, x) of L(t^ x^ d^p(t^ x)).
To do this first fix t, ̂ , y? and choose an eigenbasis ^ i , . . . , ̂ M for the
eigenspace E^(t,x) of L(d(p(t,x)). Let 7r(t^x) be the orthogonal projector
on E^(t,x). Then a smooth eigenbasis for E^(t^x) for ^,a* near ^,^ and
phases in an open neighborhood uj of (/? is constructed by applying the
Gram-Schmidt algorithm to {n{t,x)vj}. Cover \\(p\\ = 1 by a finite number
ofc^- of such neighborhoods. Express ||(^|| = 1 as a disjoint union of subsets
(jj CC ujj. The ^-smooth eigenbasis is then given for ^/||^|| in (TJ as the
basis constructed above for phases in ujj.



COHERENT NONLINEAR WAVES 179

For 11 (p\\ > 1, make the change of dependent variable a = Ua, then
the equation for a = Ua is

9td + ̂  UAjU^Qja + z diag(A)a + ̂  UA^QjU^a =. 0.
The key observation is that the diagonal matrix, which is the only pos-
sibly large coefficient has constant coefficients. The other coefficients are
bounded together with each of their derivatives uniformly for ||y?|| ^ 1. Thus
the equation can be differentiated with respect to x and the standard energy
applied. The large coefficient is no problem since Re(<9^a, i diag(A)(9^a) = 0.

Note that the initial values 9^a{0,x) = 9^(Ub) are ^-bounded for
|a| < s. This yields L2 estimates for 9^a(t, •) uniformly in y? and i. These
estimates carry over to a = U*a thanks to the uniform smoothness of
U(t^ x, (p) with respect to t^ x. D

Remark. — The initial values of the time derivatives of a are not
necessarily bounded independent of (p.

Each of the steps in the Picard iteration involves the solution of a
linear initial value problem with source terms which have profiles in a
suitable B(s, t) valued space A. Proposition 3.3 allows us to solve such
initial value problems by superposition.

COROLLARY 3.4. — Suppose that F e A^^o^R^) and H e
A(B(s, t), R^771) and that g6, h6 are defined as in Theorem 3.2. For e e]0,1]
let z^ be the solution of the linear initial value problem

Lu6 =h£, u^O.x) =g6.
Then u^t.x) = Ue(t,x^(t,x)/£) where U^t^x.O) belongs to A{B(s,t),
R^"1"771)) and is determined by the symmetric hyperbolic initial value
problem
(3.18) L^x^Dt^+e-1 ̂  A.^x^k/Qx^/d0k = H^x^O).

J,k>0

(3.19) ^(0,.r,0o^i,...,^)= r.h.s. of (3.15).
The linear maps B^ from A^^o),!^) x A(B{s,t), R^) to
A^^^R^771) defined by Bs(r,H) = U6 are uniformly bounded for
e =]0,1], that is there isac>0 so that VF, H, e e]0,1], t e]0, t]

||^£||A(B(s,t),Rl+^)) < cdlrllA^^o),!^1) +^II J^IlA(B(s, t) ,R l+m)).

Proof. — Denote by A the set of a e R14"771 such that either
a e Spec(fa), or, a is equal to one of the a^(^) corresponding to ^ in
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Spec(^). Define LC^ = ^ U^(t^x)e^oi'e where the Fourier coefficient with
ac-4

index ao, o;i , . . . , o^m is determined by the initial value problem

[L-{-^e~lL(t,x,d{a^))}U^t,x)=ha, U^^x) = E^^g^x),
(3.20)

^(0, x) = 0 is a C .4 is not equal to a^) for some /^, ̂ .

Proposition 3.3 shows that U6 e A^^^R^^) and that the maps B^
are uniformly bounded.

The equations (3.20) are equivalent to (3.18)-(3.19). D

Return to the Picard iteration in the proof of Theorem 3.2. Ap-
ply the Corollary to analyse (3.16) with right hand side H(t^x,6) —
/(t.x^^-^t.x.e)^^'1^^^)) which belongs to A(B(5,tl),R l+m)
thanks to Proposition 2.1. We find that u6^ = ̂ '^(^rc, ( p / e ) with

U^=^ay^x)e^ ^-^a^^x)eiQ•e

where the sum is over the Z-module generated by A and

||^HA(B(^I),RI+-) == ̂  ll̂ lla î) < oo.
a

Let R = H^^HA- The estimates of Proposition 2.1 and Corollary 3.4
imply that there is a t e]0, t^} so that for all v > 1, e e]0,1], and t € [0, ti]
the Picard iterates in the proof of Theorem 3.1 satisfy

EK'^^2^
a

E \\^e.y -£,^—1|| ^ (/^4\v—\
11^ - ̂  HB(^) < [Ct)

a

Choose t so that Ct < 1. Then as v tends to infinity, the profiles l^^
converge in A^^t^R14"771) uniformly in e to a solution U6 to (3.18)-
(3.19). The corresponding function u6 solves our problem.

Uniqueness of the solution u6 is proved by a simple L2 energy
argument. This completes the proof of Theorem 3.2. D

Next consider the high frequency limit e tends to zero. The key here
is a linear result which plays a role for asymptotics analogous to the role
of Proposition 3.2 for local existence.

PROPOSITION 3.5 (Linear asymptotics). — Suppose s € N, ip €
<E> and E(t^x) C C°°(Q, : Hon^C^)) is the orthogonal projector on




