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ON THE POLYNOMIAL-LIKE BEHAVIOUR
OF CERTAIN ALGEBRAIC FUNCTIONS

by Charles FEFFERMAN(*) & Raghavan NARASIMHAN

0. Introduction.

The purpose of this paper is to prove an extension theorem which,
in particular, implies that certain families of algebraic functions have the
growth and smoothness properties of polynomials. Our work was motivated
by that of Parmeggiani [P] on pseudodifferential operators. We begin with
a few words about [P] and how algebraic functions enter there.

It is known from the work of Stein and his collaborators [FS], [RS],
[NSW] that a subelliptic differential operator is governed by a family of non-
Euclidean balls. The purpose of [P] is to associate non-Euclidean balls in the
cotangent bundle to a pseudodifferential operator P(a*,D). In dimensions
one and two, the results in [P] provide a geometrical understanding of these
non-Euclidean balls. It would be of interest to extend Parmeggianfs work
to higher dimensions.

The method used in [P] requires writing the symbol P{x,£,) in
a normal form; it is likely that extending the results in [P] to higher
dimensions will also require doing this. It is this normal form which brings
in algebraic functions. More precisely, fix a point (^°,$°) € M71 x R71 where
P(x°^°) = 0. We assume that P{x^) > 0. Expanding P(x^) in a Taylor

(*) Partially supported by a grant from the NSF
Key words'. Bernstein inequality - Polynomial ideal - Semi-algebraic sets.
A.M.S. Classification: 26.
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series to a high order at (^°,$°) and rescaling, we obtain a polynomial
p(x^) bounded a priori on the unit cube Q = { ( r c i , . . . ,a;n,^i , . . . ,$n) |
1^-1 < 1, |^-| ^ 1, 1 ^ j < n}. Here p(0,0) = 0 and p > 0 on Q

r\2

modulo a small error, which we ignore. Suppose that the Hessian ( — )
^O^jO^k^

has rank r at the origin. Rotating coordinates, we may assume that
r\<^

( ^ ^ ) is positive definite at 0.
^^•^/K.^r

In the neighborhood of the origin, we can then write p(x^) in the
normal form

(1) p(:r,$i,...,$n) = ̂ ek(x^) [̂  - ̂ (^+1,... ,^)]2

fc=i
+q{x^r-{-l,"">^n)^

where e^, 0^, g are smooth, and e^ > 0.

Here, q(x^r+i^' • ' ^n) ls ^1 algebraic function. In fact, let V be
the (real) algebraic variety V = {(.r.^eBTxR71 | p = 0, l^k<r\,1 o^k ^
and let TT : V —> R271"7' be the projection (a;i,... ,a;n,^i , . . . ,$yi) i->
(x\,... ,:Kn,$r+i5 • • • ?$n)- Near the origin, V is smooth, TT is a diffeomor-
phism, and

(2) q=(p\V)o7r-1.

To get useful information from (1), we need to know that q has the
growth and smoothness properties of a polynomial. If we are allowed to
restrict attention to a tiny neighborhood of the origin, then one can simply
Taylor-expand q to obtain a polynomial. However, the method followed in
[P] requires an understanding of q on a neighborhood of fixed size, and one
is forced to study functions of the form (2) on such a neighborhood.

We can formulate the basic problem in a simple, general setting.
Suppose that we are given a variety V C R77', defined as the set of common
zeros of polynomials Pi,...,Py., 1 < r < n — 1. We make the following:

ASSUMPTIONS.

(I) The polynomials Pj have degree at most D, and their coefficients
have absolute value at most C.

<9Pj(II) We have ?i(0)= • • • =?r(0) = 0 and detf-^(O)) >
\OXk f l<J',fc<r

c>0.
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Let TT : V —^ R71"7' be the projection (a;i, . . . , Xn) ̂  (^r+i, • . • , Xn)' In
view of (II), TT has a smooth local inverse 7r~1 : B(0,60) —^ V defined on a
small ball. Our goal is then to understand functions of the form F = po7r~1

where p is a polynomial of degree at most D on M71, and to do this uniformly
with respect to the polynomials Pj satisfying our assumptions.

The following result (a somewhat weaker form of the main theorem
1.1 of this paper) provides very good control over this family of functions.

THEOREM 1. — Let Pi, . . . , Pr be polynomials satisfying assump-
tions (I) and (II), and let V = [x C W1 \ P^x) = . • • = Pr(x) = 0}.
Then, there exist constants ̂ , C*, D^ > 0 depending only on the constants
n,c,C,D occurring in (I), (II) such that ifp is a polynomial of degree
at most D on R71, we can find polynomials f and g with the following
properties:

(A) f,g have degree at most D^;

(B) On B(0,2 <$,), we have l<g<2and\f\< C, sup |p|;
2 yna(o,^)

(C) p=f/gonVnB(0^6.).

We note explicitly that the denominator g in this theorem cannot be
taken = 1; see [FN]. We can, however, take g to depend only on the Pj,
not on p.

As an easy consequence of this extension theorem, we prove the fol-
lowing result which shows that the family of algebraic functions mentioned
above behaves like a family of polynomials of bounded degree.

THEOREM 2. — Let V be as in Theorem 1, and let TT : V —> W1-7'
be the projection. There exist constants <^, C* > 0 depending only on
n,c,C,D (the constants in (I), (11)) such that TT has a smooth inverse
7r~1 : B(0,<^c) —» V and such that ifp is a polynomial of degree < D and
F = p o 7r~1 on B(0, <^), then the following inequalities hold:

(A) Polynomial Growth. For 0 < 26 < 6^

sup |F| < G, sup |F|.
B(0,2<5) B(0,6)

(B) Bernstein's Inequality. IfVF denotes the gradient of F, then
n

sup |VF| < — sup |F| for 0 < 8 < 6^.
B(0,<?) 0 B(0,6)



1094 C. FEFFERMAN &; R. NARASIMHAN

(C) Equivalence of Norms.

sup |F| < ^ / |F|forO<5<^.
B(0,<5) c) JB(0,5)

For a fixed V and <$, estimates of this type are obvious consequences
of the fact that any two norms on a finite dimensional vector space are
equivalent. This simple remark gives no control over the constant C*,
whereas the extension theorem enables us to control the constants easily.
This control is, in turn, crucial in understanding the function q in (1)
and (2).

Let us mention also that the extension theorem clearly enables us to
estimate the function F of Theorem 2 in a complex ball of radius 6^ around
0 in terms of its values on 5(0, <^) C R71"7'.

The plan of the proof of Theorem 1 given here is as follows. Let W be
the space of all P = (Pi,..., Pr) satisfying assumptions (I) and (II). [We
work with a very slightly different space W in the body of the paper.] Fix
PO € W. We say that Theorem 1 holds locally at PQ if the conclusions of
the theorem hold for all P in a sufficiently small neighborhood of PO, with
a constant C* depending on PO (but with 6^ and D^ independent of Po).
The space W is compact. It is therefore sufficient to prove that Theorem
1 holds locally at any Po € W. We shall take degeneracies into account
by showing, by downward induction on s, 0 < s < dim TV, that Theorem
1 holds locally at Po for any Po outside a semi-algebraic subset Vs C W
whose dimension is < s. Since Vo = 0 i1 s = 0 (since dimVo < 0), this
shows that Theorem 1 holds locally everywhere on W^ thus completing the
proof.

Clearly, the main work lies in the induction step. This is modeled on a
simpler induction in our earlier paper [FN] in which the theorem is proved
for hypersurfaces (i.e. for r = 1). Unlike the argument in [FN] in which we
described the sets Vs in terms of factorizing the equation defining V, we
are unable to describe the sets Vs explicitly, and resort instead to extensive
use of the general structure of semi-algebraic sets.

It is clear from the statement of Theorem 1 that one needs to analyze
polynomials vanishing on one connected component of the smooth part of
the set of common zeros of polynomials Pi,. . . , Pr satisfying (I) and (II).
This analysis, essentially obvious in [FN], has to be done differently here,
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and one of our main steps in carrying out the induction outlined above is
to establish the following result.

THEOREM 3. — Suppose that (PI, . . . , Pr) satisfy (I) and (II). Let
Vb(Pi5•' •»Pr ) be the connected component, containing 0, of the smooth
part of the zero set of (Pi,..., Py.).

Then, there exists an auxiliary polynomial q on W1 with the following
properties:

(A) q(0) = 1, and the degree and coefficients ofq are bounded a priori
in terms of the constants in (I) and (II).

(B) If f is any polynomial vanishing on Vo(Pi? • • • ? Pr)? then we can
write q f in the form

^/=GrlPl+•••+Gr^,

with polynomials Gy whose degrees are bounded a priori in terms ofdegf
and the constants in (I) and (II).

In the case of hypersurfaces, i.e. when r = 1, this is a simple lemma
(see [FN]). In the general case, we prove Theorem 3 by using Hormander's
Z^-estimates for the 9-operator on C71.

For a given (Pi,...,Pr), the polynomials g in Theorem 2 will be
constructed as a product of polynomials q from Theorem 3 associated to
finitely many (P0^,..., P^) that lie near (Pi,..., Py.).

Note that Theorem 3 asserts no a priori bounds on the coefficients
of the polynomials (C?i,... ,Gy.) in (B) above. While we need bounds on
their degree, we need no bounds on the coefficients. It would, however, be
interesting to decide what the optimal estimates on these coefficients might
be; in the case of a weaker variant of Theorem 3, one can obtain good a
priori estimates (see Theorem 5.2 below).

It would of course be of interest to estimate the constant C* in
Theorems 1 and 2 as a function of n, c, C, D. This seems difficult to do.
However, for the application to pseudodifferential operators (in particular
for the results of Parmeggiani), the crucial point is to have a constant C*
independent of the polynomials Pj (as long as assumptions (I) and (II)
are satisfied). For this reason, the work in the earlier sections, leading to
a proof of Theorem 3 stated above (Theorem 5.5 in the text) has to be
uniform in the Pj.

We are grateful to the referee who has pointed out that the methods



1096 C. FEFFERMAN & R. NARASIMHAN

we have used in sections 2-5 have been applied before to related questions.
We have added some of the references he gave us in the relevant places.

1. Notation and statement of the Main Theorem.

Let n > 2 be an integer. If z = (^i , . . . , Zn) € C^, we set, as usual,
M2 = l-^il2 + • • • + |^n|2; if a = (o^i , . . . ,^n) ^ N" is an n-tuple of non-
negative integers, we set ^a = z°^ • • • z^.

If / € C[^i,...,^], / = ^ /a^0 is a polynomial with complex
a

coefficients in n variables, we define [|/[| by

ii/n'-Ei^i2-
a

If / = (/i,... ,/r) is an r-tuple of polynomials, we set ||/||2 =
Ell/.ll2.

We shall have occasion to use this same notation for polynomials in
more than n variables; thus if m > 1, / G C[^i,. . . , Zm}-> / = S fa^i then
II/II^EI/.I2.

If A is an n x n matrix over C, we denote by |[A|| the operator norm
of the linear map A : C71 -> C".

Let d >, 1 be any integer. We define

f^ = {/ € R[x^... ,Xn] | degree (/) ^ d},
^ = {/ C C[zi, . . . , Zn} I degree (/) < d}.

For p > 0, let

Qp = {a; == (;n,... ,^) e R7111^-1 ^ p}, Q = Qi.
If a G C71 and p > 0, we set

^.^{^(^.....^ec71!
| Re(^ - a^)| < p, | Im(^ - a^)| < p, j = 1,..., n}.

I f aeC^^X^wese t

B{a,R)={zECn \\z-a\<R}\

it is the open ball of radius R centered at a; B(a, R) will denote its closure.
We use the same notation also in W1. However, since we shall use balls in
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R^ or Ck with varying fc, we write Bk(a,R) == ^(a;i,. . . .xj,) C R^C^) |
fc .k

3=
Y, \Xj - aj\2 < R2 [ when this is relevant.
7=1 J

Fix integers n ^ 2 , l < r < n - l , Z ) > l and a constant Ci > 0.
These will remain fixed throughout the paper.

If pi,... ,py. e R[a;i,..., a;n](re5p.C[^i,..., Zn}), we set

Jp(^)=det(|PJ-(^)) ^eR71

\dXk /l<J,fc<7•

(resp.Jp(^)=det(^(^)) , ̂  € C").
VO^fc / Kj,k<r

Our basic space is:

(1) w ={p= (pi,...,p.) e f f ^ x . - . x ^ | P(O) =O,||P|| ^ Ci,
<7p(0) = 1}.

- If P = (pi,...,?,.), pj € R[a;i,..., Xn], we set

(2) Z(P) = ̂  € ̂  | pi Or) = ... -pr(x) == 0}.

If P(0) = 0 and Jp(0) ^ 0, let y°(P) be the connected component
of Z(P) H {x e M71 | Jp(x) 1=. 0} containing 0. We let Y(P) be the closure
in R71 of y°(P). Note that V(P) is not necessarily an algebraic set.

We use similar notation over C. If P = (pi,... ,pr),Pj € C[zi,.. . , Zn],
we set

(3) Z(P) = {^ € C71 | P(^) = 0}.

If P(0) = 0, Jp(0) + 0, V°(P) will stand for the connected component
of Z(P) H {z e C71 | J p ( z ) ^ 0} containing 0, and V(P) will denote its
closure in C71. In this case, V(P) is the irreducible component of Z(P)
containing 0 (unique since Z(P) is smooth at 0 because Jp(0) 7^ 0). In
particular, V(P) is an algebraic variety.

(4) There is a constant pi, 0 < pi < 1 depending only on Ci,n,jD such
that for any P e IV, we have Qp, DZ(P) C y°(P) (see the remark following
Lemma 2.1). For 0 < p < pi, we set

Vp(P) = Q, n Z(P) = Q, n Y(P) = {x e Q, \ P,(x) = .... Pr(x) = o}.

(5) For P e TV, we denote by Q(P) the space of germs at 0 of functions
defined on some neighborhood of 0 on Z(P) (or V(P)).
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We can now state our main theorem.

THEOREM 1.1 (The Extension Theorem).

Part 1. There exist constants D' >_ 1, C' > 0, m > 0, depending only
on C\, n, D such that the following holds.

Given P e W, p > 0 (0 < p <, pi), there exists q € H0' with q{0) = 1,
||g|| < C' such that, iff e HD', we can find F € H0' for which

(i) F=<?/onV^(P),

and

(ii) ||F|| < C'p^ sup [/I.
Vp(P)

Part 2. There exists po > 0 depending only on Ci,n,D such that if
P € W, f € H0 and 0 < p ^ po, then, there exist F, q e H0' with the
following properties:

(a) ^ < q < 2 on Q^p

(b) f=F/qonV,(P)

(c) sup|F| < C' sup I/];
Q2p Vp(P)

here, as in Part 1, C", D7 depend only on d, n, J9.

2. Preliminaries.

Let n > 2, 1 < r < n - 1, D > 1, C\ > 0 be given. Consider the space
Wo of r-tuples P = (pi,... ,pr) with ̂  e C[^i,..., Zn], degpj <, D (i.e.
pj C H0), with

P(0) = 0, ||P|| < Gi, Jp(0) = l(Jp(^) = det(^(^)) ).
\ \<7^ / ^<3,k<r/

(1) We introduce a new variable ZQ and write f = (zo,z) e C^1

with z = (2;i,. . . , Zn) e C71. If P e Wo, define po(^) = Po(^o,... ,^n) =
(^o + ̂ )Jp(z) - 1. We have po(0) = 0.

Consider the system

?= (Po,Pi,...,Pr).
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The set Z(P) of common zeroes of po^ • • • ?Pr m C71"1"1 is a smooth
affine variety isomorphic to Z(P) H {z C C71 | Jp(^) ^ 0} C C" (in the
category of algebraic varieties). Moreover, if J ( z ) = de t f——) , we

\ O Z j / 0<i,j<r

have J(z) = (Jp(z))2, and J satisfies the equation

(zo + I)2 J(z) - po(^o,... ,^)(1 + (zo + l)Jp(^)) = 1.
Hence

1 < (|^0 + 1|4 + |1 + (ZQ + l)Jp(z)|2)(|J(f)|2 + |po(^)|2)

^ca+i^iTd^i'+E^^i2)-
J=0

where C, ̂  depend only on Ci, n, 2).

This leads us to consider the following space:

(1) Let n >. 2, 1 < r < n - 1, D > 1, Ci > 0, Co > 0 and N ^ 1 be given.

Define W to be the following space:

W is the space of P = (pi,... ,pr)?Pj e H° ^ such that

(a) P(0) = 0, ||P|| < Ci, degp, < D (i.e. p, e ̂ D).
(b) Jp(0) = 1.

(c) \Jp(z)\2 + |pi(z)|2 + ... + \p^z)\2 > co(l + M2)-^ ^ € C-.

(Recall that Jp(z) = detf-pl(.^)) .)
\OZk / ^-<J,k<r

We shall need certain estimates for these polynomials which can
be obtained by examining the inverse function theorem. We do this for
holomorphic mappings, but remark, for later use, that they remain valid
for smooth maps (see remark at the end of Lemma 2.1). In particular,
the statement (4) in §1 is an easy consequence of the smooth version of
Lemma 2.1.

The results in this section are closely related to those in [BT] and
[BY]. See, in particular, [BT] for a version of Lemma 2.6.

LEMMA 2.1. — Let Ri,R2 > 0, and let r,s be integers > 1. Let
f : By.(0, R^) x J3a(0, ̂ 2) -^ C7' be a holomorphic map (Bk(a, p) is the ball
of radius p in C^ centered at a 6 C^.

Suppose that /(0,0) = 0, and let D(z^) be the matrix

(|^(^C))^^^, z e B,(o, î), C e B,(O,%).
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Assume that we are given constants Mi, Ms, Ms > 1 and 0 < p, < 1
such that the following inequalities hold for \z\ < R^, |(^| < R^:

(a) Qf3- ^M^l^j,k<r,\detD(z^)\>^.
dzk
cfif

(b) 7T-̂ - <^KiJ,k<r.9z,9zk\- " - " • " -

(c) 9j3 ^ M ^ l ^ j < r , l < e < s .
9^

Then, there exists a constant 77., depending only on r, such that the
following statements hold.

Let 0 < 0i,02? 0 < min(J?i,-R2) be numbers such that

(2) 0i < 77.——^——, 0 < ̂ r—^—Oi, 02 < -^—0.v / ' M^M^ ~ 2 "Mr 2sMs

Then we have:

(i) For fixed ^ € Bs(0,2?2), the map z ^—> f(z^) is injective on the
ballBr(0,0i) CC7'.

(ii) For fixed < € ^5(0,^2), ^e imag-e under / of the ball Br(0,0i)
contains the ball of radius 6 centered at /(0,C) m € ' ' : f(Br(0,Oi)^) D
B.(/(0,C),0).

(iii) If |C[ < 02, there is a unique point z = z(C) € 5r(0,0i) for
which f(z^) = 0 and the map ^ H-^ ^(C) is holomorphic. In particular, if
X = {(^C) C ^(0,^i) x B,(0,J?2) | /(^C) = 0} then XnB,(0,0i) x
-Ss(0,02) = {(^(O^C) I ICI < 02} a^d this intersection is connected.

Proof. — During the course of this proof, we shall denote by K a
constant, not necessarily the same at each occurrence, which depends only
on r.

LetF(z^) =D(0,C)-l•(/(^C)-/(0,C)),andset^,C) = F(z^)-z
(^eB,(0,^i),CeB,(0,J?2)).

We have ^(0,0 = 0, ^(0,C) = 0, 1 ^ i j ^ r, |C| < R^. The
dZj

entries of the matrix J9(0,C)~1 are given by ±-— ' , where ^(C)det -0(0, Q
is the determinant of the (r—1) x (r—1) matrix obtained from D(0,^) by
deleting the z-th row and the j-th column. Hence, the norm of the linear
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map D(0,^)~1 : C7' —> C^ satisfies, because of assumption (a),

Mf-1

11-D(0,C)(3) <K-
P-

Using assumption (b), the definition of g and (3), we obtain

(4)
Q^i M,•r-l— <K-———-M^ l ^ i , j , k^r , \z\ < R^\C,\ < Ri.

JZi. 11,9zj 9zk ^
9gSince ——(0,C) = 0, this gives
CfZi

(5)
9gi K- ,̂0 ^.i.i.-Mr-^,Qz. ^

so that, if |^| <, Q\ and 0\ satisfies (2), we have

9gi
^ o - M ^ i -Qz, I - 2r

Consequently

(6) \g(^X)-g{w^)\<-^\z-w\ for |^|, |w|<0i.
This implies that, for \z\, \w\ < 0i, we have

|F(^C) - F(w,C)| > |^ - w| - |̂ ,C) - <7(^C)1 ^ ̂  -- w\

so that, for fixed C,^ z \—> F(z^) is injective on By(0,0i), and hence so is
z i—^ /(^, (^). This proves (i).

To prove (ii), we construct the inverse of F by the standard iteration
scheme. Set (po(w, () = 0 € C7*, \w\ < -0i, and define ^(w,^) for v >_ 1,

Zt

[w| < -0i, inductively by
Zt

^(w, 0 = w - ̂ (^-i(w, C), C).

Now, (6) with w = 0 implies that |p(^,C)| < ̂ \z\ for \z\ < 0i, so that, if

|(/^_i(w,C)| < 0i, we have |^(w,C)| < |w| +-0i < 0i for |w| < .0i. Thus

(^i/ is well-defined and maps By.(0, -0i) into B^(0,0i). Further

|^+i(w, c) - <^(^ 01 = 1^(^(^, 0,0 - ̂ (<^-i(w, c), C)|
<j|^(w,C)-^-i(w,C)| by (6),
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so that, since |<^i(w,C) - ̂ o(w,C)| = |w| < -_0^ we have |^+i(w,C) -
^(^01 < 2-l/-l(9l for i/ > 0. It follows that lim <^(w,C) = ^(w,<)

exists uniformly on B^(0, ̂ i) x B^O,^) so that ^ is holomorphic and
satisfies

^(w,C)=w-p(^(w,C),C), |^(w,C)|<0i for|w|< -V.

However, this implies, because of (6), that |^(w,C)| < 0i for \w\ < ̂ i.
Moreover, the equation y?(w, C) = w - p(<^(w, <), C) can be written

(7) F(^(w, C), C) = w, /((^(w, C), C) = /(O, C) + 2^(0, C)w, |w| < ̂ i.

In particular, for fixed C with |C| < R^ F(B,(0,0i),C) D B^(o, J^i) and

/(B^(0,0i), C) - /(O, C) contains the image of Br (o, 1^ under the linear

map D(0,C). Since [[^(O.C)-1!! < ^Mp1 (by (3)), we have

^(0,C)B.(0,^) DB,(0,^^) DB,(0,0)

by (2). This proves (ii).

To prove (iii), we remark that |/(0,C)| = |/(0,C) - /(0,0)| < sM^
for |C| < 02 (by assumption (c)). IfsM^ ^ ^0, then 0 lies in B^(/(0, C), 0),
hence in the image of B^(0,0i) under z ̂  /(^,C). Since by (2) and (3),

wo-v^oi^Mr-^Ma^
/A

<^M^<^•
the point -^(O.C)"1/^) lies in Br(o-(9i), and the point z(() e

Br\0, ̂ 9\\ with /(^,C) = 0, unique by (i), is given by

^O^-D^O-V^CU).
This proves (iii).

Remark. — Lemma 2.1 remains valid if we replace C'', 0s by R'', R5

and holomorphic maps by smooth (or real-analytic) maps. The proof above
implies that the function y is continuous. However, the standard inverse
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function theorem implies that it is smooth (or real-analytic). In particular,
the connectedness statement in Part (iii) implies that there is pi > 0
(depending only on n,Ci,D) such that for P e W, Qp H Z(P) C V°(P)
for 0 < p <: pi.

Recall that W is the space of all P = (pi,... ,py) with pj € H0',
P(0)=0, | |P| |^Gi,Jp(0)=land

\Jp(z)\2 + \Pi(z)\2 + • • • + \Pr(z)\2 > co(l + M2)-^, z e C71.
In particular, J p ^ 0 on Z(P), so that Z(P) is smooth and V(P) = V°(P)
is the connected component of Z(P) through the origin.

LEMMA 2.2. — There exist constants c\ > 0,Ni ^ 1 depending
only on CI,D,TI,CO,A^ such that if P € W and X is any connected
component ofZ(P), then, for any z € X, we have

Z(P) n B(^,ci(i + M2)-^) c x.

Proof. — In this argument, we denote by (7,m), (7^,^), (7/,m/),
etc. constants depending only on Ci, D, n, Co, TV.

If ^ € Z(P), we have P(z) = 0 so that |Jp(^)|2 > co(l + l^l2)"^.

Since pj e %D, ||P|| ^ Ci, we have |Jp(w)|2 ^ ̂ (l + Izl2)-^ if w e C71,

\w — z\ < 7(1 + l^l2)"771 (for suitable 7 > 0, m ̂  1). We apply Lemma 2.1
with fii = ^2 = 7(l+H2)-m, s = n-r, Q = Zr+j(l <: j <: s) and fj = Py

(replacing the origin by z). We have |9^- , -^L ̂  < ̂ (l+l^lT'I dZk dZj dZk I (7^
on B{z^ 1) (1 < z,j, fc < r, 1 < £ < s), and we can apply Lemma 2.1 with
61 = 7i(l + M2)-7711, 02 = 72(1 + M2)"7712, 0 = 73(1 + l^l2)-7713. Part (iii)
of the lemma implies that

{w € Z(P) | ̂  |w, - z,\2 < 02^ f^ \Wk - Zk\2 < Oi}
1 r-H

is connected, hence contained in X since z € X. The lemma follows.

DEFINITION 2.3. — Let E C C71 and let 7 > 0, m > 0. We set

T^m{E)= \J B^l+M2)-7").
z€E

LEMMA 2.4. — There exist constants 7,m > 0 depending only on
the constants defining W (viz. (7i, n, D, Co, N) such that
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IfP e W and Vi,..., Vi are the connected components ofZ(P), then
T^mW H T^m(Vj) = 0 ifi ̂  j .

This follows easily from Lemma 2.2.

LEMMA 2.5. — Let 7o,mo > 0 be given. There exist constants
7, m > 0 depending only on 70, mo and the constants denning W such that
^ If P e W and z i T ,̂̂  (^(P)), then,

TOI2 = bi(^)12 + • • • 4- b^)[2 > 7(1 + \z\2rm.

Proof. — For any z e C71, we have \Jp(z}\2 + \P(z)\2 >
co(l + l^l2)"^. Let w e Cn\T^,mo(^(P)) and suppose that

(9) i^Hi^lcoa+H2)-^
Then I.Mw^^co^+H2)-^. Now, since PeW and w^Ty^(^(P)),
there exist constants 7', m' > 0 depending only on 70, mo and the constants
in W such that

(a) \Jp(z)\2 > ^co(l + H2)-^ if ^ e B(w,7'(l + Iw]2)-^)

(b) B(w,7/(l-^|w|2)-m/)n^(P)=0.

Lemma 2.1 implies that there are constants 7//,m// > 0 (depending
only on 7', m' and the constants in W) such that the image of B(w, 7'(1 +
H2)-^) under the map P : C71 -^ C7' contains the ball B(P(w), 0) where
0 = 7"(1 + [w]2)-771". By (b) above, this image does not contain 0 € C7', so
that

(10) IPMi^a+H2)-^.
Thus if (9) holds, so does (10), which proves the lemma.

LEMMA 2.6. — There exist constants 70, mo > 0 depending only
on the constants in W such that the following holds.

Let P e W and ̂  = T^^JZ(P)). Then, there exists a holomorphic
map TT : n -^ C71 with the following properties:

(i) 7r(n) C Z(P), 7r(z) = z if z € 2(P);

(ii) Ifz= {z^...,Zn) and7r(z) = (71-1(2;),... ,71-^)), wehayeTTfc(z) =
^ for r < k <^ n;

(iii) \^{z) - z\ < 1 for any z € 0.
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Proof. — Since |Jp(w)|2 > co(l 4- \w\2)-N ifw e Z(P), we can
choose 7i,mi > 0, depending only on the constants in W, such that

\Jp{z)\2 > |co(l + M2)-^ for ^ € T^(Z(P)).

By Lemma 2.1, there exist (72,^2), (73^3) (depending only on the
constants in W) such that if w € Z(P) and we set

A(w) == {(^i,...,^) e C71 I ̂ >, -w,|2 < ̂ , f>, -wfc|2 < 0j}
1 r+l

with (9i = 72(1 + H2)-7712, 02 = 73(1 + H2)-7713, then

A(w)n^(P)={(^w)(^l,...,^),...,^w)(^l,...,^),^l,...,^)|

^-Wfc^^2}

r+l

where ^(w) = (^w),... ,^w)) is a holomorphic map of Bn-r^",^) C
C71"7' into By.(w',0i) C C7'; here we have written w' = (wi, . . . ̂ ^w" =
(w^+i, . . . ,w^). Moreover, if w € Z(P) and A(w) H A(w) ^ 0, Part (i)
of Lemma 2.1 implies that (^^,^+1,...,^) = (^W.^+i,... ,2;n) on
A(w) nA(w).

Thus, we may define a holomorphic map

7T: [J A(W)-Z(P)

w€^(P)

by setting 7r(^i, . . . ,^) = (^(^+1,... ,^),... ,^(^+1,... ,^),^+i,
. . . ,Zn ) for z € A(w). If we choose 70, mo such that 70 < 1 and
^mo^^)) C U ^^ then TT | Ty^o (£'(?)) has the properties

we2:(P)
stated.

LEMMA 2.7. — Let 0 < 7 ^ 1 and m be an integer > 1. Let
U = { z e C ' n ' | \Rezj\ < 1, |Im^| < 1, j = 1,... ,n}.

There exists a constant C* depending only on n and a sequence
{Uv}v>Q of open sets of the form

Uy = o.v + p (̂7, Oi/ G C71, p^ > 0,

with the following properties:

(a) U ̂  = C71.
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(b) C^{1 + M2)^ < ̂  < 0^7(1 + la.l2)-771, ^ > 0.

(c) If, for t > 1, we set Uy(t) = a^^-tp^U when Uy = CLy^-pyU, then,
for any t > 1 and i/ ^ 0, the number of p. such that Uy(t) n UM) ̂  0 is
<G^.

Proof. — Let No = [2/7] be the integral part of 2/7. We have
- < - - 1 < No < -. For k > 0, let Nk = 22A;7nM). Let Q =
[z C C71 | \Rezj\ < 1, [Im^-l < 1, j = l , . . . , n } be the closed unit
cube in C" and, for k ^ 0, let Q^ be the closed cube of side 2^ in
C71 : Q^) = 2^0 = {^ € C71 | |Re^-| < 2^ \lmzj\ < 2^}; we set Q(-1) = 0.

Divide the interval [x € R | -2^ <,x<,2k} into equal intervals J^,
t = 1,...,L, of length N^ (so that L = 2fc+l^). Consider the cubes
of side Nj^1 in C" obtained by taking products of the 1^ : Rezj e I^\
Imzj el^\ K^-,^ <L.

Let Q^, a = 1,..., afc be a list of those cubes of side N^1 described
above which are not contained in Q^"1). Then U Q^ = Q^\ int (Q^"^).

Now, if z € Q = Q(°), 1 < 1 + \z\2 < 2n + 1, while 1 + 22(fc-l) <,
1 + \z\2 ^ (2n + 1)2^ for ., e Q^\ int (Q^-1)), fc ^ 1. In particular, if
Q^ = a + pQ, then

2^-2 < 1 + |a|2 ^ (2n + 1)2^, 2p = AT,1, l•22fcm < Nk < ]-22km^l

7 7

It follows that if Q^ = a + pQ, then

(11) 2-^-27(1 + la]2)-771 < p ^ (2n + 1)^(1 + la]2)-771.

Let 0 < e < 1, and set U^ = U^\l + e) = a + (1 + e)p£/ if
Q^ = a + pQ; then Q^^ c ^fc); if {^>o is an enumeration of {U^\
k > 0, a = 1,..., afc}, then, since |j U Q^ = C71, it follows that

fc^Ol<Q<Qfc

{Uy}y>Q covers C71 which is (a). Moreover, (11) implies that [Uy}v>Q
satisfies (b) with G, = 4(n + 2) (since 0 < e < 1).

It remains to prove that {Uy}y>Q satisfies (c).

We first remark that if t > 1, and Q^d) H Q^\t) ^ 0 (where
Q^\t) =a-}-tpQ if 0^) = a + pQ), then we must have \k - £\ < t + 2;
in fact, if t > k +1 + 2, then Q^) is contained in the cube |Re^|,
| Im^-1 < 2^ +1 - 1 (since any cube Q^ has side < 1) while Q^\t) lies
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outside I Rezj\, | lmzj\ < 2^-1 -1 + 1. Hence, if 2^-1 -t+l> 2^+1-1,
in particular if i > k +1 + 2, we must have Q^\t) H Q^\t) = 0.

Fix fc, a. From the remark above, it follows that if Q^ (t)nQ^ (t) ̂  0,
then Qy c <% (A^) where Ai is an absolute constant. Moreover, the
side of Q^ is > A^p, where p is the side of Q^, and A2 is also an
absolute constant. The number of cubes of side > A^^p contained in a
cube of side A^p and no two of which have interior points in common is
< C^. Replacing t by (1 + e}t <. 2t we obtain (c).

This proves the lemma.

LEMMA 2.8. — Let 0 < 7o <: 1 and let rriQ be an integer >, 1. There
exists a sequence Cjc = Cfc(n, 70? ̂ io) of constants, k = 0,1,... (Ck depends
only on fc, n, 70? i^o) such that the following holds.

Let E c C71 be any subset. For a function (p, write supp(^) for its
support.

We can find a C°° function <p : C71 —> R with the following properties:

(a) 0 $ ̂  ^ 1, ^ | E = 1, supp(^) c T^rn^E).

w u ̂ ''̂ ^"-a^-^- -+
 • • •+an+ft+ • • •^-k-

denotes any differentiation of order k > 0, we have

\D^^p(z)\ < Cfc(n,7o,mo)(l + l^l2)^0, V^ € C71.

Proof. — Let C* be the constant in parts (b), (c) of Lemma 2.7.
Set m = rriQ, and choose a constant 7 > 0 (depending only on C^, n, 70, m)
with the following property:

(12) Let Q(a, p) = a+pQ (Q = closed unit cube in C71). If & € Q(a, p) and
p < 2(^7(1 + H2)-771, then Q(a,p) C B(6,pi) with pi = 70(1 + H2)-771.

Let U be the open unit cube in C71 and {U^}^>o, Uy = dy + pi,(7, be
an open covering of C72 with the properties given in Lemma 2.7. We set
Vy = dy + 2pi,C7, ;/ >: 0.

Let ^ e ^^(C71), 0 < ^ < 1 be such that ^ = 1 on Q and
supp(^) C W.

Define ^(^) = -0[^—^V Then ^ = 1 on Q(ay,py) and
\ pi/ /
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supp(-^) c ̂ . Moreover, if D^ is a differentiation of order k, we have
\D^^(z)\ < p^sup|D^|, z e C71.

c71

Since supp(^) c Vy and €^7(1 + la^2)-771 < py < 0^(1 + [a^2)-771

(property (b) in Lemma 2.7), this implies that

\D^^(z)\ < Cfc(7,m,n)(l + \z\2)km, z e C71.

Let S be the set of v > 0 such that Vy n E -^ 0, and define
W = E ̂ ), ̂ ) = —r E ̂ (^).

^=0 ^{Z) ^s

^ is C00 since {^} is locally finite, and ^ > 1 on C" since ̂  = 1
on Uy and UE/^ = C71.

If 2; e £? and v ^ 5, then z ^ Vy, so that z ^ supp(^^). Hence, for
z e E , Y. ̂ ) = ^(^), so that ^(z) = 1.

^€5

Further, if z € supp(^), then z € supp(^) for some v e S (since
{V^} is locally finite) so that z e Vy for some v with ^ H E i=. 0. The
choice (12) above of 7 shows that we then have Vy c B(fr,pi), b ^ E,
pi = 70(1 + l&l2)-771, so that ̂  c T^,^(E). Thus supp(^) c 7^(E).5

We have \D^^(z)\ < Ck^m,n)(l + l^]2)^; by property (c) in
Lemma 2.7, we therefore have

\D^(z)\ < C^C^m^l + l^l2)^,
and the same argument, applied to the numerator, gives

^(fc) E^MI ̂  ̂ ^(7^,^(1 + l^2)^.
1^65

These inequalities, and the fact that ^ > 1 on C71 imply that
p(^)| < q,(7,m,n)(l + Iz]2)^,

thus proving the lemma.

3. Separating components of a smooth algebraic variety.

Let n > 2, 1 ̂  r < n - 1, D > 1, Ci > 0, CQ > 0 and N > 1 be given.
They define the space >V introduced in §2:

W is the space of r-tuples P = (pi,... ,p^), .̂ e M15, 'P(O) = 0,
11^11 <C^ Jp(0) = 1 such that

IJp^^+IP^^coO+M2)-^
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(where Jp(z) = det(0^-} ).
\dZk/ Kj,k<r

The aim of this section is the proof of the following theorem.

The formalism of the Koszul complex is also developed in [KT] and
applied to a closely related problem.

THEOREM 3.1. — There exist constants C", D' > 0 depending only
on n, D, Ci, Co, N such that the following holds.

Let P € W and let X be any connected component of Z(P) = {z €
C71 | P(z) = 0}.

We can find a polynomial F(z\,..., Zn) with the following properties:

(i) degF^JiFII^G7.

(ii) F [ X = 1, F | Z(P)\X = 0.

We begin with some algebraic preliminaries.
PLet r > 1 be an integer and let Ep =A C7' be the p-th exterior power

of C7' (EQ = C, £'1 = C7' and E p = 0 i f p > r).

Let ei , . . . , Cy. be the standard basis of C^Ci = (0,.. . , 1,..., 0) with
1 in the z-th place].

IfJis an increasing p-tuple I = (z i , . . . , ip) with 1 < i\ < • • • < ip < r,
set ej = e^ A - • • A Cip € I^p. (If I is not in increasing order, we use
the convention that ej is alternating in the indices z i , . . . , ip.) The {ej}, J
increasing, form a basis of Ep.

(1) Let a;i,..., Xr € C. We define a map ^ = /tp = /<p(a;),

/ t : -E'p —^ £p—i

as follows: /^ is the C-linear map such that
P

(2) K,(ei) = ̂ (-^"^ej^^.ej^} == e^ A • • • A e^ A • • • A e^,
fc=i

where the hat over e^ indicates that it is to be deleted. On J?i, K : E^ —^ C
is the map ̂  u^Ci t-^ ̂  XiUi. One checks easily that the map KOK : Ep^i —>
Ep-i(p^ 1) isO:

^ = 0,

so that one has an algebraic complex, usually called the Koszul complex of
(a:i,...,a^):
(3) 0-^Er - ' ^ E r - i ^ ' - ' ^ E z -^Eo^O.
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Let y-i,..., yr be any r complex numbers. We define a map h = hp =
hp(y):

h:Ep^Ep+i(p>.0)

by
r

(4) h(v) = (^ y j e j ) A -y, z; € î p.
j=i

LEMMA 3.2. — Let $ = ^ ̂  • ̂ . We have:
j=i

(5) ^(v) =$•-(; if v eEo',

(6) (/tfa -h hn)(v) = ^ - v i f v e Ep, p > 0.

Proof. — This is a standard fact about the Koszul complex. The
verification runs as follows.

If v e EQ = C, h(v) = vy^ + • • • + vyr Cr, and K(h(v)) = ̂  X j y j • v.

Let p > 0. It is enough to check (6) when v = ej for some
I = (zi < • • • < ip). We have

r p

Mej) = (^VjOj) A^-l^-^ej^}
j==i fc=i
P p

= ^(-l)fc-la;^^^fce^fc A ej\{^}+ ̂  ̂ (-l)^1^^- A ej\{^}
fc=l j^I k=l

P P

= (Z^^)ej+^ ̂ (-l^'^^ejAej^,}
fc=i j^j fc=i

while
r

^(ej) = ̂ (^2/j-ej A ej^ = ̂ VjK(ej A ej)
J=i j^J

P
= ̂ x^y3eI + 1^2/j ̂ (-1)^^ A ei^y,

W W fc=i

adding these two equations, we get (6) for v = ej, thus proving the lemma.

Let 0 < q < n, 0 < p < r. We denote by Aq(Ep) the space of C°°
forms of type (0, q) on (7 with values in Ep. If J = (ji < . • . < ^) is an
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increasing q-tuple of integers jk, 1 < jk <: n, and we set dzJ = dz^ A • • •
/\dzjy, an element uj e ^(Ep) can be written uniquely in the form

uj=^vj^dz'7, vj=^^ej,J=(zi < • • • < % ? ) ,
J i

where the v^ are C°° functions on C71. We set

K^I^EM^I'-EEl^)!2-
J J J

The 9-operator extends to a map (denoted again by 9)

a^W-^W^^O.
If u} = ̂  i^ej (g) c5'7, we have

j,z
__ n r\ j9ct; := £ S ̂ J-e/ (g) ̂ A d?>7-
I,J r=l ̂

If A, • • • , /r are C00 functions on C", we define a map K = /(«(/) :
AW -. A"(E^) by

P

(7) K (E ̂ joi ^ dz^ {z) = E v^) E(-l)fc~l^ (z)eA^} ̂  ̂ <
^^ J,J fc=i

Note that if /i,..., fr are holomorphic on C71, then

KQ^) = 9K(uj), uj c A^Ep).

In fact, in terms of bases, K.(uj) is given by multiplication by a matrix
of holomorphic functions, and this operation commutes with 9.

If ^o C C71 is open, and ^i,. . . ,pr e C°°{flo), and we denote by
^(Ep) the subspace of Aq(Ep) consisting of forms uj with supp(a;) C ^o,
then, we can define a map h = h^g) : A^(Ep) -^ A^(Ep^) by:

(8) h(^v1^ 0 dz^ = E E E^^- A ̂ ) ̂  ̂ J

J,J J 7 j=l

(i.e. we just operate on the coefficients ofthedz'7). Lemma 3.2 implies that
r

(9) Kh = multiplication by E fj9j on ^(^o), 9^0 ,
i

and
y

(10) Kh + fa^ = multiplication by E /j^ on ^(^p)^ P > 0, q > 0.
i
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We shall use the following Z^-existence theorem for the 9-operator
due to Hormander [H].

THEOREM 3.3. -^ Let q > l,m > 1, and let u; be a C°° form of
type (0, q) on C71 with QUJ = 0 and such that

I \u;\2(l-^[z\2)~md\<oo {d\= Lebesg-ue measure).
Jc71

Then, there exists a C00 form a of type (0, q—1) on C71 with

9a=u, ( \a\\l + M2)-771-2^ < / M^l+H2)-771^.
^c71 Jc71

Note. — The existence of a form a with Lj^ coefficients with
these properties is proved in Hormander's book [H], §4.4 (the second
edition). If H is the Hilbert space of forms f3 of type (0,g-l) with
f \(3\2(l 4- l^l2)"771"2^ < oo, we can choose a such that it is orthogonal,
in H, to all forms f3 € H with '9(3=0 [since if a' is the projection of a
onto the orthogonal complement of {f3 e H,1)f3 = 0}, then 9a = 9o/ and
f H^l + H2)-771-2^ < f H^l + M2)-771-2^].

Now, if q = 1, any solution of 9a = a; is smooth. If q > 1, a is, in
particular, orthogonal to any form 9(p, where (p is of type (0, q - 2) and
is C°°_with compact support: J(a,9^?)(l + \z\2)~'m'~2d\ = 0. This implies
that 9*((1 + l^l2)-771-2^ = 0, where 9* is the formal adjoint of Q in the
Euclidean metric, viz., if / = ^ fjdz'7, then

1.71=9-1

s'f/)' E (E^)^.
|K|=g-2\=l ^ /

The equations

9a = a;, u) smooth, 9*((1 + \z\2)~m~2a) = 0

are sufficient to guarantee the smoothness of a (see the proof of Theorem
4.2.5 in Hormander's book [H]). In fact, they can be written 9a = ci;,
9 a = Lo(a), I/o an operator of order 0 with smooth coefficients. In
particular

(99" + 3* 9)a = (9Lo)(a) + 9*o;;

since 99" + 9*9 is elliptic of order 2 and 9Lo is of order 1 with smooth
coefficients, once can simply apply the standard regularity theorem for
elliptic operators.
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Note that we are only using Hormander's theorem for C71, not for
arbitrary pseudoconvex domains. His method is very simple in this case.

COROLLARY 3.4. — Let q >_ 1 and a; 6 Aq(Ep), p >_ 0. Assume
that ~QUJ = 0 and that ^^(1 4- {z^^dX < oo. Then, there exists
aeA^^Ep) with

9a=a;, I lal^l+H2)-771-2^^ / \u\2 [1 + {z^-^ d\.
Jc^ Jc"

If u} e A^Ep) and JcnH^l + H2)-771^ < oo, we write

M2n= I M^l+M2)-771^.
Jc"

Proof of Theorem 3.1. — In the course of this proof, all constants
7,7',7^,m,m',my, C^\ Nj, ... will, unless otherwise stated, depend only
on the constants n, D, Ci, r, CO,A^ defining W; dependence on other
parameters will be explicitly indicated.

Let P € W and let X = Xi, X^,..., Xf be the connected components
of Z(P) = {2; € C" | P(^) = 0}. [The number t is < D7' as can be proved
using Bezout's Theorem; see the remark following Lemma 5.7. We shall not
need this fact.]

By Lemma 2.4, we can find 7 > 0, m > 1 so that
T^m(Xi) H T^m(Xj) = 0 if i ̂  J.

Now, if S C C71 is connected, so also is T^^rn(S) (for any 7 > 0,m > 0).
Thus

r^(z(P))=Jr^(x,)
i

is the decomposition of Ty^(Z(P)) into connected components.

Choose y > 0, V < 7 such that if E = 7y^(Z(P)), then
Ty^(E) C T^(Z(P)). Set fl = Ty^mW = ^,m(Xi). Then Ty,^) C
Ty^(E) C U^mW) and Ty^rnW is connected; since the Ty^(X,) are

i
pointwise disjoint and connected, and T^^rnW H T/y^(Xi) ^ 0, it follows
that

Ty^W C r^(X).

Hence, using Lemma 2.8, we obtain the following:

(11) There exists (p e C^C71), 0 ^ y? ^ 1, such that
^ = 1 on ^, supp(^) C T^^(X),
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and such that, for k > 0, there are constants Cj, depending only on
k^^^m.n with

\D^y(z)\ ̂  Ck(l + H2)^, z € C71, A; ^ 0
for any differentiation D^) of order fc.

Clearly ̂ \Xj =0ifj > 2.

Lemma 2.5 gives us:

(12) There exist constants 7i > 0, M > 1 such that

TOI^El^)!2
J=l

> 71 (1 + M2)-^ if z 1 Ty^Z(P)) = |j Ty^X,).
1=1

Consider the Koszul complex defined by the functions (pi,... ,pr):
(13) 0 - A^Er) ̂  ... -. A^E,) ̂  A^Eo) -. 0,
K being defined by:

P
^(ei 0 ̂ J) = ̂ (-l^-^^ej^} 0 di-7,

fc=i
J = (zi < ... < ̂  j = (̂  < ... < ̂ ).

Let ^»(£'p) be the space of smooth (0, q) forms a; on C71 with values
in £p such that

supp(o;) H Z(P) = 0.

We define a map h : A^Ep) -^ A^(Ep^) as in (8) above with
^^^(P^^./IPp:

h^e^dz^ =E^(E ̂ ) Ae,^.
^^ J,J j=i ' '

since ^1 |̂ 2 + • • • + Pr —— = 1 on ^o = C^^P), we obtain, from (9)
and (10) above, the following:
^ ^ == identity on A^Eo), q > 0, and,

Kh + h^ = identity on Ag(£p) for j? > 0, q >_ 0.

LEMMA 3.5. — There is a sequence {Ck}k>o of constants depend-
ing only on k and the constants in W, and N^ > 0 (depending only on the
constants in W) such that
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Ifu e A^{Ep) is such that supp(o;) n7y,yn(Z(P)) = 0, and if we have
estimates

\D^^(z)\ < Ak(l + M2)^,^ C'.fc > O.Afe < Afc+i.Mfc < Mfe4-i,
then

\D^h{uj)(z)\ < CkAk(l + |^|2)A^(fc+i)^ fc > o,^ e C71;
here D^ runs over all differentiations of order k.

Proof. — The coefficients of the form h(u) are linear combinations
of functions of the form _

î "'
u being the coefficient of ej 0 Sz3 in a; for some J,J. Since ||pj|| < Ci,
degp^- < D and \P{z}\2 > 71(1 + l^]2)-^ on the support of u (by (12)),
we have, for i ̂  0,

|^(^) |< C,(l + |^)3^(WW

(C^ depending only on i and the constants in W), while |D^~'^^tt| <
Afc(l + \z\2)Mk (0 < i < k). The lemma follows.

Returning to the proof of Theorem 3.1, consider the function (p
described in (11) above. Since (p = 1 on fl. = Ty/^(X) and supp(y?) C
r^yn(X), we have

supp(^)cr^(x)\a
We define, successively,

<^i = h(9(^), (p2 = h(9(pi),..., <pp = h(9(pp-i),..., (pr = h(9(pr-i)'
These are well-defined since snpp(9(p) H Z(P) = 0 and neither 9 nor /i
increases supports. Moreover, we have

(pp € J^{Ep) for 1 ^ p < r.

Now 9</? e ^(-Ko) and, by (14) ^(y?i) = K,h(9(p) = ~9(p. Hence
/^(9</?i) = 9^(y?i) = 9(9(p) = 0, and (14) now gives

9^i = (^ + hi^)(9^t) = K,h(9^) = /t((^2)-
By induction, we obtain

(15) For 1 ̂  p ^ r, supp(^p) C T^(X)\^, and

^(^p) = ̂ p-i fof 2 ^ p < r,
^((/?i) = 9(^.
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Moreover, by Lemma 3.5 and induction on p, we obtain [since
supp(^) n7y^(Z(P)) = 0 and [J^a^)] < CWl + [d2)^4-1)771

by (11)]:

(16) There is a constant ^3 > 0 (depending only on the constants in
W) and a sequence {C^}^o of constants depending only on k and the
constants in W such that

I^'W^I < W + M2)^)^, ^ e C71, A; > o, i < p ^ r.
We now make the following remark:

(17) For g ^ O , the map K : Ag(J^) -^ Ag(^-i) is injective.

In fact, if v e Er =J\ C7', v ̂  0, we can write v = ue^ A • • • A Or u € C,
u 7^ 0 and

r

/<uei A • • • A er 0 di-7) = ^(-1)^-^(^)61 A • . • A efc A .. • A e^ 0 ̂
fc=i

which is ^ 0 unless all the pk(z) = 0, hence is -^ 0 if z ^ ^(P).

Now, |P(^)|2 < C(°)(l + Izl2)^ since p, e ̂ D and ||P|| < d. Hence:

(18) |/.(a;)(^)|2 < C^(l + l^l2)1'^^)!2, ^ € C71, a; € ̂ (^).

By construction, 9(pr_e ^\Er) and i^(9^) = 9(^(^r)) = 9(^r-i)
(by (15)) = 0 [K and 9 commute since the pj are holomorphic]. Thus, by
(17), we must have 9(pr = 0. Moreover, if we take p = r, k = 0 in (16), we
find that

/ l^po+M^-^-'-^A^c^).
Jc"

By Corollary 3.4, there exists ̂ -\ e Ar~l(Er) with

(19) 9^r-i = ̂  ll^-ill^ = / l^-il^l + l^l2)-7711^ < C^
Jc"

where mi = N3 + n + 3.

Consider now ̂ i - ̂ r-_i) € .A7'-1^-!). By (15), (19), we have
9{(pr-i - ̂ r-i)) = 9^>r-i - ̂ (^r-i) = 9^r-i - ̂ r) = 0. Further, by
(16), (18), (19), there exist m^ > 0 and C^ > 0 so that

(20) ||̂ -i -^-i)||^<C(3),

and we can apply Corollary 3.4 again to find ^r-2 e ^7'-2(£'^_l) such that,
with m2 = m^ + 2,

^r-2 = ̂ -1 - ̂ (^r-l), ||̂ -2||̂  ^ G^.
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We can iterate this procedure to find Vv = 0,'0y.-i?-• • 5'0o? and
constants 7712 > 0, m^ > 0, . . . ,mr > 0, C^, C^,..., C^^ > 0 such
that

^r-q € A^^Er-q^l)

(21) 9^r-q = ^r-g+1 - ̂ (^r-g+l)

H^H^C^1) for Kq^r.
[Note that if the results in (21) have been proved for 1 <, q <, qo — 1, then

0(^_go+l - K^r-qo-^l)) = 9(pr-qo-{-l - ^(Q^r-qo^l)

= 9(pr-qo+l - ̂ r-go+2 - ̂ (-0r-qo+2))

= 9ipr-qo+l - ̂ ('0r-go+2) = 0

by (15), and we can apply Hormander's theorem, Cor. 3.4, to obtain (21)
for q = qo.}

We have ^o e .4° (Ei) ̂ Consider ^ - /^o) e A°(Eo) = C00^).
Now, 9(y? — ^(^o)) =9^— ^(9'0o) = 9tp— ^(y?i — ^(^i)) =9^— /t((/?i) = 0
by (15). Thus:

(22) The function F = y? — /^(^o) is holomorphic on C71.

Moreover, by (18) and (21), we have

{ l^o)!2^ + H2)-7717'"2^ ̂  c^c^^,
Jc"

while J^J^I^l+l^l2)-71-1^ < ^n(l+|^|2)~n-ldA(< oo). Consequently,
there exist constants m(> n+1) and C > 0 depending only on the constants
in W such that
(23) / IF^I^I+H2)-^^.

JC71

r
Now, -0o ^ A°(Et), and we can write ^o = S'00jej, where '0oj ^

j=i
^^(C71). Hence /<(^o) = E^OjPj. In particular, ^(^o) I ^(P) = 0. Thus

j'=i
we have
(24) F = ip on Z(P); i.e. F\X = 1,F|X^- = 0 for j > 1.

Thus, we have only to show that F is a polynomial satisfying the
required estimates to complete the proof of Theorem 3.1.

Since F is holomorphic, the function \F\2 is subharmonic. Hence, if
w € C71 and R > 0, we have

\F(w)\2 < . 1 _, / |F(z)|2dA.
' v / 1 -vol(B(w,^))7B(w^)1 v / 1
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If H > 1, we take R = ^\w\ and remark that 1 -+- \z\2 < 3(1 + |w|2) for

\z - w\ < ̂ H, and vol(B(w,R)) = vol(B(0, 1)) • H271. Hence

l^(w)|2 < ci(m,n). (1 + H^H-271 / IF(^2^
_ _ Yc- (1 + M2)7'1

< C2(m, n). C(l + [wl2)771-71 (by (23))

w)r ^ ci(m,n). (1 + H^H-^ / ^^^d\
en (1 + \z\2)m

where ci(m,n) and c^m.n) depend only on m and n. It follows that F is
a polynomial of degree <m-n.

Also, for |w| < n, we have

l^(w)|2 < c. / \F^dX < C3(m,n) / .-^——dA
J\z\<2n Jc^ (1 + l^l2)771

<: C^, C# depending only on the constants in W.
By Cauchy's inequalities:

9^F
9^r—g^W <^c#^=(ai,...,<).

Since F is a polynomial of degree < D' = m-n, this proves that ||F|| < C1

where C1 depends only on the constants in W. This and (24) complete the
proof of Theorem 3.1.

A similar argument, combined with Lemma 2.6, can be used to prove
the following extension theorem.

THEOREM 3.6. — There exists a constant D' > 0 depending only
on the constants in W, and, for M > 0, a constant C(M) depending only
on M and the constants in W such that the following holds.

Let P eW and let f be a holomorphic function on Z(P). Assume
that there are constants A > 0, M > 0 such that

lA^I^AO+H2)^ for ^CZ(P).

Then, there exists a polynomial F of degree < M + D' such that
F | Z(P) = / and ||F||2 < C(M)A.

Sketch of Proof. — By Lemma 2.6, we can find 70,^0 and a
holomorphic retraction TT : T^,^(Z(P)) -^ Z(P), \7r{z) - z\ < 1.
Choose 7 > 0 (7 < 70) such that if 0 = T^(2(P)) then T^oW C
^moG^P)), and ̂  e C00^71) with ̂  = 1 on ̂ , supp(^) c T^ ^o(Z(P)),
\DW^(z)\ < Ck(l + l^2)^ (^ > o). Consider the C°° function on
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C71 : ̂ o = ^ • (/ o TT) on T^mo(^(P)), ^ o = 0 outside T^,(Z(P)). The
form uj e Al(Eo) defined by uj = 9(/?o (= (/ o 7r) • 9y?) has support outside
0. We can repeat the proof of Theorem 3.1 to find a controlled function
-00 € A°(E^) such that 9(y?o - ^C0o)) = 0, so that F = y?o - ̂ ('00) is
holomorphic and F | Z(P) = </?o | -^(P) = /. The argument in Theorem 3.1
gives the estimate

/ iFl^l+l^-^^dA^A
Jc"

(C", jD' depending only on the constants in W), and the proof is completed
as above, using the subharmonicity of |F|2.

4. Polynomials vanishing on a smooth variety.

In this section, we prove the following theorem.

The referee has informed us that a stronger version of Theorem 4.1
below is contained in recent work of F. Amoroso [A].

THEOREM 4.1. — Let n > 2, D > 1, 1 < r < n - 1, Ci > 0,
Co > 0, N >_ 1 be given, and let W be, as before, the space of r-tuples
P = (pi,...,pr) with pj € ^^(O) = 0, ||P|| ^ Ci, Jp(0) = 1 and

\Jp(z)\2 + \P(z)\2 > co(l + M2)-^, where J p ( z ) = det(|^)
\dZk/ Kj,k<,r

There exists a constant D' > 1 depending only on the constants
denning W, and, for d > 1 a constant C(d) depending only on d and the
constants in W such that the following holds.

Let d > 1 be an integer, and let F e U6' be such that F(z) = 0,
\/z e Z(P) (= {z e C711 P(z) = o}).

Then, there exist polynomials Fi,..., Fr such that

(l.a) F = E F,p,
j'=i

(l.b) degFj <d-{-D'

(l.c) ||F,||<G(d)||F||.

Proof. — During the course of this proof, constants 7,7', 7j, m,
m', mj, C, C", (7^ etc. will, unless otherwise stated, depend only on the
constants defining W. If f e ,d , . . . are other parameters, we write C(fc,W),
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C(d, W) etc. to indicate constants depending only on the parameters in
question and on the constants defining W.

If z = (^i , . . . , zn) e C", we write z = (x, <) with x = (a;i,..., Xr) =
(^1, . . . , Zr) and C = (Cl, . . . , Cn-r)) = (^+1, . . . , Zn).

Given G e 7^, we can write

(2) GO., C) - G(y^ C) = ̂ >, - ̂ )Ag^,./, C)
.7=1

where

(3) Ag^.C) = ̂  J^(tx + (1 - ̂ ,C)^.

Clearly

(4) AQ is a polynomial of degree < d - 1 in x,y^ and IJA^H <
ci(d,n)||G||, where HA^H denotes the norm in the space of polynomials
in n + r variables and ci(d, n) depends only on d and n.

By Lemma 2.6, we have the following:

(5) There exist 70 > 0, mo > 1 such that, i f P e W a n d n = T^^(Z(P)),
we can find a holomorphic map

^C)=(7ro(^C),C), ((^,C)e^)
of ^ into C71 with the properties: Tr(^) c ^(P),TT [ Z(P) = identity, and
ko^, C) - x\ < 1. (By definition, 71-0 is a holomorphic map of fl, into C7'.)

We write 7To(.z;, C) = (^(x, C ) , . . . , 7Tr(x, C)). By Cauch^s inequalities,
if k > 0 and (rr, <) = z € T^/2,^(^(P)), then

(6) I^^.OI <C'l(&,>V)(l+H2) fcm°+ l .

We use formulae (2), (3) for p, to write
r

pz(^C) -pz(2/,C) = ̂ pzj(^2/,C)(^ - y j )
j=i

,.1 Q

with pij (x, y, C) = / —i(te + (1 - t)y, Odt. If z = (x, C) £ ̂ , we have
JQ ^^j

r

Pi(x,C,) = ̂ Pij(x,(;)(xj - ̂ (;E,C))
3=1

where Py(a;,C) = -Py(a;,7i-o(a;,C),C). Using (4) with G = p, and the fact
that |7To(a;, C) - x\ < 1, we obtain:
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(7) if z = (a;, C) e 0, |Py {x, C)| ̂  (^(l + \z\)°-1 ̂  CW(1 + \z\2)D/2.

Now, if z = {x, C) € -Z(P), we have v(z) = z, 7i-o(a;, C) = a;, so that

(8) if (a;, C) 6 Z(P). then Py(.r, C) = Jo1 ||̂ (te+(l-t)a;, C)dt = ̂ (a;, C).

Since det(^) |2 > co(l + \z\2)~N if 2 6 2(P), we have
\ (JZi / I

(9) | det(P^(;r, C))|2 ^ co(l + l^l2)-^ if ^ € Z(P).

From (7) and Cauchy's inequalities we obtain:

(10) If z = (rr,C) e T^/2,^(Z(P)), we have

I^^P^^^)! < C2(^,W)(1 -+- |^|2)^/2+fcmo^ ^ > o.

From (9) and (10), we deduce the following:

(11) There are constants 71, mi and ^^m^^y > 0,m^ ^ 1, such that
T^(WP)) C T^/2,^(Z(P)) and |det(P^(^,C))|2 ^ 72(1 + \z\2)-^
for(^c)=^er^,^(z(P)).

From (7) and (11) we obtain:

(12) There exist constants C^.m^ > 1 such that the matrix (P^(a;,C))
is invertible if (rr,C) € T^^(Z(P)) and the inverse matrix (Qzj(^,C))
satisfies

|Q^,C)1 < c^(i + l^l2)^, (^,0 = ̂  e T^,^(Z(P)).
(13) For 1 ̂  i < r

r r r

^ Qik{x, (:)pk(x, C) = ̂  ̂  Oife(a;, C)Pfcj(a;, C)(^ - 7r,(a;))
fc=i j=i fc=i

=Xi -TTi(x,^.

Let now F be a polynomial of degree < d such that F | 2(P) = 0. If
z = (a;, C) £ T^,^(Z(P)), we have (using (2), (3) with G = F)

(14) P(2)=F(a;,C)-P(7ro(a;,C),C)
r

=^A^(^7ro(^C),C)(^-7r,(^0)
j=i

r

= ̂  A^(a;,7ro(a;,C),C)<9jfc(a;,C)Pfc(^,C).
j,fc=i
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Using (4) for G = F and the fact that |7To(a;,C) — x\ < 1, we see that
|A^,7ro(:r,C),C)12 < cs^VWfO + MV. This, (13) and (14) give
us:

(15) There exist constants 7 > 0,m,m > 1 depending only on the
constants in W, and a constant G(d, W) (depending only on d >, 1 and
the constants in W) such that the following holds.

If P € W , d > 1, F e ^ and F | ^(P) = 0, then we
can find holomorphic functions ^i , . . . ,^r on ^^(^(P)) such that, for
z e T^(Z(P)),

F(^) = ̂ )pi(^) + . . • + 9r(z)pr(z)

and
i<^)i2 + • • • + i^^i2 < w wm2^ + i^i2)^.

We choose (y,m'), (7/',m//) such that, if P € W,B(w,7'(l +
IW]2)-7717) C Ty^(Z(P)) for any w € Ty,^(Z(P)) and B(w,7"(l +
\w\2)~'m'") C r^,yn(Z(P)) for any w € ry^/(Z(P)). We may assume that
7" < 71, m" > mi (71,^1 as in (11)).

By Lemma 2.8, we can find ^ € C00^71) such that 0 < ^ < l , y ? = l
on ry,^(Z(P)), supp(^) C Ty/^(^(P)) and \DWy(z)\ ^ Cfc(W)(l +
j^j2^fcm /^ > O,C'A;(W) being a constant depending only on k and the
constants in W.

Let P € W, let F e 7^, F | ̂ (P) = 0. Let ^ (1 ^ j < r) be the
holomorphic functions on T^^(^(P)) constructed in (15).

For 1 < j^ < r, we define
p.F

^•-^•^(l-^)^-

Let 73 > 0, m3 > 1 be such that

(16) \P(z)\2 > 73(1 + M2)-7713 if ^ € C^Ty^^P));

these exist by Lemma 2.5.

LEMMA 4.2. — The functions ^j denned above have the following
properties:

(i) ^ € C^C71),^- | ry,^(^(P)) is AoiojnorpAic.

(ii) F(z) = E^(^(^) ̂  ̂  ^ C71.
i
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(iii) If k > 0 and D^ is any differentiation of order fc, we have

iD^^^I^Cfc^^llFfO+H2)^^1)^.

Here N^ > 1 is a constant depending only on the constants denning
W, while Ck{d, W) depends only on k, d and the constants denning W.

Proof of Lemma 4.2. — Since y? = 1 on 7y^(Z(P)) and gj is
holomorphic on this set, (i) is obvious.

For (ii), if z € Z(P), then <S>j{z) = gj(z) and (ii) follows from (15). If
z € T^(^(P))\Z(P), we have

E ̂ (^-(z) = ̂ ) ̂ g,{z)p,(z) + (1 - y^)) ̂  ̂ ^^.(^

=F(^).

Finally, if z ^ r^,^(Z(P)), we have

E^)^)= E ̂ ^^^^ = F^
this proves (ii).

To prove (iii), we make the following remarks. We have supp(y?) c
Ty^(^(P)), and B(w,7"(l + M2)-^) C T^(Z(P)) if w e
Ty/^//(Z(P)). From the estimates for ̂  on Ty^(Z(P)) given in (15) and
Cauchy's inequalities, we deduce that

\D^gj(z)\2 < Ck(d^)\\F\\\l + I^Y+^W7

for z € T^^n{Z(P)). Now, if 2: ^ Ty,^(Z(P)) (in particular, if z G

supp(l - ̂ )), we have ^(fc),§2(^) 2 ^ ^(^(l + |^|2)(fc+i)m4 because

of (16) (m4 depending only on the constants in W). These estimates, and
the estimates for D^^p in the defining properties of y? imply (iii).

We can now use the method of proof of Theorem 3.1 to complete that
of Theorem 4.1.

We consider again the space C7' with standard basis e i , . . . , e^. As in
§3, let Ep =A C7'. Aq(Ep) is the space of smooth (0,g) forms on C'1 with
values in Ep, and, for P C W, A^(Ep) is the subspace of forms with support
C C^i^P). We consider again the Koszul complex

(17) O-^A^Er) ^A^Er-^-^-'-^A^E^) -^A^E^^O
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with K defined by
P

(18) ^ei 0 ̂ J) = ̂ (-l)^-i^ (;,)e }̂ 0 ̂ J,
A;=l

I = (i < . . . < ̂  J = (^ < . . . < ̂

We also have the homotopy operator

h: Al(E,) -. A^(E^) : h(^ = (^ ——e,) A ̂
j=i I I

{h=0 on Er) with the property that

/.gx ( Kh= identity on ^(£'0)
\Kh-^-hK= identity on A^(Ep),p > 0.

(See §3).

Let ( < l > i , . . . , ^7,) be as in Lemma 4.2. Define

(20) ^=^^ejeA°(E,).
3

We have /<^1)) = E^-Pj = F. Consider 9<S>W e ^(^i). By property
(i) ofthe ^•,a^(1) e A;(^i) (i.e. supp(9^(1)) HZ(P) = 0). Using the fact
that 9 and h do not increase supports, we define, successively,

^ = h(Q^) e A^(E^\
(DO) = h(9^) e Al{E^

^^(^-i))^-1^).
We have 1^(9^) =_9K(^) = 9F = 0 so that /<^(2)) = /t/i(^(1)) =
(Kh + ft^)(9^(1)) = 9^(1). We obtain, by induction:

^ f K(9<S>^) == 0_for 1 ̂  p < r
v / 1^P+1))=^(P) for l ^ p < y - l .

By Lemma 3.5 and Lemma 4.2, Part (iii), we have the following:

(22) For k > 0, d > 1, there exists a constant Cfc(d, W) depending only on
fc, d and the constants in W, and a constant A^ >_ 1 depending only on the
constants in W, such that, for 1 <, p < r,

\D^^P\z)\2 < W^Wd + ̂ 2)^+1)^ fc > 0, z € C71,

jD^) being, as usual, any differentiation of order A;.
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In the rest of the proof, we denote by I\ a constant depending only
on those in W, and by C'^(d), a constant depending only on d and the
constants in W; they are not necessarily the same at each occurrence.

Let N3 be as in (22), and define /^-i = d+^-H^+l, ^q = /^+i-+-^+2
for r - 2 ^ q ^ 1.

We have ̂  e A^-^Er), ̂ (9^) =_0 (by (21)). Hence, since ^ is
injective on A^(Er) (see §3, (17)), we have 9^ = 0. Moreover, by (22),

I l̂ l̂ l + l^l2)-^-1^ < G,(d)||F||2.
Jc"

Hence, by Hormander's theorem (Cor. 3.4), there is ^(r-l) e Ar~2(£'r)
such that

^(r-1) = ̂ (r), / l^-1)^! + |^|2)-^-i-2^ < CJd)||F||2.
Jc71

Since, for any ^ e ̂ (^p), we have, by §3, (18),

I^W^I^r^i+i^i2)^!^)!2

we have also

/ |^-1) - ̂ r-l))|2(l + [^l2)-^-1-2-^^ ̂  C,(d)||F||2.
Jc"

Moreover, ^r-1) - /<(^(7'-1)) e Ar~2(Er-l) and 9(^(r-l) - /^(^(r-1))) =
5 -̂1) - ̂ ^(^-i) = <9^-^ - ̂ (^(^)) = 0 by (21); hence we can find
^(r-2) ^ ̂ r-3(^_^ g^ ̂ ^ ^(^-2)) = ^(r-i) _ ̂ (r-i)) and satisfying

{ l^-2)^! + l^l2)-^^-2^ < C.(d)||F||2.
Jc71

Thus, we solve, successively, the equations
3»^(r-l) ^ ^(r)

^(r-2) = ̂ (^-l) _ ^(^(r-1))

^(1)=^(2)_^(2)^

where ^(g) e ̂ "^^g+i) (r - 1 > q ̂  1) and

(23) { I^I^I+I^I^-^-^A^G.^IIFII2 .
Jc71

Consider now G = ̂ ) - ̂ (^^)) e ^°(-Ei). We have

9G = 9^ - K(9^) = 9^ - K(^ - ̂ (^2)))
= ̂ (1) - ̂ (^(2)) = 0 by (21).
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Thus G is holomorphic. Further K(G) = ̂ (1)) = F, so that, if G =
E<^, we have F = Y,Gjpj. The estimate (23) for ^<1), and (22) and
§3, (18), imply that

f^ \G,\\1 + M2)-^-2-^ < C.(d)||F||2. •

Using the fact that \Gj\2 is subharmonic as at the end of the proof
of Theorem 3.1, we conclude that the Gj are polynomials of degree
< / ^ i + 2 - t - J ^ - n < d + D/ (with D/ depending only on D, n and TVs
in (22)) and that

\W<C^d)\\F\\2.

This completes the proof of Theorem 4.1.

5. The auxiliary function.

Let n > 2, D > 1, 1 < r < n - l,Ci > 0 be given. Let Wo be the
space of r-tuples P = (pi,... ,p^) with pj e H0 (i.e. pj e C[z^..., Zn},
degpj < D) such that: P(0) = 0, ||P|| < d, Jp(0) = 1, where, as before,
W=det(9pi)

\OZk/ Kj,k<r

THEOREM 5.1. — There exist constants D1 >_ 1, C' > 0 depending
only on n,D,Ci, and, for d ^ 1, a constant C(d) depending only on
d, n, D, C\ such that the following holds.

Let P e Wo. There exists Q e U01 with Q(0) = 1, ||(9|| < C' such
that ifF e U^ and F vanishes on Z(P) n [z € C^ | \z\ < e} for some e > 0,
then we can find polynomials Fi,..., Fr having the following properties:

(i) ^OF=Fipi+...+F.p..

(ii) degFj <nD(d+Df).

(iii) \\F,\\<,C(d)\\F\\.

Proof. — As at the beginning of §2, we introduce a new variable
ZQ and a polynomial /o(^o,.. . , Zn) = (zo + l)Jp(^) - 1, z = (^i , . . . , ̂ ).
We write w = (^) = (^i,...^n) € C^1 and /^(w) = pj{z) for
J > l , /o(w)=/o(^o, . . . ,^n) .

We have
'9f,

Jf(w)=det(-^-} ={Jp(z)?.
\9Wj/0^i,j<r '
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(1) There exist constants CQ > 0, N > 1, C^ > l,Di >, 1 depending only
on n, D, Ci, such that if W is the space of (r + l)-tuples g = (go? • • • ? Qr)
of polynomials in (n + 1) variables wo , . . . ,Wn satisfying: degg^ < Di,
g(0) = 0, J,(0) = 1, ||g|| < C2 and

|J,(w)|2 + |go(w)|2 + .. • + Mw)|2 > co(l + H2)-^, w e C^,

then, the following holds.

If P = (pi,... ,pr) C Wo, the (r + l)-tuple / == (/o,.. • , /r) defined
by

fo(w) = (ZQ + l)Jp(z) - 1, fj(w)=pj(z), J> 1, W=(^o,...,^n),

belongs to W. [We can take Di = D-^-n(D-l) since deg/o < l+r(Z^-l).]

This was noted in §2, and follows easily from the relation

(1 + (zo + l)Jp{z))fo(w) - (zo + l)2^) == -1.

Let Xi,... ,Xf be the connected components of Z{f) C C71^1, X\
being the component containing 0. By Theorem 3.1 (applied with n, r, D,
Ci, Co, ^V replaced by n -I-1, r + 1, Di, 62, Co, A") there exists a polynomial
$ € C[w] such that

(2) ^|Xi = 1, <S>\Xj = 0 for j > 1, deg^ < ^2, ||̂ || < €3

where D^C^ depend only on the constants defining W above, hence only
onn,D,Ci.

Let F € C[^i,.. . , Zn] and suppose that deg F < d and that F vanishes
on Z(P) H {z € C71 | |^| < e} for some c > 0. Then F, considered as a
function of w = (^o, z) vanishes on a neighborhood of 0 on Xi, so that, by
the principle of analytic continuation, F | X\ = 0. Thus <1> • F = 0 on Z{f).
By Theorem 4.1, we obtain the following:

(3) There exist polynomials G'o(w),. . . , Gr(w) with the following proper-
ties:

(a) $F=Go/o+•• •+G f r / r
(b) degGj < d+Ds

(c) ||G,||<Ci(d)||^F||;

here D^ depends only on n, D, Ci, and C\(d) on d, n, D, Ci.

Since ||̂ |[ ^ Cs, (c) above implies

(c') \\Gj\\ <, C^d)\\F\\,C^d) depending only on d,n,D,Gi.
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Let D" = mQx(D12,Ds) with D^ as in (2), D^ as in (3,b), and set

(Q(z^..^Zn)==(Jp(z))Dff^(-l-^————-^^..^Z^

(4) ^ tw!
l^(^,...,^)=?(^))d+D 'G,(-l+-y^^l,...,^),J>LJ p [ z )

Since degGj ^ d -t- D^^Fj is a polynomial of degree ^ d + ^// -t-
(d + ̂ '/) deg Jp < {d + D") + (1 + r(D - 1)) < nD(d + D"}. Moreover,
if G,(w) = E c^w", then ^(Jp(^))d+D// (-1 + -r——Y'z^ ' " z^

\o.\<d.^D" v J P ( Z ) /

clearly has norm at most \Cot\C^(d\C^(d) depending only on d,n,jD,Ci.
Thus

(5) degF, < nD^+.D"), ||F,|| < W)\\G,\\ < C{d)\\F\\
(by (c') above). In the same way

f deg Q < D^ + D" ' n(D - 1) = D/ (say),
^ ; { |[<3|| < C", C' depending only on n, D, Ci.

Further Q(0) == Jp(0)D//^(0) = 1 (since -1 + ——— = 0). Finally,Jp(0)

•A)(-l+ -T—~^I'"-^) =0' so that^p(^)
(7) (Jp^D^F^)

^(Jp^^^G^-l+^^i,...,^)^^,...,^)

r

=^F,(2;)p,(^).
J=l

Theorem 5.1 follows from (5), (6), (7).

Theorem 5.1 has a real analogue which is, in fact, what we shall need.

THEOREM 5.2. — Let n > 2, D > 1, 1 < r < n - 1, and
C\ > 0 be given. Let W be the space of r-tuples P = (j?i,... ,pr)?
where pj € R[rci , . . . ,^],degpj <: D (i.e. pj G H°), satisfying P(0) = 0,

||P|| < Gi, Jp(0) = 1, with Jp(a;) = detfl^)
\(7a;fc/l<J\A;<r

There exist constants D' > 1, C" > 0 depending only on n, -D, Gi and,
for d > 1 a function C(d) ofd, n, D, Ci such that the following holds.

Let P CW and Z(P) = [z e R71 | pi (a-) = . • ' p r ( z ) = 0}. There
exists Q € ^D/ with Q(0) = 1 and ||Q|| < C' such that: if F e ^d and



POLYNOMIAL BEHAVIOUR OF ALGEBRAIC FUNCTIONS 1129

F = 0 on Z(P) n {x € R71 | M < e} for some e > 0, then we can find
Fj € R[a;i,..., Xn], j = 1,..., r having the following properties:

(i) (Jp(x))dQ(x)F(x)=j^F,(x)p,(x^xeRn.
j=i

(ii) degFj <nD(d+jD').

(hi) ||F,||<C(d)||F||.

Proof. — The implicit function theorem implies that there are
holomorphic functions ftj(C)» J = l ) ' - - ^ C == (^r+i? • • • 5^71) defined in
a ball B(0,p) C C""7', which are real for real values of <^ such that for
arbitrarily small neighborhoods U of 0 in C71, we have

z(P)nE/={(/ll(C),...,^(C),C)ICeCn- r,|CI<p}n[7
Z(P)nE7==Z(P)nRnn^7

={(^l(C),...^r(C),C)ICeRn-r,|C|<p}n[7.

Hence, if F e R[a;i,... ,Xn] and F = 0 on Z(P) H U, then
-F(/ii(^),..., ^r(C)? C) vanishes for real ^ sufficiently close to 0, hence also
for all small complex C- Hence F\Z(P) is zero in some neighborhood of 0.
Theorem 5.1 gives us polynomials Q, Fj with complex coefficients satisfying
(i), (ii), (iii) above. Replacing them by the real polynomials whose coeffi-
cients are the real parts of the Q, JFj, we obtain the desired polynomials.

Remark. — For the application of these results to the proof of the
extension theorem, we need the bounds given on Q, and the bounds on the
degrees of the Fj (not those on the norms). These bounds on the degrees
of the Fj can be obtained by using a purely algebraic theorem, although
the construction of Q with the bounds given above seems to necessitate
analytic methods.

We are grateful to Burt Totaro who told us that the next theorem was
known. The reference to work of Bayer and Stillman that he gave us led us
to the paper [He] of Grete Hermann in which it is proved. We formulate
this theorem, and indicate its proof, although our argument is not very
different from that of Hermann. The theorem and its proof remain valid if
R is replaced by C.

THEOREM 5.4. — Let n,r,s,D,d be integers >, 1. There is an
integer D' > 1 depending only on n, r, D, d such that the following holds.
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Let pij €. R[a;i,... ,a;n], 1 < i < r, 1 < j < s, be polynomials
with degpij < D. Let Fj € R[a?i,. . . , Xn], j = 1 , . . . , s, and suppose that
degFj <d.

Assume that the system of equations
r

(8) Fj =^9ipij, j=l,...,s
i=l

has a solution g = (pi, . . . , gr) with gi e R[a;i,..., Xn}.
Then, there is a solution of (8) with deggi < D ' .

Outline of Proof. — The proof is by induction on n; the result is
trivial for n = 0. Assume the theorem proved for R[a:i,..., Xn-i}.

We may assume that the vectors Pj = (pij,... ,prj)» J = 1,...,5
are linearly independent over the field R(x) of rational functions. In fact, if
PI, . . . , Ps/, 5' < s, are independent, and Pj, j > 5', are linear combinations
of these, then it suffices to solve the equations

r

Fj =^9iPij, J^l,...,^;L j — / ̂  yiPij^ j — -L, . . . , o ,
i=l

the other equations in (8) necessarily follow from these. In particular, we
may assume that s < r.

By a change of notation, we may assume that the matrix

P = (Pij)l<i<s,l<j<s

has a non-zero determinant A € R[a;i,..., Xn}- Its degree is < sD, A ^ 0.
The matrix AP~1 is a matrix of polynomials of degree < (s — 1)D (its
entries are, up to sign, the determinants of the matrices obtained from P
by deleting one row and one column).

Multiplying the equation

(Fi,...,F,)=(<7i,...,^)(^)

on the right by AP~1, we see that, with our assumptions, (8) is equivalent
to a system

GI = ^iA + ^ ̂ i
s<i<r

(9)

Gs =^A-h ̂  giqis,
s<i<r
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where the qij are linear combinations ofthepij, the coefficients being entries
of AP~1. Hence degqij < sD. The Gj are linear combinations of the Fj
with coefficients entries of AP"1, so that degGj <, d+ (s—l)D.

By a linear change of coordinates, we may assume that if deg A = N
(< 5J9), then the coefficient ofx^ is a non-zero constant (i.e. the coefficient
of the monomial x^ • ' ' x°^_^x^ is ̂  0).

If ( (y i , . . . , gr) is a solution of (9) and h € R[a;i,..., a;n], the vector

{9l + ^9s+l,l»P2 + /^s+1,2, • • • ̂ s 4- /^s+M^-H - ̂ A,(^+2, • • • ^9r)

is also a solution of (9). By our assumption on the coefficient of x^ in A,
we can choose h so that deg^(p5+i — /iA) < TV (dega; being the degree in
Xn)' Repeating the process with ^5+2? " " > 9 r ^ we obtain:

If (9) has a solution, it has one in which

deg^(^) < N for s < i <: r.

Now, if ((71,. . . , gr) satisfies this condition, we can use (9) to conclude that
for 1 < j < 5,

deg^(^-A) < max(deg^ &,,deg^ q^ 4- N - 1)
<, max(d + (s - 1)D, 2sD - 1) < d + 2sD.

Thus, if (9) has a solution, it has one, (pi , . . . , ̂ r)» with deg^ gi < d-^-2sD
for % = 1,... ,r.

We now simply write Gj, pi, ̂ j, A, in the form

^ a^(a;i,...,a;n-i)^, a^ € R[a;i,... ,Xn-i}'i
Q<v<d-\-2sD

equating coefficients of powers of Xn in the system (9), we obtain a system
of equations of the same form as (8), but in the variables a;i,. . . , a:n-i, and
we can proceed by induction.

Theorem 5.2 can be improved in one respect at the cost of losing
the bounds in Theorem 5.2 (iii); we do not, however lose the bounds on
Q (which are essential for us in what follows). Since this provides what
appears to be the right analogue of the factorization into the main factor
and the other factor that we used in [FN], we shall now discuss this.

The following result is what we called Theorem 3 in the Introduction.

THEOREM 5.5. — Let n,JO,r,Ci and W be as in Theorem 5.2.
There exist constants D7 ^ 1, C" > 0 depending only on these data, and,
for d > 1, a function d ofd,n,D,r and C\ such that the following holds.
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Given P = (pi,... ,py.) € W, there exists Q 6 R[;KI, . . . , Xn] (depend-
ing only on P) with

(a) 0(0) =1, degQ<D^ \\Q\\ < C'

such that

(b) I f F e Hd and F =0 as a germ in Q(P) (i.e. F vanishes on some
neighborhood of 0 in V{P)), then there exist Fi,..., Fr € R[a:i,..., Xn\
with

r

degFj<~d and Q ' F = ^ F j ' p j .
j=i

The proof is based on Theorem 5.6' below (which is simply the real
analogue of the following theorem).

THEOREM 5.6. — Let n > 2, D > 1, 1 < r < n - 1 be given
integers. Denote by Wi the space of r-tuples P = (pi,... ,py.), pj; € ^£),
with P(0) = 0, Jp(0) = 1.

There exist integers jD^r* >; 1 depending only on n,D,r, and for
d > 1, a function d^ ofd, n, £), r such that:

Given P € Wi, there exist /i,...,/r. e ^D* with the following
properties:

(i) fj == 0 on some neighborhood ofO in Z(P), 1 <: J < r^; and

(ii) if/ € ^~td and f = 0 on some neighborhood ofO in ^(P), then,
we can find gj € H^ ,j = 1,..., r^c, such that

/= E ̂ •
1<J<^

The real analogue is

THEOREM 5.6'. — Let n > 2, D > 1, 1 < r < n - 1, and let W^
be the space ofr-tuples P = (pi,... ,j?r) of polynomials pj € R[rci, . . . , Xn}
with degpj < D, P(0) = 0, Jp(0) =1.

There exist integers D+,r* > 1 depending only on n,D,r and for
d > 1, a function d^ of d,n,D,r such that, given P € W^i, we can find
polynomials fj € R[a;i,..., a;n], 1 < j <: r* with deg fj < D^ which vanish
on some neighborhood ofOin V{P) and such that if f € H4 and f = 0 as a
germ in G(P), then, there exist gj C H^, 1 < j < r^ with f = ^ gjfj.

Kj<r^
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We first remark that Theorem 5.67 follows from Theorem 5.6. In
fact, if P = (pi, . . . ,pr) € Wi C Wi.and / € C[z^...,Zn\ is such
that it vanishes on {x € R71 | P(a;) = 0} near 0, then it vanishes on
[z C C71 | P(z) = 0} near 0 (see proof of Theorem 5.2). Theorem 5.6 gives
us polynomials A , . . . , /r* ^ "H0" vanishing on Z(P) near 0 and generating
all such /; we have only to replace fj by the two polynomials /ij, /2j whose
coefficients are the real and imaginary parts of those of fj. [Note that if
x € R71 and fj(x) = 0, then f^(x) = f^(x) = 0; further, if / = ̂ gjfj
with gj e C[zi,. . . ,^n] and we write gj = g^j + ̂  where g\j,g2j are
polynomials with real coefficients, and if / also has real coefficients, we
have / = E 9i j fij - E 92 j hj •]

Next, we remark that Theorem 5.6' and Theorem 5.2 imply Theorem
5.5. To see this, if P € W C Wi, Theorem 5.2 implies that there is
Qo € H 0 ' , Qo(0) = 1, HQoll < C" such that, with the fj as in Theorem 5.6',
we have

J^Qof, = E f^ f^ e H D " ^ 1 < 3 <r^
k=l

here -D', C", D", D^ depend only on n, D, r, C\. If F € Jf^ and vanishes on
some neighborhood of 0 in V(P), then

F= IL g j f j W i t h g j C H ^ ,
Kj<r^

and we obtain
r

^Oo^=^^PfcwithFfc= E /^,,
fc=l l<J<r*

so that degFfc ^ d* + -D'7. We have only to take Q = J^"Qo to complete
Theorem 5.5.

Thus, to prove Theorem 5.5, we have only to prove Theorem 5.6.
Before starting on the proof of this theorem, we make some preliminary
remarks.

Consider C71 as an open subset of projective space P" with homoge-
neous coordinates (zo : • • • : z^i^ being defined by ZQ 7^ 0. The hyper-
plane at oo : H = {(zo : ' ' - : Zn) € P71 | ZQ = 0} can be naturally identified
with?71-1.

Let X be an affine algebraic variety, X C C", of pure dimension
k. Its closure X in P71 is a projective variety of pure dimension A;, and
dim(XnH)=k-l.
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Any linear subspace of dimension n — k in P71 meets X, but there is
a linear subspace L C H of dimension n — k — 1 such that L H X = 0.

(These are standard facts; see e.g. Mumford's book [M].)

A linear space L C H as above defines a projection y? : P^L —>• P^
as follows.

Fix a linear subspace of dimension k in P71 disjoint from £; we shall
simply call it P^ If w € P^L, w and L span an (n — fc)-dimensional linear
subspace which meets P^ in a unique point <p(w). The map (p sends w to
y?(w). Now, C71 C P^L, and, with a suitable choice of linear coordinates,
(^[C71 is just the standard projection of C71 onto C^.

We set Ho = P^ n ff; ffo is a hyperplane in P^ and P^Tfo = C^. We
have y(H\L) C HQ and (^"^(ifo) C ̂  (since, if w € ^\-Z^, the span of w
and L lies in H).

(10) Let X C C71 be an affine variety of pure dimension fc, and let TT = ^>\X.
Then ?r(X) 0 0 ^ = P^HQ.TT : X -^ C^ is a proper map and its fibres
7^~17^(x),x € X, are finite.

In fact, if K C C^ is compact, then ^(K) = ((^IX)-1^) (since
(P~^{HQ) H X = X H ff) and so is compact since X is compact. The fibres
7^~17^(x) are compact analytic sets in X C C71 and so are finite sets.

(11) There exists an algebraic variety B C C^ of dimension fc—1 (the
branch locus) such that, if B = Tr"'1^), then B has dimension k—1 and
TT | X\f? —^ C^B is a finite unramified covering; X\B is smooth, and TT is
of maximal rank k at every point of X\B.

This again is standard; for a proof, see e.g. [M].

The number of points in Tr"1^), y € C^B, is independent of i/ (since
C^B is connected). We call it the degree of TT and denote it by fi.

Let P = (pi,...,pr) € Wi (so that p^ € 7^, P(0) = 0,

detf-^O)) = 1). Let V(P) be the irreducible component ofZ(P) = {z €
\C7^fc ^

C71 | P(^) = 0} containing the origin (there is only one such component
since Z(P) is smooth at 0 because Jp(0) = 1).

We take X = V(P) (dim X = n—r) and project from a linear subspace
L C H of dimension n — (n—r) — 1 = r — 1 not meeting X. We use the
notation introduced above.

Let S be the union of B and the intersection of V(P) with all other
irreducible components of 2^(P), and let S = ̂ (5); S and S are algebraic
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varieties of dimension <, n — r — 1.
We shall need the following:

LEMMA 5.7. — The degree p,of7r: V(P) -^ C71-7' satisfies p, < 2Y.

The proof uses Bezout's Theorem stated below. For a proof, see van
der Waerden, Algebra, vol. 2, Chap. XI, §83.

BEZOUT'S THEOREM. — Let /i,..., fn be homogeneous polynomi-
als of degrees d\,..., dn respectively in n + 1 variables ZQ, . . . , z-n.' Assume
that the set

{Z = (ZQ : ... : Zn) € P71 | h{z) =. . .== fn(z) =0}
is finite. Then, the number of points in this set is <: d\' - - dn.

In fact, counted with the proper multiplicities (which are > 1), the
sum of the multiplicities of these points equals d\' - • dn'

Proof of Lemma 5.7. — If p e C[zi,..., Zn],p = E^F • • • ̂ n

has degree d, we denote by p the "polynomial made homogeneous", viz.
P^o,...,^) = E^"101^1—^1. If P = (pi,...,pr) e W, the
fibre 7r-\c) of TT : V(P) -^ C71-7' over c € C^c = (ci,... ,Cn-r)
is the intersection of V(P) with the affine subspace y?(zi,...,^) = c;
if the coordinates are chosen so that (^JC71 is the standard projection
(^l , . . . ,^n) ^ (2;i,...,2;n-y.), TT-^C) = [z € V(P) | ^ - Cy = 0,

^ = 1,... ,n - r}. Let ^(2:0,... ,^n) = ^i/ - c^o. Then Tr"1^) C {^ e
C71 | ^(1, ̂ i, . . . , Zn) = 0 = ̂ (1, Zi, . . . , Zn)}.

I f c e C71- ,̂ the map (^i,...,^) ^ (pi(^), ...,p,(z), ^(1,^),
...,^-r(l»^)) is of maximal rank n at every point z^ of Tr'^c), a =
1,..., ii. Let Ua be a small neighborhood of z^, Ua H Up = 0 if a 7^ /?.
There exists e > 0 such that if qj is a homogeneous polynomial in
ZQ, ..., Zn of degree dj = degpj, if \y is a homogeneous linear form, and
if \\pj - qj\\ < e, ||̂  - Xy\\ < e (the norms being for polynomials in n+1
variables), then each Ua contains a point at which ^-(1, ̂ i , . . . , Zn) = 0 =
A^(l ,^i , . . . ,2;n)( l < j < r, 1 < !/ < n-r). Hence:
(12) ^ < # { z = ( z o : ' " : Z n ) e P n \

q^z) = ... = ^(^) = 0 = \z(z) = = . . . = An^(^)}
whenever deg^- = ^-, ||̂  -^|| < e, ||A^ - ̂ || < e.

We now remark that for any e > 0, we can choose qj, \y close to pj, ty
so that the set
(13) {z € P71 | q,(z) = • . . = g,(2Q = 0 = Ai(^) = • • . = \n-r(z)}
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is finite. In fact, take q\ = p\ and choose q^ ||̂ 2 — P2JI < €, such that
92 does not vanish identically on any irreducible component of the set
{z € P71 | gi(^) = 0}. The variety [z € P71 | gi(^) = 92^) = 0} then has
dimension <: n — 2. Proceeding in this way, we find q^ \v close to pj;, ̂ , so
that the set {^j(^) = 0 = Ai/(2?)} has dimension 0, i.e. is finite.

Bezout's Theorem implies that the number of points in (13) is
< c?i, • • • d r \ ' ' ' 1 < D7'. This and (12) prove Lemma 5.7.

Remark. — If we apply this argument to the whole variety ^(P)
with P € W, we find that the number t of connected components of Z{P)
is < -D7' as stated in the proof of Theorem 3.1.

Proof of Theorem 5.6. — We consider the affine variety V(P) C C71,
P G W, and project ontoC™ C P71"7' from a linear subspace L C H (of
dimension r — !),!/ H V(P) = 0 as above. We retain the notation above.
Suppose linear coordinates (a*i , . . . , Xn-ri 2/i? • • • ? 2/r) chosen on C71 so that
the map (p : P^L —> P™, restricted to C71, is simply y?(a:, y) = a;.

We first prove

LEMMA 5.8. — Let £(z) = £(x,y), z = ( x ^ y ) be a linear function
on C^ (i.e. a polynomial of degree <: 1). For 1 < i < ^ (^ = degree of
TT : V(P) —^ C^7'), there are polynomials bi(x) in x of degree < i such that

(i)(W+ E biWMz^-^OforanyzeVW.
KKp.

(ii) If x € C71"7'̂  (notation as above), then bi(x) is the i-th
elementary symmetric function in £(z^),... ,t(z^), where Tr"1^) =
(^),...,^)).

[Note: the elementary symmetric functions bi in $1,..., ̂  are defined
^

^ n (T - ̂ ) = T^ + fciT^-1 + • • • -h 6^, r being an indeterminate.]
i/=i

Proof of Lemma 5.8. — For a: € C^-^, define bi(x) by (ii) above.
The bi are holomorphic on Crl-r\5. If XQ € 5 and U is a bounded open
set in C71"7' with o;o € (7, then TT"^^) is compact in V(P), so that £ is
bounded on Tr"1^). Hence bi \ U\S is bounded, so that it extends to
a holomorphic function on U (by the Riemann extension theorem). Since
XQ € 5, is arbitrary this gives us holomorphic functions bi on C11"7'.

The equation (i) holds on l^P^TT"1^) by definition, hence on all
V(P) since Tr"^,?) has dimension < n—r and so is nowhere dense in V(P).



POLYNOMIAL BEHAVIOUR OF ALGEBRAIC FUNCTIONS 1137

To prove that bi is a polynomial of degree < %, let a e HQ = ifnP™;
and let UQ be a small neighborhood of a in P71-7*. We may suppose that there
are homogeneous coordinates (wo : • • • : Wn-r) on P71""7' so that wi 7^ 0 on
UQ and E/o H Jfo = {w € E/o I wo == 0}. Let /i be the holomorphic function
WQ/WI on UQ. Since ^ is linear (so has only simple poles on Jf), the function
z ^-> £(z)h((p(z)) is holomorphic on ^(Uo) C P^L. In particular, if KQ
is a compact neighborhood of a, KQ C UQ, there is a constant C > 0 with
|^)/i(7r(2;))| <Cifze Tr-^oW. Moreover, w3-,..., wn^ form linear

Wo Wo

coordinates in C71-7'. Hence, if x e KQ\HQ, \h(x)\ = 1/1^(^)1 >. —c—
WQ 1 + \X\

C' > 0 being a constant. Thus \i{z)\ < C'^l + |7r(z)|), ^ e 7r-1 (Ko\Ho),
C"' being a constant. Since HQ is compact, it follows that there is a constant
C > 0 so that

(14) |^)|<C(1+|7T(Z)|), ZCV(P).

Hence, ifxe C^^S and Tr-^) = {z^\... ,^)), we have |6,(a:)| =
|(-1)1 E ^(^(1/1)) • • •^(l/t))! < const. (1 + \z\Y since 7r(^)) = a;

i<^i<---<i/,^^
for 1 < v < fi. Since bi is holomorphic on C71"7', this inequality holds
everywhere on C71"7' and shows that bi is a polynomial of degree < i.

Choose an rxr invertible complex matrix A such that if ( z & i , . . . , Ur) =
(2/i? • • • ? Vr) A, then ui separates the points of Tr'^o) = {z^\..., z^) for
some a;o € C^" ,̂?! (possible since the r-tuple (2/1,... ,2/r) takes distinct
values at the points of Tr'^o))-

Let Fj(x,Uj) = u^ 4- EM3^"1' (1 < J ^ 71) be the polynomial
i/==i

constructed in Lemma 5.8 for the linear form (, = Uj. We shall simply
write by for b\y. We have Fj{x,Uj) \ V(P) = 0. Moreover, if G(x,u^) is
a polynomial in x,u\ alone with deg^^ G < /x, then if G [ V(P) = 0,
G must be the zero polynomial (because ni(z^), 1 < v < p., where
^-^(x) = (^(1),...,^^)) would be p, distinct roots of G(x,u^) for x
near a;o).

Let 6 = 6{x) be the discriminant of the polynomial F\(x,u\).
Then 6 ^ 0; in fact 6(xo) -^ 0 since F\(XQ,U\} has /^ distinct roots. If
5i == 5 U {x € C71-7' | ^(a;) = 0}, then Tr-^S'i) has dimension < n - r
and, for x e C71" ,̂?!, the polynomial Fi(a:,ui) has /^ distinct roots, and
u\ takes distinct values on Tr"1^). The discriminant 6 can be defined as
the determinant of a (2/x - 1) x (2?, - 1) matrix whose entries are the by (x)
and (^ - v ) ' b^(x) (the coefficients of Fi and QF^/Qu^}. Hence the degree
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of 6 is < /^(2/x - 1) since degbi < i < p,.

We now use (a;i, . . . , Xn-r^ ^i, • • • , ̂ r) = (x, u) as coordinates on C71.
(15) Let d > 1. There is a constant C{d,^i) depending only on d and ji
such that the following holds.

I f / € C[a;,n],deg/ < d, there exist go , . . . ,^_i e C[a;], such that
degp^ < C{d,ii) and

^-i
<5(^)/(a;,n) - ̂ g.W = 0 on V(P).

1^=0

Proof of (15). — We write F^x, m) = E^(^X~' with 60 = 1. Let
i=0

x € C^S^Tr-^x) = (z^\... ,^)). Since <$(^) ^ 0, the values m(^^),
1 <, v < ^ are distinct. Consider the sum

V- l̂O l̂) .̂ )^ _ V- ̂ l^^l)-^^^!^)) ,,(.).^u.-u^y^ ^ - ^ m - m ( ^ ) ) — — J ( z )^SA^)!:^^"''"'""'̂ '"^ ^ ni-ni(^))
Ai-l

=^Pfc(^,
fc=0

where g^x) = E ^-z^) E (^i^)))^-1/^)). Since b^ (x) has
k<i<p. K^^At

degree < ^ - z and |̂ )| < const.(l + \x\) by (14) we obtain, if we note
that u\ is linear and / has degree < d,

\g'k(x)\ < const. ̂  [(1 + \x\Y-\\ 4- M)1-^! + 1^1)^]

< const.(l + l^l)^^-^-1, .r € C^Si.
This implies that p^ extends holomorphically to C71"7' and is a polynomial
of degree <,d-\- ^— k — 1.

If we substitute HI = ui(^°')), 1 <, j <, ̂  (x,u) = z^\ in the above
equation, we obtain, for x ^ 5i,

^(.r,ui(^)))/(^,^))) = ̂ ^(^(m^))^ 1 < j < /..
1 fc=o

Since 1 < j < p, is arbitrary, this gives:

QF ^~1

(16) -Q^^u^f^-Y^g'^u^Q on V(P)
1 fc=o
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if x ^ 5i; since Tr^Si) is nowhere dense in V(P), (16) holds for all
(x, u) € V(P). Here g^ is a polynomial of degree <^d-{- I J L — k — 1.

We now use the following fact about discriminants (see van der
Waerden, Algebra^ vol. 1).

(17) Let -FI (a;, u\) = u^ +&i (x)u^~1-}-' • '-}-bp,(x). There exist polynomials
A(x^u\) and B(x^u\) with the following properties:

(i) deg^ A < ̂  - 1, deg^ B < /^.
()FI

(ii) 6(x) =A{x,ui)F-t{x,u^-^B{x,u^——(x,u-t).

(iii) The coefficients (of the powers of zzi) in A(x^u\)^B(x^u-i) are
polynomials, with integer coefficients depending only on /2, in ? ? i , . . . , b^ of
total degree < 2(/^ — 1).

Note. — The existence of A, f? satisfying (1) and (ii) is well known.
For (iii), if 6 is the determinant of the (2/^ — 1) x (2/^ — 1) matrix A with
entries &i,, (iji—y)by referred to earlier, the coefficients of A,JB are, up to
sign, the determinants of the (2/^ — 2) x (2/^ — 2) matrices obtained from
A by deleting one row and one column; see the book of van der Waerden
cited above.

Since deg bi <: i < ^, A and B have total degree <: 2/i2 — p,.

From (16) and (17), we obtain
/x-l

6(x)f(x, u) - B(x, ni) ̂  9k(x)u^
k=0

= A{x,u^F^(x,u^f(x,u)
,on ^-1

+ B(x, m) (J^(x, u,)f(x, u) - ̂  g,{x)u^)
1 fc=0

= 0 on V(P).

^-1
We now make an algebraic division of B(x,ui)^g^(x)u^ by the

fc=o
monic polynomial F\(x^u\) and write

/^-i /x-i
(19) B(x^)Y^glk(x)u1[ =^,m)Fi(a;,m)+^^(^K.

fc=0 ^=0

Let G(x^ u\} = 00(3;)^^ + ai^)^"1 + • • • + ciN^x) be a polynomial
in a;, ui of total degree < d. Then degao(rc) <: d — N. We claim that if we
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write
G(x, ni) = q(x, u^F^x, ui) + h(x, -ui)

with q,h e C[a;,ui] and deg^ fa < ^, then the total degree, degfa, of
h is < d. To see this, note first that q and h are uniquely determined
by G, so that, if N < ^ we have h = G. If N >. ^ and we set
Gi(a;,ui) = G(a:,ui) - aoWu^^F^x.ui), then deg^ Gi < N. Further,
FI has total degree < d (since deg&^ < i) and degao < d - N. Hence Gi
has total degree < d, and deg^ Gi ^ N - 1. Our claim now follows by
induction on N since the remainder on division of Gi by Fi is the same as
for division of G by Fi.

Thus, in (19),
u-i ^-i

^(^g^M) <degB+deg][^fc(^M
^=0 fc=0

<G(d,/,).

Since Fi(a;,iii) = 0 on V(P), (18) and (19) imply that
/A-l

6(x)f(x,u) - ̂ ^(rr)< = 0 on V(P),
i/=o

which proves (15).

If Fj(x,Uj) is the polynomial constructed in Lemma 5.8 for the
linear form £ = Uj and we apply (15) to the polynomials f(x,u) = Uy
(y = 2 , . . . , ̂ ), we obtain:

(20) There exist monic polynomials

F,(x^) = ̂  + Y,b^x)u^-\ 1 < j < r,
1=1

where deg 6^ < i, deg F^ = /^, and polynomials Gy(x, Hi), i/ = 2 , . . . , r with
^gui G^ < /^ deg G^ ^ C(^) such that

F^(a;,^),j=l, . . . ,r , ^(a;)^-G^(rr,ni), i /=2 , . . . , r ,
all vanish on V(P).

LEMMA 5.9. — Let N = max(/A,(/^ - l)(r - 1)). We have the
following:

(21) If/ G C[a:, u], then f = 0 on V(P) if and only if there exist polynomials
Aj(x, u), j = 1,. . . , r, such that

r

(^ /̂(a;, u) = Ai(a;, u)Fi(a;, m) + ̂  A^(a;, u)(^(a;)^ - G^(x, ui)).
r=2
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Proof of Lemma 5.9. — If / satisfies this equation, then S^^f == 0
on V(P), hence also / = 0 on V(P) since {{x,u) e V(P) | 6(x) ^ 0} is
dense in V(P).

To prove the converse, let f{x,u) e C[x,u}. We make an algebraic
division of / by the monic polynomial PI (re, u\) to write

/x-l

f(x,u)=A[(x,u)F^x,uz)^^Ux,U2,...,Ur)u^A[eC[x,u}.
v=0

Dividing the coefficients /„ by F^(x,u^) and repeating this process with
F^(x, us), . . . , Fr(x, Ur), we can write

r

f(x,u)=^A^u)F^Uj)+ ^ f^...^W1 ...<-,
J=l 0<I/i</LA

where A .̂ € C[a;,u] and /^...^ € C[x}.

We remark that for j = 2 , . . . , r, if we substitute Gj(x, u^) for <?(a;)^-,
we find that

(6(x))^Fj(x,Uj) = R/j(x,uz)mod(6(x)uj - Gj(x,u^))

where R^ € C[x,u^}. Dividing R^x.u^ by Pi(a;,ui) in C[a;,m], we see
that

{6(x))^Fj(x,Uj)=Rj(x,u^mod(F^x,u^,6(x)uj-Gj{x,u^))

where deg^ Rj(x,uz) < ̂  Since Pj(^,^),Pi(a;,ui), <5(a;)^-G^(a;,^i) all
vanish on V(P), so also does Rj(x, u^). But, since deg^ Rj(x, ui) < /A, this
implies that Rj =Q as remarked earlier. Hence:

(23) (S(x))^Fj(x,Uj) == Omod(F^x^),6(x)uj-Gj(x^))J = 2,... ,r.

Now, for k = 2,..., r, 0 < v < /A,

(6(x)r-1^ = 6(xr-l/-l(Gk(x^)rmod(6(x)uk - G^u,)).

Hence

^-l)(r-l) ^ ^...^^X.-.^^B'^^)

0<^i<AA
mod{6(x)u2 - G^x, ui),..., ̂ a;)̂  - Gr(x, ui)),

where B^^.ui) is a polynomial in x,u\ alone. Dividing B'(x,u\) by
PI (a;, zzi) in C[x, i&i], we see that B'(x, Ui) = B(a;, ui) mod Pi (a;, ui), where
deg^ B(a;, ui) < ^. Multiplying (22) by 6{x)N, N = max(/i, (/^ - l)(r ~ 1))
and using the above facts together with (23), we have:
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Given / e C[a;,u], there exists a polynomial B{x,u-^) in x and HI
alone, with deg^ B < JLA, such that

Wx^f^x.u) == B(a;,m)mod(Fi(a;,m)^(rc)^ - G^(rr,m),2 < i/^ r).

Now, if / =: 0 on V(P), then B(a?,ni) = 0 on V(P). But again,
as remarked earlier, a polynomial in x,u^ alone, of degree < p, in u^
and vanishing on V(P) must be the zero polynomial. Thus, / = 0 on
V(P) if and only if B(x,u^} = 0, i.e. if and only if (6(x))N f(x,u) = 0
mod{Fi(x,u^),6[x)u^ - Gy(x,u^), 2 ^ v <, r), which is Lemma 5.9.

To complete the proof of Theorem 5.6, we invoke the following
theorem, which is also proved in the paper [He] of Grete Hermann cited
earlier. It can be proved in exactly the same way as Theorem 5.4.

THEOREM. — Let n,D,r,s be integers >: 1. There are integers
D' >_ 1 and r ' > 1 depending only on n,D,r such that the following
holds.

Let {pij)i<i<r,i<j<s be a matrix of polynomials pij e C[^i,... ,Zn]
with degpij <, D. Consider the system of homogeneous equations

r

(24) Y,9iPij=0. .9=1, . . . ,5 , pz€C[^i,...,^].
i=l

There exist r 1 solutions gW = (^i,..., ̂ ), a = 1 , . . . , r' of (24)
where g^i € C[^i,..., ̂ ], deg^ <, D1, such that

(i) E^mPzj = 0, j = 1,. . . ,s, a = 1,. . . ,r'.
i

(ii) If g = (^i,...,pr) satisfies (24), then we can find ha €
C[zi,... ,^], a = 1,. . . ,r', with ^ = EW^.

a

Applying this to the equation in Lemma 5.9, (21), we obtain the
following:

There exist constants D, V > 1 depending only on u,, n, r, D, TV hence
only on n, r, D (since deg 6 < ̂ (2p, - 1), /x ^ ̂  and A^ < /^r) and a set of
r(r-\- l)-tuples

(^,AM,...,A^),a=l,...,r

of polynomials of degree < ~D in (x, u) such that

(a) Wr))^^) = A^^.^Fi^.m) + ^A^\x,u)(6{x)u^ -
v=2

Gy{X,U^))
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and

(b) if {f,Aj) satisfies the equation in (21), then, there exist ha e
C[x, u] with

(/,Al,...,A,)=^^(^,AM,...,A^).
a

It follows from Lemma 5.9 that the ideal of / € C[x, u] which vanish
on V(P) is generated by the fa, a = 1,..., r. Further, if / C C[x, u] vanishes
in some neighborhood of 0 in V(P), then / [ V(P) =. 0 since the set of
regular points of V(P) is connected and dense.

Theorem 5.6 follows from this and Theorem 5.4.

Note. — Madhav Nori has shown us a proof (using generic flatness)
that if I is an ideal in C[^i,. . . , Zn] generated by r polynomials of degree
< D, then the radical of I is generated by r ' polynomials of degree
< D' (r',JD' depending only on n,D,r). Nori ascribes the method to
Grothendieck. We could use this theorem instead of Theorem 5.6 (because
of Theorem 3.1).

The proof given above seems to us more elementary, and picks out
the radical of one primary component in the decomposition of I .

6. Semi-algebraic sets and maps: general properties.

In this section, we collect together the general properties of semi-
algebraic sets and maps that we shall need. Although several of these results
are in the literature (see e.g. [BCR]), we have given direct proofs based on
the two basic structure theorems of the subject.

DEFINITION 6.1.

(a) The family of semi-algebraic sets in W1 is the smallest class
of sets containing all sets of the form {x € R71 | P(x) > 0} where
P € R[rci , . . . , Xn], and which is closed under the operations of finite unions,
finite intersections and complementation.

The class of semi-algebraic sets is invariant under linear isomorphisms
ofR71, so that we may speak of semi-algebraic sets in any finite dimensional
vector space over R.
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(b) If E C R71, a map for function) f : E -^ ^M is called semi-
algebraic if its graph {(x,f(x)) | x e E} is a semi-algebraic subset of
Torn 4" 7i

(c) A function f : E —^ R U {-00,4-00} is called an extended
semi-algebraic function if the sets E- = /"^-oo),^ = /^(-hoo),
EQ = /^(R) are all semi-algebraic and f\Eo —^ R is a semi-algebraic
function.

(d) I f E c W 1 is semi-algebraic, a semi-algebraic partition of E is
a finite collection {E^} of semi-algebraic sets which are pointwise disjoint
and whose union is E.

A partition {F^} of E is a refinement of the partition {E^} of E if,
for each v, E^ is the union of those F^ which meet it: Ey = (J F^.

F^E^

We note, explicitly, that we are not assuming that a semi-algebraic
map is continuous. If E is semi-algebraic and {E^} is a semi-algebraic
partition of E, then a function / : E —> R771 is semi-algebraic if and only if
f\Ey is semi-algebraic for all v.

The basic structure theorem, which enables one to reduce the study
of semi-algebraic sets in R^1 to that of sets in R71 is the following. For a
proof see Cohen [C]; see also the book of Bochnak, Coste, Roy [BCR].

THE STRUCTURE THEOREM. — Let E be a semi-algebraic set in
^n-n = Rn x ̂  yj^ ^ ^ (finite) semi-algebraic partition {Ay} ofR71

and, for each ^, a finite family of functions tyj on A^, 0 < j < Ty + 1, with
values in R U {-oo, 00} such that

-00 = t^Q < ty^ <-" < ty^ < ̂ ,r^+l = +00,

tyj is continuous for 1 <, j < r^, and having the following properties:

(a) Each set {(x,t) € R714-1 | x € A^ t^{x) < t < t^+i(a;)},
0 <: j < rv, is semi-algebraic.

(b) Each set {(x,t) € R714-1 | x € Ay, t= t^j(x)}, 0 < j < Ty, is
semi-algebraic.

(c) E is a finite disjoint union of sets of the form (a) or (b).

By considering the graph of a semi-algebraic map / : R71 —^ R771

and using the structure theorem, one obtains the central theorem about
semi-algebraic sets.
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TARSKI-SEIDENBERG THEOREM. — Let f : W —^ R7'1 be a semi-
algebraic map and let E c R71 be a semi-algebraic set. Then f{E) C R771 is
again semi-algebraic.

We list some basic properties in the next two results. They are easy
consequences of the Tarski-Seidenberg Theorem (see [BCR]).

PROPOSITION 6.2.

(a) Let E CW1 be semi-algebraic, and let f : E —^ W be a semi-
algebraic map. Then, for any semi-algebraic set F c R771, the set / ^ ( F )
is again semi-algebraic.

(b) Let E C R^F C W be semi-algebraic, let f : E -> W be a
semi-algebraic map with f{E) C F and let g : F —> R^ be semi-algebraic.
Then g o f : E —>• Rfc is semi-algebraic.

(c) Let E C W x R771 be semi-algebraic. Then, the set

{xeRn\3ye W with (x,y) e E}

is semi-algebraic.

(d) Let E C R71 xR^ be semi-algebraic, let F c W1 be semi-algebraic.
Then, the set

{xeRn\ {x, y) e E, Vu e F}

is semi-algebraic.

LEMMA 6.3. — The closure E of a semi-algebraic set E C R71 is
again semi-algebraic.

We shall also need a second fundamental theorem on semi-algebraic
sets which goes back to Whitney's work on real algebraic varieties [W]. The
theorem is proved in [BCR].

Before giving the definition needed to state this theorem, we remark
that by a smooth (real analytic) submanifold M of R71, we mean a subset
M C R71 with the following property: for any a € M, we can find an open
neighborhood U of a in R71, an integer d >_ 0, and smooth (real analytic)
coordinates a;i , . . . , Xn on U such that M H U = {x^U \ Xd-^-i= • • • =Xn==0}'

DEFINITION 6.4. — Let E C W1. A stratification {Si} of E is a
finite family of pairwise disjoint subsets Si C E with E = USi and having
the following properties:
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(a) Each Si is a real analytic submanifold ofW1.

(b) Ifi ̂  j and 5^ D Sj ^ 0, then Sj C ~§i and dim Sj < dim 5,.

The {Si} are called the strata of the stratification.

IfE is semi-algebraic, the stratification {Si} is called semi-algebraic
if each stratum Si is semi-algebraic. In particular, {Si} is a semi-algebraic
partition of E.

THE STRATIFICATION THEOREM. — Let E CR71 be semi-algebraic
and let {Ey} be a semi-algebraic partition of E.

There exists a semi-algebraic stratification {Si} of E which is also a
refinement of E^y i.e. each Ey is the union of those Si which meet it.

DEFINITION 6.5. — Let E C R71 be semi-algebraic. Let {Si} be a
semi-algebraic stratification ofE. We define the dimension ofE, dim£', by:

dimE = -1 ifE = 0, dimE = maxdim5'i ifE ^ 0.
i

Remark. — Given a semi-algebraic set E C R71, let t be the largest
integer such that E contains the image of the unit ball B^ in R* under
a C°° map y? : Bf —^ W1 of rank t everywhere on Bt. Then t = dimE',
in fact if d = max dim Si ({Si} a semi-algebraic stratification of E)^ then
clearly a submanifold of dimension d of W1 contains the image of a ball of
dimension d under a smooth map of maximal rank, so that t >, d. If t > d
and (p : Bt —> M71 has rank t, then ^p~l(Si) has measure 0 in Bt for each i
and we cannot have ip(Bt) C USi.

We shall say that a set E C R71 contains the diffeomorphic image of
a ball of dimension t if there exists a C°° embedding (p : Bt —> R71 (i.e. (p
is injective of maximal rank) so that y(Bt) C E. We may formulate our
remark above as follows:

If E C R" is semi-algebraic, then dim E is the largest integer t such
that E contains the diffeomorphic image of a ball of dimension t.

In particular, dim-E is independent of the stratification {Si} used in
Definition 6.5.

LEMMA 6.6. — Let £'1,..., EN be semi-algebraic sets in W1. Then

dim(Ei U • • • U E^) = max dim Ey.^-<^<N
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Proof. — If E = |j Ey, then clearly dim E >_ max dim Ey (since
l<y<N v

if Ey contains the diffeomorphic image of a ball of dimension t, so does E).

Let now t > max dim Ey and (p : Bf —> W1 be a (7°° embedding.
If {5^} is a stratification of £^, then dim 6^ < t (for all z,^) so that
(^~'l(5f^,I/) has measure 0 in Bf. Hence ^p~l(E) has measure 0 in Bf, so that
(p(Bt) <jL E. Hence t > dim£1, which shows that dimE < max dim Ey.

v

LEMMA 6.7. — Let E C W be semi-algebraic and let ~E be the
closure. Then,

dim ~E = dim E and dim(E\E) < dim E.

Proof. — Let {Si} be a semi-algebraic stratification of E refining
the partition {E^E\E} of ~E. Let J = {i \ Si D E ^ 0}. Then E = \J Si,
— _ _— _ l€J

E\E = |j S j . We have E = \J S^ so that, if j ^ J, then Sj H Si ^ 0 for
j^j ieJ

some ^ € J. By condition (b) in Definition 6.4, this implies that Sj C Si
and dim5j < dimS^ < dim.E. Both statements in the lemma follow from
this.

We now make a simple remark which we shall use in Lemma 6.9 below
and also later.

Remark 6.8. — Let X, Y be connected C°° manifolds and / : X -^ V,
a smooth map. Assume that for any y C V, the fibre f~l(y) is discrete (con-
sists of isolated points). Then, the set {x 6 X \ rank {dfx) = dimX}, dfx
being the differential of / at x, is (open and) dense in X.

In fact, let U C X be open, U -^ 0. Let p = max rank (dfxY andxeu
let XQ € U be such that rank (dfxo) = p. Then, there is a connected open
set UQ C ?7, XQ € £/o, so that rank (d/a;) = p for all re € £/o. By the rank
theorem, the sets /-l/(a;)^?7o, ^ € £/o, are submanifolds of UQ of dimension
dimX — p; since the fibres are discrete, we must have p = dimX.

LEMMA 6.9. — Let E C H^ be a semi-algebraic set and let
f : E —> R771 be a semi-algebraic map. Let Y = {(x, f(x)) \ x C E} be
the graph of f. Then:

(a) dim ̂ = dim F

(b) dimf(E) <dim^.
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(c) If, moreover, the fibres off are finite, then dimf(E) == dim£'.

Proof.

(a) Let S C F be a submanifold of R71 x W of dimension d. The
projection TT : T —>- E, 7r{x, f(x)) = x is bijective, so that by 4.8, there is an
open set U C S such that T^\U has rank = dim S at every point of U. Hence
E contains the image of a ball of dimension d, under a map of maximal
rank, so that d <, dim E\ thus dim F <, dim E.

On the other hand, if (p : Bt —>• R71 is a C°° embedding with t > dim F,
and {5 i , . . . , S^} is a semi-algebraic stratification of I\ then dim Si < t and
7r(Si) C R71 has t-dimensional measure 0. Hence y?(Bt) ^ 7r(5iU- • -U5^) =
7r(r) = E. Hence dimJS < t, i.e. d\mE <, dimr.

(b) By (a), it is enough to show that if a : F —»• R7"' is the projection
(x,y) !—»• y restricted to F, then dima(r) < dimF.

If t = dim r = dim E and F = USz is a semi-algebraic stratification
of r, the (t + l)-dimensional measure of a(Si) is 0 for any z, so that a(F)
cannot contain the diffeomorphic image of a ball of dimension > t -(-1.

(c) If / : E —> R771 has finite fibres and a is the restriction to F of
the projection (x, y) ^—> y , then a has finite fibres. If S C F is a smooth
submanifold with dim S = dimF, Remark 6.8 implies that there is an open
set U C 5, U 7^ 0, so that a|E7 has rank dim*? at every point of U. Since
a(E/) C Qi(r), we must have dima(r) >_ dim 5 = dimF. This, together
with (a) and (b), show that f{E) = a(T) has the same dimension as E.

Remark 6.10. — We shall use the following simple remark. If A C
R71, denote by 6(A) the closure in W1 of the set A\A (A being the closure
of A). Then A\6(A) is closed in R^^A).

In fact, if {Xy}v>_\ is a sequence of points in A\<?(A) converging to
XQ e R^^A), then XQ e A. If XQ ^ A, we would have XQ 6 A\A C 6(A).
Thus XQ € A\<?(A), and A\6(A) is closed in R^A).

LEMMA 6.11. — Let E C R71 be a semi-algebraic set of dimension
d and let f : E —> R771 be a semi-algebraic map.

There exists a closed semi-algebraic set E ' C R71 of dimension < d
such that E^ is a closed real analytic submanifold ofR^E' and f \ E\E'
is real analytic.
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Proof. — Let {Sz}y 1 < i < p, be a semi-algebraic stratification
of E, and suppose that dimS^ = d for 1 < i < q(< p), dim5i < d for
q + 1 <, i < p. Let EQ be the closure in R71 of |j ^ u U ^.p)

<7<z<p l^J^P

(6(Sj) =closure of «Sj\Sj; see remark 6.10). Then £'0 is a closed semi-
algebraic set of dimension < d (by Lemmas 6.3, 6.6, 6.7), and E\EQ is
a closed real analytic submanifold of R^Eo of pure dimension d since
dimE = d = max(dim£o,dim(-E\.E'o)) by Lemma 6.6.

Let r == {(x, f(x)) e R71 x W | x e E} be the graph of /; we have
dimF = d by Lemma 6.9. Moreover, by Lemma 6.9, (c), if F C R71 is a
semi-algebraic set, then dim((F x R771) D F) == dim(£1 D F) < dimF.

Let {Tj}, 1 < j < fc, be a semi-algebraic stratification of F; let
dimTj = d for 1 < j ̂  t, dimTj < d f o ^ ^ + l ^ J < f c . I f 7 ^ : R n x R m - ^ R"
is the projection, let E\ be the closure in R71 of TT ( (J Tj); E\ is a

^+i^j^fc /

closed semi-algebraic set of dimension < d. Let E^ be the closure in R" of
7r( U S(Tj)\ [S(Tj) = closure of Tj\Tj] and let jE?3 = EQ U ̂ i U ^2; Es

^i^j<k /

is a closed semi-algebraic set of dimension < d (by Lemmas 6.6, 6.7, 6.9).

We have F = F H (R71 x R771^-1^)) == U W^"1^)), r is a
^3<l

closed real analytic submanifold of Rn x R^Tr"^!^) of pure dimension
d,7r(r) = E\E^ and f is the graph of / | E\Es. Further, E\E^ is a closed
real analytic submanifold of R^I^s of pure dimension d.

We now make the following remark. Let M C R71 x R771 be a semi-
algebraic set which is a smooth submanifold of R71 x R771. Let (p : M —)• R71

be the restriction to M of the projection TT : R71 x R"" -^ R71. Then, the
set C = {x € M [ the differential d(px of y? at x is not injective} is semi-
algebraic.

To see this, let
S = {(x, y , v) € R71"^1 x R7^771 x R71-^ | a;, ̂  € M, a; V 2/, and

3 A € R so that ^ = Xx -\- (1 - A)^/}
(we have written R714-771 for R71 x R'71). 5 is the family of all secants of M
at distinct points and is semi-algebraic. Hence so it its closure <S. Let

T = {(re, v) e W^ x R71"^ | (x, x, v) C 5, x C M}.

Then T is semi-algebraic, and consists of pairs (re, v) where v lies on a
tangent line to M at a; € M. [Since M is smooth, tangent lines are precisely
limits of secant lines at distinct points.] The kernel of dy?a;, x € M, consists
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of those v e R714'771 such that (re, a? + v) 6 7" and v projects to 0 in R71, (i.e.
has first n coordinates 0). Thus

C == [x e M I 3w ^ x, we W^ with 7r(w - x) = 0, (a-, w) 6 T}.

This is clearly semi-algebraic because of the Tarski-Seidenberg theorem.

We return to the proof of Lemma 6.11 and the notation introduced
earlier. Let (p = TT [ F : F —>• E\E^ (p is a bijection. Let C = {(.r,2/) €
r 1 d(p^,y) is not injective}. Then C is semi-algebraic and r\(7 is open and
dense in F by remark 6.8. We have dim C < dimF = d (because the image
in r of a ball of dimension d under a map of maximal rank contains an
open subset of f\ hence cannot be contained in C).

Let E ' be the union of £'3 and the closure in W of 7r{C) = ip{C).
E ' is a closed semi-algebraic set of dimension < d (since dim C < d). By
construction ^ \ T\7^~1(E/) —> E\E/ is a real analytic bijection between
manifolds of pure dimension d and has maximal rank, so that its inverse
is real analytic. Since / | E\E' is the composite of this inverse with the
projection R71 x W —> R^ the lemma is proved.

Note. — For the application we have in mind, it would suffice to
show the existence of a semi-algebraic E ' C M71 with dim E' < d such that
/ | E\E' is continuous. This can be done more simply, using the structure
theorem directly. If F C R714'1 is the graph of a semi-algebraic function
/ : E —f M, we have only to make sure that E ' contains the sets Ay\A^ for
the sets of the form (b) in the structure theorem; sets of the form (a) do
not occur if F is a graph.

LEMMA 6.12. — Let E C R71 and let f : E -^ W be a semi-
algebraic map. Set f(E) = F. Then, there exists a semi-algebraic section
o- : F —> E; in other words, a is a semi-algebraic map F —> E such that
f{^(y)) = y for all y e F.

Proof. — Replacing E by the graph of /, we may assume that
E C W x R771 and that / is the projection TT : E —^ R^, ^(x,y) = y
for x € W, y € M771. If we write y = ( z / i , . . . , ym) and 71-1 : E —> W1 x W"'-1

is the projection (x, ( t / i , . . . , ym)) —> {x, (2/2, • . • , Vm)), then, by induction
on m, it suffices to prove the lemma for 71-1 (because of Prop. 6.2 (b)). Thus,
by a change of notation, it is sufficient to prove the following statement.

Let E C M^4-1 be semi-algebraic, and let F = 7r{E), TT : M^4-1 -> R^
being the projection (rcr, . . . ,a;7v+i) ^ (a;i,... ,a;7v)- Then, there exists
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a semi-algebraic map a : F —^ R^4'1 of the form a(a*i,... ^ x ^ ) =
(a;i, . . . , x^i s(x\^..., x^)) with the property that o~(x) € ^ for all x ^. F.

We use the structure theorem.

There exists a semi-algebraic partition {Ay} of -F, and, for each i/,
a finite family {^,j}o<j'<r^+i of functions on Ay such that —oo = ty^o <
,̂1 < • • • < ty^r^ < ̂ ,7^4-1 = +005 tvj is continuous and semi-algebraic on

Ay for 1 <_ j <: rv and such that E is a finite disjoint union of sets of the
form

(a) {{x,t) C R^+1 | x C A^, ^-(a;) < t < ^+i(a:)}, 0 < j < Ty

or of the form

(b) {(x,t) € R^1 | a; € A^, t = t^(rK)}, 1 < j ̂  r^.

If E contains a set of the form (b) for a given ^, we define a\Ay by
a(a:i,...,a;^) = (o-i , . . . ,XN,t^j(x)), x = (a-i , . . . ,XN) € Ay. If, for a given
^, ^ contains no set of the form (b), it contains one of the form (a), and
we define (T\Ay by cr(a;i,... ^ X N ) == (^i, • • • ,XN^(x)), x € Ay^ where r is
a semi-algebraic function on Ay with

tyj(x) < r(x) < ̂ j4.i(a;), x C Ay.

[If r^ = 0, so that we are dealing with the set {(x,t) \ x € Ay^
—oo < t < +00}, we take r = 0 on Ay\ if Ty > 0 and j = 0, take
r(x) = ty^(x) — 1; if Ty > 0 and j = r^, take r{x) = ^,r,/(^) + 1; if

1 < J < Ty - 1, take r(x) = ̂ (tyj(x) + ̂ +i(.r)).]

Since a\Ay is semi-algebraic for each i/, a is semi-algebraic on UAy =
F. Clearly it has the form required.

LEMMA 6.13. — Let E C B^ x R771 be a semi-algebraic set, and let
TT : E -^ ir be the restriction to E of the projection R" x R771 -^ M71. Let
F=7T(E).

Assume that for each x C F, the set £a; = {?/ e R772 | {x, y) € ^} is a
vector subspace ofR771.

Then, we have

(a) Ifk>Q is an integer, the set

Fk C F, Fk = {x <E F | dimE^ = fc}

is semi-algebraic. {Fk = 0 i f f c > m ) .
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(b) For each k, there are semi-algebraic maps z » i , . . . , vje : Fk —> R771

such that, ifx € Ffc, the vectors v\{x)^..., VfcW lie in Ex and form a basis
of Ex.

Note. — If we define Va(.x) = 0 for k < a < m, x € Ffc, we can
formulate (b) in the following equivalent form:

(b') There exist semi-algebraic maps i;i,... ,Vm '• F —^ ^rn such that,
for any x, the non-zero vectors among V i ( x ) ^ . . . , Vm{x) form a basis of Ex-

Proof.

(a) It is sufficient to show that for any integer k > 0, the set

Fk={xeF\d\mEx > k}

is semi-algebraic. We have FQ = F. Let k > 1.

Let (R771)^ = Rm x • • • x R771 (fe-times) and let Sk C (R^ be the set

Sk = { (^ i , . . . ,^fc) € (R^ | t;i A • • • A Vk ^ 0 in X R"1}.

Clearly, Sk is semi-algebraic.

Consider now the set

VkCRnx(Rm)k:{(x,v^...,Vk)\{x,Vj)eE for 1 < j < k}.

Again, Vk is a semi-algebraic set. Now dim Ek > k if and only if there exist
vi,..., Vk € Ex with z?i A • • • A Vk 7^ 0. Hence

F^={a ;eF |d imJ^ > fc} = {x G F | 3(a;,^i,... ,Vk) eVk
such that ( z» i , . . . , i^) e 5^}.

Hence F^ is the image under the projection of M71 x (R^ onto R'1, of
the semi-algebraic set Vk H (R71 x Sk), and so is semi-algebraic (by the
Tarski-Seidenberg theorem).

(b) We have dim Ex = k for x € Fk. Consider the set Ak CWx (R771)^
defined by

Ak = {(x,v^,...,Vk) \ x e F k , {x,Vj) e E

for 1 < j < fc, and v\ A • • • A Vk ^ 0}.

Clearly Ak is semi-algebraic and (a:,z?i,... ,Vk) € Ajfe if and only if
(?;!,..., z»fc) is a basis of i?a;.
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Now, the projection y?: Ak -^ R71, (re, ̂ i , . . . , Vk) ̂  x, maps A^ onto
Fk. By Lemma 6.12, (p has a semi-algebraic section a : Fk —^ Ak (i.e. a is
semi-algebraic and y(a(x)) == x for x ^ Fk). If we write

a(x)=(x, vi(x),...,Vk(x)),xeFk,
then the ̂  : Ffc -^ R^ 1 < a < fc, are semi-algebraic and (vi(:r),..., Vk{x))
forms a basis of ̂  for x e Fk (since (a:, v^(x),.... ̂ (a;)) e A^).

LEMMA 6.14. — Let E be a semi-algebraic subset ofR71 x R771 and
define ^-L = {(x, 2/) e R71 x R771 | (y, u) = 0 for aJ2 n e R771 with (a;, u) € E};
here <i/, -a) = Y^yjUj, y = (1/1,..., z/^), u = (ui , . . . , Um), is the usual inner
product on R771.

Then E1- is again semi-algebraic.

Proof. — Let F c R71 x R771 x R771 be the set
F = {(x,y,u) | (rc,u) e E and {y,u) = 0}.

Then F is semi-algebraic and we have
E1- = {Or,2/) € R71 x R771 | {x,y,u) e F for all u with (a;,zz) e £?}.

This latter set is semi-algebraic since its complement is the projection in
R71 x R771 of the semi-algebraic set

{(x,y,u) e R71 x R771 x R771 | (x,u) e E, (x,y,u) i F}.

Finally, we note two results proved in [FN] (Lemma 5.2 and Cor. 3
to Theorem 5.1 in that paper).

LEMMA 6.15. — Let S be a compact semi-algebraic set in R71 and
let E C S be a semi-algebraic subset. Let f : E —^ R be a semi-algebraic
function which is locally bounded on E.

Then, there exist constants m, C > 0 such that
\f(x)\ <C(dlst(x,S\E))-m for x e E.

(dist(a;, S\E) is, of course, the distance of x from S\E.)

LEMMA 6.16. — Let E C W x R771 be semi-algebraic, and let
f : E —^ R be a semi-algebraic function. For x C R71, define f(x) =
sup{/(a;, y) | (x, y) c E} (the sup over the empty set being defined to
be —oo).

Then f is an extended semi-algebraic function.
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7. Some special semi-algebraic sets and maps.

LEMMA 7.1. — Let E^E^c W1 x 1^ be semi-algebraic sets, and
let

E = {(^ 2/) e M71 x R771 | 2/ = 2/1 + 2/2 where (x, 2/1) € £q, (a:, 2/2) € ^2}.

Then £ is semi-algebraic.

Proof. — The set {(re, 2/1,2/2) e R71 x M771 x R771 | {x, 2/1) € ^i,
(^2/2) e £'2} is semi-algebraic and E is the image of this set under the
map (x, 2/1,2/2) ̂  (^, 2/i + 2/2).

For our next lemma, recall that W C H0 x ' ' ' x H° (r times) is
the space of r-tuples P = (pi,... ,py.) of polynomials pj e R[a;i, . . . , Xn],
degpj < D, \\P\\ ^ Ci, P(0) = 0, Jp(0) = 1 (where Jp(x) =
det ( ̂ — ) ̂  ,^ )• clearly Ty is a semi-algebraic subset of H0 x ' . . x H0.

\C/«LJ^/ l^Ji"^$7'

We have seen that there is pi > 0 such that whenever P e TV,
/ € ]R[a;i,. . . , Xn] and / = 0 on some neighborhood of 0 in Z(P) = {a- e
Rn I -P(^) = 0} (i.e. / = 0 as a germ in ff(P)), then f(x) = 0 for any x
with 1^-1 < pi, P(.r) =0.

LEMMA 7.2. — Let d>l be a given integer. The set

Zd = {(P, /) € W x ̂  | / = 0 as a germ in Q{P)}

is semi-algebraic.

Proof. — Let pi > 0 be as above. We first remark that the set

X = {(P,/,rc) e W x J^ x Q^ | f(x) = 0 or P(x) + 0}

is semi-algebraic. In fact, X is the inverse image of the semi-algebraic set

5 = {(a ; i , . . . , Xn, t) G R71 x R 1 1 = 0} U { ( ^ i , . . . , xn, t) e R71 x R I

a^- 7^ 0 for some j, 1 < j < n}

• under the semi-algebraic map W xHdxQ^ -^W^ xR given by (P, /, x) ̂
(^U^)) and so is semi-algebraic (Prop. 6.2 (a)). Since Zd = {(P,/) e
W x ̂  | (P,/,a;) € X, Va; e QpJ, Zd is semi-algebraic by Proposition
6.2 (d).

We next define two norms.
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DEFINITION 7.3.

(a) Let d > 1 be an integer, let P e W, q e H ' 1 , 0 < p < pi. We define
the norm N by N(P, d, q, p) = infimum of the real numbers C > 0 such
that, for any f e H0, there exists F € Hd for which F-qf = 0 as a germ in
G(P) and ||F|| < C sup |/|; if no such C exists, we set N ( P , d , q , p ) = +00.

VpW

(b) Let d >_ 1 be an integer, let C > 0 and 0 < p < pi. IfP e W, we
define the norm N^ by

N^P.d.C.p) = inf{7V(P,d,g,p) | q e H^ q(0) = 1, \\q\\ < C}.

LEMMA 7.4. — The two norms defined above are extended semi-
algebraic functions of their arguments. More precisely, given d >_ 1, the
maps

N ' . W x H ^ ^ p i ] -^ RlJ{oo},
(a) (P,9,P) ^ N{P,d,q,p)

and
N^ : lVx]R+ x (0,pi] ^ Ru{oo}, R + = { G € M | 00},

v / {P.C.p) ^ N^P,d,C,p)
are extended semi-algebraic functions.

Proof.

(a) We first note that the set

(1) Ei = {(P,FJ,g) C W x H ^ H 0 x H d \ F - q f = 0
as a germ in G(P)}

is semi-algebraic. In fact, it is the inverse image of the semi-algebraic
set Zd+D C W x ^f^^ (Lemma 7.2) under the semi-algebraic map
(P,F,/,g) ̂  (P,F - g/) o f ^ x ^ x ^ x ^ into TV x H^0.

Next, we show that the map

(2) y ' . W x H D x (0, pi] -. R, (P, /, p) ̂  sup I/I
Vp(P)

is semi-algebraic. To see this, remark that the set

E^ = {(P,/,a;,p) e W x H 0 x Q ^ x (0,pi] | P(x) = 0,

^•1 ^p,j=l,...,n}
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is clearly semi-algebraic, as is the map ^ : W x H0 x Q^ x (0,pi] -^ R
given by

Wf^p)=\f{x)\.

Now, given (P, /, p), we have

sup I/I = sup{^(P, /, a?, p) over all a: such that (P, /, x, p) e ^2}.
• p \ ~ )

Further, since Vp(P) is compact, this sup is finite. Hence (2) follows from
Lemma 6.16.

It follows from (2) that the set

^3 = {(P,F,/,p,C) e W x H^ x H0 x (0,pi] x ̂  | ||F|[ < C sup |/|}
VpW

is semi-algebraic, so that (see (1)), so is the set

E^ = {(P,P,/,p,C,g) € W x ^d x H0 x (0,pi] x R+ x ^d |
(P, F, /, p, C) € ^3 and (P, F, /, g) e E^}.

Hence, by Proposition 6.2 (c), (d), the set

E^ = {(P,p,C,g) e TV x (0,pi] x B^ x ^d | V/ e ̂ ,3? e ̂
such that (P, F, /, p, C, 9) € ^4}

is semi-algebraic. Finally,

N{P, d, ̂ , p) = inf{C7 e R+ | (P, p, C, 9) € %},

so that A^ is an extended semi-algebraic function by Lemma 6.16.

(b) The set

Ee = {(P, C, p, q) € TV x R-4- x (0, pi] x ^d | q e 7:̂ , g(0) = 1, ||g|| ^ G}

is clearly semi-algebraic. By (a), so is the set

E, = {(P,G,p,g) e ̂  I ̂ V(P,d,g,p) < oo}.

If £o is the image of £'7 under the projection (P, G, p, 9) >-^ (P, C, p), then,
for^C.^eEo,

7v,(P, d, C, p) = inf{7V(P, d, 9, p) | (P, C, p, q) e ̂ 7},

while ^(P, d, C, p) = oo if (P, G, p) ^ EQ. Hence A^ is an extended semi-
algebraic function by Lemma 6.16.
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8. The induction scheme and some technical lemmas.

We recall the natation that we have been using. Let n >, 2, 1 < r <:
n — 1, D > 1 be given integers. Let C\ > 0. We have set:

H D = { p e R[a:i,..., Xn} | degp < D},

W = {? = (pi,... ,p,) | pj e H0, P(0) = 0, ||P|| < Ci,

det(^(0)) =1}
\dXk ^<:J,k<r )

where, ifp= ̂ P^ € H^ d > 1, ||p||2 = Eba|2 and ||P||2 = EIM2-
j

Fix pi > 0 such that, for any P € W, the set
[x € M71 [ 1^-1 < /?i, pi (a;) = • . . = pr(x) = 0}

is contained in the connected component of Z(P) D {x € Rrl | Jp(rc) 7^
0} = {x C R71 | P(a?) = 0, detf-^) 7^ 0} which contains the origin (see

\dxk^
§1, (4) and the remark following Lemma 2.1).

For 0 < p <^ pi, and P € TV, we define

^(P) = ̂  n Z(P) = {x e R71 | 1^.1 ^ p, pi (re) = ... = p,(^) = 0}.

Recall that S(P) is the space of germs at 0 of functions defined on some
neighborhood of 0 in Z(P) [or Y(P) or Vpi(P)].

We shall use, both in this section and the next, the following lemma
proved in [FN], and so state it here.

LEMMA 8.1. — Let d > 1, E C W and (pa ^ H ^ ' . a = 1,...,5.
Assume that y?i|£',..., <ps\E are linearly independent over R.

Then, there exist constants e > 0, K > 0, K ' > 0 (depending only
on E and the tpa) and points xp € E, (3 = l , . . . ,s, such that the following
holds.

Ifxp € W1, \x-(3-X(3\ < e, /? =!, . . . ,«, and(^a e ̂  l l^a-^all < ^
a ̂  1,..., Sfthen, for any Aa € E, a = 1,..., s, we have

^ \Aj\ <Kmax\^Aaf>a(xo)\.
l<j<s a=l

In particular,

I ̂  Aj(pj\\ ^X'max|^A^^a(^)|.
1<J<S Q=l
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The extension theorem stated in §1 will be proved by proving the
following:

MAIN LEMMA 8.2. — Fix an integer t with -1 <: t <, dim TV.

There exist constants Ci^Df > 0 depending only on t and the given
constants n,r,-D,C'i, and a closed semi-algebraic set TV* C W with the
following properties:

(A) dimW* < t (so that W~1 = 9).

(B) Given Po C W\Wt and p > 0, p < pi,there exist constants 6 > 0
and K > 0 depending only on PQ and p such that: for any P G W with
| |P—Po|| < 6, we can Gnd q € HDt satisfying the following requirements:

(i) g(0) = 1, IHI < Ct;

(ii) For any f e H0, there exists F e H0* so that qf==Fas germs
inG(P) and\\F\\<Ksup\f\.

Vp{P\

If t == dim W, this statement is trivial; we have only to take W* = W.

In the rest of this section and in all of §9, we assume that t is fixed
and that the main lemma holds for the number t.

Thus, we assume that the set Wt and the constants C^, Dt are given.

We use the following:

Convention. — Constants written (7, C'\ C^, G, . . . , D^ D/ (not in-
volving auxiliary parameters) will be understood to depend only on
n,r,D,(7i unless otherwise stated. Constants written as (7(d),(7(m),...
will depend only on n, r, D, C\ and the auxiliary parameters indicated (such
as d, m). Constants written as <5, < $ i , . . . , JC, K ' ^ . . . may depend on other
data which will be indicated explicitly.

For d ^ 1, consider the set

(1) Zd = {(P,/) 6 W x H^ | / = 0 as a germ in G(P)}.

The set Z^ is semi-algebraic by Lemma 7.2.

For C > 0, d > 1, define

(2) 5 (C7 ,d )={96^ |9 (0 )= l , \\q\\<C}.

This set is clearly semi-algebraic for any (7, d.
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LEMMA 8.3. — There exist constants C^ > 0,1^ > 1, and, for
d ;> 1, a function A, >, 1 of d, 72, r, ;D, C\ such that the following holds.

There exists a semi-algebraic map

Q:W-.S(C^D^)
(independent ofd) and, for d> 1, semi-algebraic maps

^:^^^,j=l,...,r,

such that
r

Wf = ̂ 9j(PJ)Pj (in R[x^..., xn\) for all (P, /) e Zd.
j=i

Proof. — Let Do > 0. Let E be the following subset of W x H00.

(3) E is the set of pairs (P,g) e W x H00 such that for any d > 1,
if / € ̂  and / = 0 os a germ in ^(P), then qf = ]^^ for some
g i , . . . , 9 r eR[x^,...,Xn].

We claim that E is semi-algebraic. To prove this claim, we use
Theorem 5.6', which shows that if P e W, the ideal in R[.n,..., a^] of those
/ which = 0 as a germ in Q(P) is generated by /i,..., f^ with deg f^ ^ jD',
1 < v < r^, where D' depends only on n, r, D. Clearly, £' is the set of pairs
(P,g) such that qf, = Zg^p^ v = l,...,^,^ e R[a;i,... ,^]. By

3

Theorem 5.4 if the g^ exist, we may assume that deg^.^) < D", where
D" depends only on Do, D ' , n, r, J9.

Hence, we have:

(4) E = {(P, q) e TV x H^ | if / e ^D/ and / = 0 as a germ in ^(P),
then there exist g i , . . . , g r ^ H0" such that qf = J^gjpj}.

The set £;i c IV x H00 x H 0 ' x {H^'Y defined by

^l={W9J,(^l, . . .^r)) |g/=^^p,}

is clearly semi-algebraic. Hence its projection on W x H00 x H01: E^ =
{{P^.f) e W x H ^ x H 0 ' | 3g e (H^Y with qf = Zg,pj} is semi-
algebraic.

We have:

E = {(P, q ) e W x H D O \ V/ with (P, /) e Z^, we have (P, g, /) G ^2}.

This set is semi-algebraic by Prop. 6.2, (d), thus proving our claim.
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Now, by Theorem 5.5, there exist C*, D^ > 1 such that if E is the set
(3) defined with DQ = D^, then the projection

Er\WxS(C^D^)-^W
is onto W. By Lemma 6.12, we can find a semi-algebraic section of this
projection, say Q : W -^ E H W x S{C^,D^\ set Q(P) = (P,Q(P)). By
the defining property of E, we have:

(5) If P € TV, / € ^d and / = 0 as a germ in <?(?), there exist
^i , . . . . gr € R[a;i,..., Xn] such that Q(P)/ = E^Pj-

By Theorem 5.4, there is a function d+ of d, n, r, D, C\ such that:

(5') If P € IV, / 6 H^ and (P, /) € Z^, then there exist ^i , . . . , ̂ Clf^
sothatQ(P)/=Dw.

In other words, if E C W x Hd x (H^Y is the semi-algebraic set
defined by

^={(PJ,^i,...,^))|0(P)/=^^},
then projection onto W x Hd maps E onto Z^. Again by Lemma
6.12, this map has a semi-algebraic section. This means precisely that
there are semi-algebraic maps gj : Zd —>• H^^j = l , . . . ,r , such that
(P,/,(^i(P,/),..., ̂ (P,/))) 6 E for any (P,/) C Zd, i.e. such that
QWf = E^(^ /)PJ- This is Lemma 8.3.

j
We now proceed to the principal technical step which enables us to

prove the Main Lemma 8.2.

TECHNICAL LEMMA 8.4. — Let Wt,Ct,Dt be as in the Main
Lemma, and let Q : W —> 5'(C*, D^) be the semi-algebraic map constructed
in Lemma 8.3

Let m >_ 0 be a given integer.

We can find a semi-algebraic partition {Yy} of Wt, a closed semi-
algebraic set Z C Wt of dimension < t — 1 {Z = 0 if t = 0), a constant
D{m) > 1, and, for each y , a finite number of semi-algebraic maps
<!>o; : Yy —f H0^ (we do not indicate their dependence on v in the
notation) with the following properties:

(Irn) If P € Yv, the polynomials ^a(P) a^e linearly independent as
elements ofQ(P).

(Urn) Let PO ^ Yv\Z. Then, there exist constants 6 > 0, K > 0
(depending only on PQ and the above data) such that whenever we are
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given:

P e Yv with ||P - Po|| < ^;pi,... ,gr € H0 with \\gi\\ < 1;
a real number r, 0 < r < 1; and f € HDt,

then, we can find real numbers Aa and a polynomial f € H0^ for which
we have

(i) (Q(P)r/ = ̂ AMP) + T^mocKpi + r^i,... ,p, + r^),

P=(pi,...,pr),

and

(ii) 1 1 / 1 1 <K 11 /H .

Proof of the Technical Lemma. — The proof is by induction on m.
For m = 0, the result is obvious: take {Yy} to consist of Wt alone, / = /,
and {^cj to be the empty family.

Assume therefore that m,{y^},Z,^a : Yy -^ H0^ are all given
with the properties (1m) and (llm) above.

For P € V^, let Vp = {/ € H0^ \ f == 0 as a germ in
6?(P)} = {/ € ^D(m) | (P,/) € ZD(m)}, and let Vp' be the orthogonal
complement of Vp C ̂ M^a(-P) [̂  is the linear span of the ^a(P)}' The

a a
set

{(P, /) e v. x J )̂ I / e Vp} = z^(^) n (r, x H0^)
is semi-algebraic. By Lemma 7.2 and Lemma 6.14, the set

{(P.^eY^xH0^ \fev^}
is also semi-algebraic. We apply Lemma 6.13 to these sets to obtain the
following:

(6) There is a semi-algebraic partition {Y^} of Wi\ refining the partition
{y^}, such that, for each ^, we can find finitely many semi-algebraic
mappings hp : Y^ -> i?^), ̂  : y^ -. I^771) with the property that
for P € V^, the {/i/3(P)} form a basis of Vp, the {^(P)} form a basis of
Vp7.

Moreover, if we restrict the <t>a from V^ to the Y^ contained in Yy,
properties (1m) and (IIm) continue to hold.

Note that for P € Y^ the polynomials {^(P),-0/y(P),^a(P)} form
a basis of H0^. In fact, since ft^(P) == 0 in ^(P), and the images
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of the ^a(-P) are linearly independent in Q(P), {/^(P),^(P)} form a
basis of Vp C ̂ R^a(-P), while the ^(P) form a basis of the orthogonal

a

complement of this space in H0^.

Since (P,/^(P)) e ZD(m) for P e Y^ and any /3, Lemma 8.3 can be
applied, and provides semi-algebraic maps

^: y; -. H^
[where d(rn) depends only on D(m) and the constants defining W] such
that

(7) Q(P)^=i^9^P)p^PeY^
.7=1

(Q being again the map constructed in Lemma 8.3).

Given P G Y^ and F e J^^), we can write

(8) ^=Ea^-(p)+E6^(p)+Ee^(p)'
a ^ -y

where aa,6^,e^ are real numbers depending on P and F (they are semi-
algebraic functions of P and P, as is easily proved, but we do not need this
fact).

Multiplying (8) by Q(P) and using (7), we obtain

(9) Q{P)F = E ̂ Q(P)^a(P) + E ̂ Q(P)^y(P)
a 7

+E(EW^))P..
.7=1 /3

Suppose that in addition to P € Y^ and F 6 H0^, we are given r 6 (0,1)
and ^i , . . . ,^ € Jf0 with ||̂ || < 1. Then (9) implies

(10) Q(P)F = E a.Q(P)^(P) + E e^(P)^(P)
a 7

4-rF mod(pi + r^i,..., pr + rgr)

where
F=-E(Ew,(p))^.

J=l /3

We can now define sets {^},Z, a constant D(m + 1), and, for each
v, maps $^ : Y^ -^ ff^+i) ^^h have properties (Im+i) and (IIm+i) of
Lemma 8.4.
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(a) We take the partition {Yy} of Wt be the partition {Y^} above.

(b) Z_ will be any closed semi-algebraic set of dimension < t — 1 such
that Z_ D Z and the maps Q, <I>a, /^, '0-y, ̂  are continuous on y^\Z.

Note that we can find such a Z_ by Lemma 6.11 and Lemmas 6.6, 6.7
since dimY^ <_ dim TV* ^ t and dimZ < t — 1 by assumption.

(c) D(m + 1) = max(-D(m) + D^,d(m) + D) with D^ as in Lemma
8.3, dega^(P) < d(m) and {^} is an enumeration of the maps

P ̂  Q(P)^(P) and P ̂  Q(P)^(P).

This completes our choices. It remains to show that with these choices,
properties (Im+i) and (Hm+i) hold.

Verification of Property (Irn+i)- — We have to check that the
polynomials Q(P)^Q(P), Q(P)^(P) are linearly independent in Q{P)
for P € y^. Since Q(P) = 1 at the origin, it is enough to show
that ^(P),^7(P) are linearly independent in <?(?). If ^Ua^a(P) +
^w^'0/y(P) = 0 in <?(P), this sum lies in Vp by definition of Vp, so that
there are constants vp € M so that ^na^a(P) +^w^'0/y(P) = ̂ V(3hp(P)
(since the h^(P) span Vp). But this can only happen if u^ = ^/3 = w/y = 0
since, as noted earlier, ^a(P),/i^(P),^(P) form a basis of H0^ for
P <= V — Y1 ^ I p. — JLJ^'

Verification of Property (Urn-^-i)- — Recalling the choices made in
(a), (b), (c) above, we can formulate property (II^+i) as follows.

(11) Let Po € Y^\Z_. There exist 6 > 0 and K_ >0 (depending only on Po
and m + 1) such that, whenever we are given:

P € V; with ||P-Po|| < &

pi, . . . ,^6^ with H^l l ^1;

re (0,1); and/e^^,

we can find real numbers AQ, E^ and a polynomial / € H0^^ such that

(i,m+l) (Q(P)r^f = ̂ ^0(P)^(P)+^^0(P)^(P)+Tm+l/
Q! 7

»»

mod(pi + r^i,... ,pr + rgr)

and

(ii^+1) 11/11 <Kll / l l .
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To verify this, recall that by inductive hypothesis (Technical Lemma
for the value m), we have the following:

Given Po e Y^\Z, there exist 6,K > 0 such that whenever we are
given: Pe^ with ||P-Po|| < <5; g^... ,^ e H0 with ||̂ || ^ 1; r € (0,1);
and / e ff^; then there exist Aa € R and F e H°^ such that

(a) (^(P))^/ = EAa^a(P) + r^mod î + T<7i,...,?,+ r^),

and

(b) ||F|| < ^11/jl.

To prove (11), given P and /, let F be as in (a) above; we have
F e H0^ and we can apply (10). We multiply (a) by Q(P) and substitute
into (10). This gives

(12) (Q(P)r^f = ̂  A,Q(P)$,(P)
a

+ ̂ {^ a,Q(P)^(P) + Y^ e^Q(P)^(P)}
a -y

+ T^Fmod^i + rffi,... ,pr + rgr),
where

(13) £=-E(EW,W)^.
3=1 f>

Equation (12) is of the form (i, m + 1) if we set

A^=A^+ r^a, E^ = T"^,/ = F.

Thus, to complete the proof of the technical lemma, it remains to
prove the estimate (ii, m +1) for F = /. To do this, we have only to prove
the following:

(14) Given Po 6 V^\Z, there exist 6,K > 0 (depending only on Po) such
that: if P € V; and ||P - Po|| < 6; if

(15) F = ̂ aMP) + YjbMP) + Ee-̂ (P);
7

and we are given g^... ,̂  e H° with ||̂ || < 1; then we have

(16) iiEE^(^-n<^imi.j=i ft
Now, by the choice of Z, the map P ^ (^a(P),^(P),^(P)) is

continuous on Y^ at Po (since its restriction to V^\Z is continuous and Z
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is closed). Moreover, the triple in brackets is a basis of H0^ close to the
basis (^a(Po),ho{Po),^(Po)) if P is close to Po. Hence, if ||P - Po|| <: 6,
P € Y^(6 depending only on Po and jD(m)), there is K\ > 0 (depending
only on Po and D(m)) so that
(17) \aa\M\e^\<K,\\F\\
whenever (15) holds.

In addition, the maps <^(P) are continuous on Y^ at Po (again because
Z_ is closed). Thus, there exist 6^,K^ > 0 (depending only on Po and D(m))
such that

(18) ||̂ (P)|| ̂  ^2 if ||P - Poll < ^2, P € V;.

Since \\gj\\ < 1 by assumption, (17) and (18) show that whenever (15)
holds, we have, for ||P - Po|| < ~6 = min(<?i, 62), P € Y^

BEEW^|| ^K\\F\\.
3 ft

This completes the verification of property (IIyn-n).

The induction step being complete, Technical Lemma 8.4 is proved.

LEMMA 8.5. — Let y be a semi-algebraic subset of W with
dimY < t. Then, there exists a closed semi-algebraic subset Z C W with
dim Z < t — 1 (so that Z = 0 if t = 0) with the following property:

If Po € Y\Z and p > 0, there exist constants <5, K > 0 (depending
only on PQ and p ) such that: given P € Y with ||P - Po|| < 6 and f e H0,
there exists F e H° with F = f in G{P) and ||F|| < K sup |/|.

VpW

Proof. — If P € y, denote by Vp the orthogonal complement in
H0 of the space of polynomials in H° which are 0 as germs in G(P). By
Lemma 7.2 and Lemmas 6.14, 6.13, we can find a semi-algebraic partition
{Yy} of V and, on each Yy, semi-algebraic maps <&a : Yy —> H0 such that
{$„(?)} is a basis of Vp for any P e Yy.

Let Z be a closed semi-algebraic set in W such that dimZ < t — 1,
Z D Yy\Y^ for each i/ (Yy being the closure of Yy}^ and such that for any v
and any a, ^a | Yy\Z is continuous; there is such a Z by Lemmas 6.11, 6.7.
Since Z D Yy\Yv for all v, if Po e Yy\Z, then Po ^ Y^ for ^ -^ v. Hence,
given Po C V^\Z, there is ^i > 0 such that if P € Y and ||P - Po|| < <?i,
then P € Yy.
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Now, if P G Yv and / € H0, we can find real numbers A^ such
that / = ^A^^(P) as germs in Q(P). Since, for 0 < p < pi (see

§1^ (4)), Vp(P) is contained in the connected component through 0 of
Z(P) H {x 6 R71 | det(J^) ^ 0} (see remark after Lemma 2.1),
have

we

(19) /=^A^(P)on^(P).
Q:

We now make the following remarks:

(a) If XQ e Vp/2(Po) and e > 0 are given, there is 6^ > 0 such that
if P € TV and ||P - Po[| < <^, then, there exists x e Vp(P) such that
[a:-a;o| < e.

This follows from the real version of Lemma 2.1.

(b) Given ?o € Yy\Z and e > 0, there is 63 > 0 such that if P e Yy
and ||P - Po[| < ($3, then ||^(P) - ̂ (Po)|| < e for any a.

This is simply the statement that the ^a are continuous on Yy at
P o ^ Z .

(c) {^a(^P)} are linearly independent functions on Vp/2(Po). (They
form a basis of V^ and so are linearly independent in G(P)).

Because of (c), we can apply Lemma 8.1. Thus, there exist finitely
many points x^ e Vp/^Po),e > 0 and K (depending only on the ^a(Po),
thus only on ?o) such that if xp e R71, \Xft - Xft\ < e and <^ C H0,
||^-^a(Po)|[ <e, then

^\A^<Kmax^A^a(xp) , A^eR.
a a

We can apply this with ̂  = ̂ (P), ̂  e ̂ (P) if ||P - Po|[ < min(<$2,63)
because of (a) and (b) above. This gives

II ̂ AA(P)|| < m^x(||^(Po)|| + 6)^ |AJ
a

<^nwc^AA(P)(^)|
a

<K' sup VA<,^(P).
VP(P) Q

Taking F = ̂ ,Aa^a(P) and using (19), we obtain the lemma.
/V
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Remark 8.6. — We have used Theorem 5.6 in Lemma 8.3 and thus in
the statement and proof of the Technical Lemma 8.4. However, to prove the
Main Lemma, a weaker version of the Technical Lemma would be sufficient;
this weaker version can be proved using only Theorem 5.2 (not 5.6). This
version of the Technical Lemma is the following.

Given Wt^Ct,Dt and m > 0 as in 8.4, there exist constants
Co{m),DQ(m) (depending only on these data and the constants in W)
and a semi-algebraic map q: W* —> 5'(C'o(m), Do(m)) (so that deg q (P) <
Do(m), g (P)(0) = 1, || g (P)|| ^ Co(m) for P e W*), with the property
that the statement of the Technical Lemma holds if, in (IIm)? we replace
{Q{P)r by q (P).

The sharper form in the text is the exact analogue of the argument
given in [FN]. Moreover, Theorem 5.5 and Theorem 5.6 on which it is based,
are clearly of interest in themselves.

9. The induction step in the proof of the Main Lemma.

We are assuming that the Main Lemma has been proved for the value
t of the parameter; in this section we carry out the induction step proving
it for the value t — 1 under this assumption, thus completing the proof of
the Main Lemma 8.2.

If we recall the definition of the norms N^N^ defined in §7, we can
reformulate the Main Lemma for t as follows.

There exists a closed semi-algebraic set W* C W of dimension < t,
and constants C^, Dt > 1 such that

Given Po G W\Wt and p > 0, p <: pi, there exist 6 > 0, K^ > 0 so
that

A^(P, D^ Ct, p) ^ K^ whenever ||P - Po|| < <?, P C W\W^

If we note that Wt is closed in W and that, for fixed values of the
other parameters, N^ is a decreasing function of p, we obtain the following:

(1) With Ct^Df as above, the function

(P,p)^7V.(P,A,Q,p)

is locally bounded on the set (T^W*) x (0,pi].
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Since N^ is semi-algebraic where it is finite (Lemma 7.4, (b)) and
W x [0,/?i] is compact, we can apply Lemma 6.15 to N^ and the pair
(TVx[0,pi],(W\^)x(0,pi]).

Note that the distance of (P,p) € (W^TY*) x (0,pi] from
(W x [O.piDV^Vy*) x (0,pi]) = Wt x [0,pi] U IV x {0} is at least
mn^dis^P,^),?) > pdist(P,TVt) (since pi < 1; see §1, (4)). From this,
and Lemma 6.15, we obtain:

LEMMA 9.1 (Quantitative Form of Main Lemma). — Let Wt, Cf,
Df be as in the Main Lemma 8.2. There exist constants mi, Ki > 0
(depending only on these data) such that the following holds.

Given P € W\Wt and p > 0, 0 < p < pi, we can find q € H^ with
q(0) = 1, |[g|| < Ct such that, for any f € H0, there exists F C H^ for
which

(i) F=qfonV,(P)

and

(ii) |[F|[ < Kf . p-^dis^P, W^))-^ sup |/|.
Vp(Z)

We now apply the technical lemma with m = m^, where frit is as in
Lemma 9.1. This gives us: a semi-algebraic partition {Yy} of W^; a closed
semi-algebraic set Z C Wt with dim Z < t — 1; a constant D(mt) > 1; and,
for each v^ semi-algebraic maps ^a : Yy —> i:fD(mt), having the properties
(1-m.t) aln(^ (IImt) OI Lemma 8.4 (Q : W —> S{C^^D^) is the semi-algebraic
map constructed in Lemma 8.3).

Let Z ' be a closed semi-algebraic set of dimension < t — 1 such that,
for any v^ a, Q, ̂ a restricted to Yv\Z1 are continuous; there is such a Z ' by
Lemma 6.11.

Let Z " C TV be a closed semi-algebraic set of dimension < t — 1 such
that, for any v, if Po € Yy\Z" and 0 < p < pi, if P € Yy is close to
PO, and if / 6 H0, then there exists F € H0 with F = / on Vp(P) and
||F[| < K sup [/I, K being a constant depending only on Po and p. The

Vp(P}
existence of Z" is guaranteed by Lemma 8.5 (and Lemma 6.6).

We define TV*-1 by:

(2) TV*-1 = closure in W of ZUZ'UZ^ULK^W), Yy being the closure

ofV^.



POLYNOMIAL BEHAVIOUR OF ALGEBRAIC FUNCTIONS 1169

Since Z, Z', Z" have dimension < t — 1 by construction, and dim Y^ <
dmW1' < t, we have, by Lemmas 6.6, 6.7,

(27) dimW^-1 <t-l.

By construction, we have the following properties:

(3) If Po € Y^W^ and 0 < p < pi (< 1), there exist SQ.KQ > 0
depending only on Po and p such that the following assertions hold:

(3.i) Q^a are continuous on Yy at Po.

(3.ii) IfPeW1- and ||P - Po|| < <?o, then P e V^.

(3.iii) If P € V^ and ||P - Po|| < 60, then given / € H0, there exists
F € H0 with F = / on Vp(P) and ||F|| < KQ sup |/|.

Vp(P)

To complete the induction step, we have to show that there exist
constants Cf-i.Dt-i > 1 (depending only on the constants defining W)
having the following property:

(4) Let Po € lV\Ty*-1 and let 0 < p <, pi. There exist constants 6,
K_ > 0 (depending only on Po and p) such that whenever P € W and
\\P - Poll < & we can find q € H°^ with g(0) = 1, ||9|| < Ct-i with the
property that for any / e ff15, there is F € ff^-1 for which F = qf on
yp(P)and||F||<^sup|/|.

Vp(^)

If Po € W^IV^, this follows from our inductive hypothesis that the
Main Lemma is true for the value t.

If PO € W^W^ and P € W\ then, if v is such that Po € V^ and
[|P-Po|| is small, (3.ii) implies that P e Yy (same v} and (3.iii) then shows
that (4) holds with q = 1.

Thus, to prove (4) and hence complete the induction step, we have
only to prove

LEMMA 9.2. — Let {V^}, IV*"1 be as above. There exist constants
Ct-i > 0, Dt-i > 1 (depending only on the constants denning W) for
which we have the following:

Given Po G Y^W^ and 0 < p < pi, there exist 6, K_ > 0 (depending
only on Po and p ) such that if P e W\Wt and |[P - Po|| < 6, then there
is q € H0*-1 with the following properties:

(a) g(0)=l,| |g| |^Ct-i;
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(b) For any f € H°, we can find F € H0*-1 so that F = qf on
V,(P)and\\F\\<Ksup\f\.

VpW

Proof. — Let Po € Y^W^ and p > 0 be given. Let P € W^
and suppose that ||P — Po|| < 6_ < 1/2; we shall list the conditions that 6
must satisfy for the lemma to hold.

Since Wt is closed, we have r = dist(P, IV*) > 0; further r < 6_ since
PO € V^ C IV*. We choose P € TV* such that ||P - P|| = r; we then have

||P-Po||<||P-P||+||P-Po||<T+^<2^.

Hence:

(5) If 6-i > 0 is the constant in (3.i), (3.ii), (3.iii) above, and if 2S <: <$i,
then P € Yy.

Write P = P + r(^i,... ,^) with ̂  € ff^. Then Ell^-ll2 = L We
apply Lemma 9.1 (quantitative form of Main Lemma) to P G W\W*. This
gives:

(6) Given p > 0, there is q € H^ with g(0) = 1, \\q\\ < d such that
for any / € iif^, we can find Fo ^ H0' for which Fo = qf on Vp(P) and
IIPoll^^T-^p-^SUpf/l.

Vp(P)

We wish to apply the Technical Lemma 8.4 to Po with m = mi. To
do this, we must make sure that

(7) 26_ < <5, 6 being the constant in Property (IImJ of 8.4.

If (5) and (7) hold, we have ||P - Po|| < 6, Po € Y^W^, P e Y^
pi, . . . ,gr € H0, \\gj\\ < 1, 0 < T < 1, Fo ^ H0^ so that the conditions
imposed in Lemma 8.4 are verified. Hence, if the <^ are as in Lemma 8.4
with m ==• m^, we have:

(8) There exist real numbers Aa such that

(^(P^FO^A^^+T^F mod(pi,...,p,), P=(pi,...,p,)

and
\\F\\<,K\\F^

note that pj = pj + rgj by definition of the gj. Here ^ is a constant
depending only on r, Po and p, and ^a(P), F € H0^^.

From (6) and (8), we obtain:
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(9) Set q = q • Q^ (P) (with q as in (6) and Q as in 8.3). Then, if / e ff0,
we have

(9.i) q - f =^ AMP) +rmt F on Vp(P),
a

(9.ii) HT^FH ^ K • Ktp-^ sup [/I,
Vp(P)

and, because of Lemma 8.3 and (6) above, we also have

g(0) = 1, q e H01^ with D^ = A + m^D,,
(Q.iii)

N1^.^.0^=0-1
where (7* is as in Lemma 8.3, Q is as in (6) above, and C is a constant de-
pending only on n and the degrees of q, ̂ (P)^, i.e. only on n, Dt, A., m<.

Since, by (Q.iii), sup |g./|< ^_i sup |/|, where K[_^ depends only
Vp{P) Vp{P)

on Po,p and t - 1, (9.i) and (9.ii) imply that

(10) sup |^A^(P)| < K" sup I / I ,
Vp(^) a Vp(P)

where J^" depends only on Po,p and t.

Since the functions ^a(Po)|Vp/2(Po) are linearly independent, we can
apply Lemma 8.1 to obtain the following:

(11) There are finitely many points x? € Vp/^(Po), and constants e > 0,
K^ > 0 such that if xp e R71, \xp - xo\ < e, and (pa € H0^,
ll^a - ̂ a(Po)|| < €, then, for any real numbers A^, we have

I^A^cJI < ̂ max|^Aa^(^)|.

Here, e,K^ depend only on Po,p and mi. With e as in (11), there is
62 > 0 depending only on Po,p,t such that if ||P - Po|| < 6^ then, for
any XQ € Vp/2(Po), there exists x € Vp(P) such that |.z: - XQ\ < e.

We assume that

(12) <$«$2.

Now note that the maps P' i-̂  ^a(P') are continuous on V^ at the
point P ' = Po (since Po € y^\lVt-l and W^-1 contains the points of
discontinuity of the ^a on Yy by construction). This gives

(13) There is 63 > 0 depending only on Po and p such that if 6 < 63, then
H^P7) - ̂ a(Po)|| < e for HP' - Po|| < 2& P/ e V..
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We now pick 6 to satisfy the conditions (5), (7), (12) and (13). We
may then apply (11) with ̂  = ^a(P) and Xfs € Vp(P), \Xft - x^\ < e, to
obtain

(14) \\^AMP)\\<K.max\^AMP){x^\
a a

^K, sup \^AMP)\
Vp(P} a

^K" -K. sup I/I by (10).
Vp(P)

Thus, if we define

(15) F = £ A^a{P) + r^F, with F as in (8),
a

we obtain, from (6), (9) and (14),
(16) qf = F on ^(P), F e H0^,

||F|| < sup I /I , where K = K"K^ + K ' Ki • p-^.
Vp(P)

If we set Dt-i = max(jD(mt), Dt + m^-D,,), we also have, by (9.hi),
q € J^-^, g(0) = 1, ||g|| < Ct-i, F € ff^-1.

Thus, ifA-i = max(D(7nt),A+mtD*), and Ct-i = C'CrC^ (as
in (9.iii)), then choosing 6 > 0 to satisfy (5), (7), (12), (13) and K_ > 0 as in
(16), we have shown that if P € W^, ||P-Poll <6smdqis defined as in
(9) (where P e Yy satisfies ||P - P|| = r = (P, IV*)), then the conclusions
of Lemma 9.2 hold.

This proves the lemma, and with it the Main Lemma 8.2 as remarked
earlier.

10. Proof of the Extension Theorem.

Proof of Part 1. — We take t = -1 in the Main Lemma 8.2, so that
Wt = 0. Using the definition of the norm N^ (8.3, (b)), we can formulate
the conclusion of the Main Lemma as follows.

(1) There exist constants C-\ > 0, D-i > 1 depending only on n, r, D, C\
such that if p > 0 and Po € W, then there exist So > 0, KQ > 0 depending
only on Po and p such that

N^P,D^C^p)<Ko for P e W, ||P- Po|| < 60.
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Since W is compact, for each p > 0, there is a constant K^ depending only
on p and W such that

A^(P,D-i,C'-i,p)<^ for PeW.

Since N^ is a decreasing function of p (0 < p < pi), we conclude, in parti-
cular, that

(2) The function (P,p) ^ ^(P,D_i,G-i,p) is locally bounded on
Wx^p,}.

Because of Lemma 7.4, (b), this function is semi-algebraic, and we
can apply Lemma 6.15 with S = W x [0,pi], E = W x (0,pi]. This gives:

(3) There exist constants m > 0, C > 0 (depending only on pi, D_i, C-\
and W) such that

^(P.D-i.G-i.p)^^-771 for all P(=W,0<p^p i .

If we take D7 = D_i and C" = max(C'-i,G), this is simply a
restatement of Part 1 of the Extension Theorem. [Note that if P e W
and a polynomial p is 0 as a germ in <7(P), then g = 0 on Vp^(P).}

Proof of Part 2. — Choose po > 0 such that 2po ^ Pi (^ 1) and
such that if g € H 0 ' , g(0) = 1, ||g|| < G', then

^ <g<2onQ2po-

By Part 1 of the Extension Theorem, there exists q e H0'\ q(0) = 1,
||g|| <: C' (hence ^ < q < 2 on Q^po) such that for any / e ft15, we can
find F € H01 with

f=F/qonV^(P)

and
||F|| 5. cy sup 1 / 1 .

^(^

Since clearly sup|F| < C(D',7i)||F||, we obtain Part 2 of the Exten-
Q^po

sion Theorem for the value p = po.

If 0 < p <, po, given P = (pi,... ,pr) e W, consider the polynomials
PjW = -^Pjl—^)- Since p^-(O) = 0, we have \\pj\\ < ||pJ|. Moreover,

P ^Po /
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9^k^ == &rt^' Thus we can apply part 2 for the value PO to fW =

/ ( - ^ x Y f e H 0 , to write
^Po ^

f=F/qon V^(P), p = (^ ... ̂

^ < q < 2 on Qapo. sup |F[ ^ C" sup |/|.
^2PO Vpo(P)

Writing F(x) = F^Y q = qf^} gives us Part 2 for the value p,
v Po ^ \ po ^ ' ?

0 < p ^ po.

The proof of the Extension Theorem is complete.

11. Polynomial behaviour of algebraic functions.

In this section, we shall use the extension theorem to prove Theorem
1 stated in the Introduction.

Given n ̂  2, 1 < r ^ n - 1, D > 1 and Gi > 0, we consider our basic
space W defined by these constants.

If 0 > 0, and s > 1 is an integer, we denote by Bs{9) the ball in
R8: Bs{6) = { (m, . . . ,a;,) e R5 | ̂ x] < 02} (see §1).

By Lemma 2.1, there exist arbitrarily small constants 6^6^ with
0 < 0i,02 < 1 depending only on n,r,D,d such that if P e TV and
TT = TTp is the restriction to Z(P) n B^i) x Bn-r(e^) of the projection
(a;i,. . . , Xn) ̂  (^+1,..., xn) (Z(P) is, as usual, the set {x e R71 | P(rr) =
0}), then we have:

(1) TT is a real analytic isomorphism of Z(P) n B^i) x B^^) onto
Bn-r(02)' Moreover, there is a real analytic map (p = (<^i , . . . ,(7?y.) :
Bn-rW -^ Br(0i) such that

Z(P) n B,(0i) x Bn-rW = {(^y),... ,^(t/),2/) | ̂  e B(^)};
thus 7r-1 is the map y ̂  {(p(y),y), y e B(6^.

If 0i,02 are chosen sufficiently small (depending on n,D,r,Ci), we
have

(2) There is a constant C^ > 0 (depending only on n, P, r, d) such that
if P = (pi,... ,p^) e IV, then

I Q?3f- < C2, 1 < j < r, 1 < k < n, x e B^(0i) x Bn-r(02).9xk
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Further, if Jp(x) = det f^-) , we have
\9Xk^l<j,k<r

Jp{x) ̂  ̂  for x e Br(0i) x Bn^W.

If (1) and (2) hold, we also have the following estimate:

(3) There is a constant 63 > 0 depending only on n, r, D, d such that
if P € W and (p^Xr-^i,..,, Xn), v = 1,..., r, are the functions defined in
(1), then

Q^pv .
-^- <C3, r<z^n , l^<r, (^+1,... ,Xn) e Bn-M.

In fact, since, if we set y = (a^+i,..., Xn) € Bn-rW, we have
Pj(^i(2/) , . . . ,^rQ/),2/)=0, K j < r ,

we see that, for r < z < n, 1 < j < r,

f4) ^ , V^ ^3 9^ _ n
w ^^^'B^05

the derivatives Qpj/Qx^ being evaluated at (^i(2/),... ,y?r(2/),2/), 2/ =
(a;r+i,...,a;n).

Q
Now, by (2), the matrix f^-) is invertible on Br(6i) x

\QXi/l<j^<r v /

Bn-rW and its inverse, considered as a linear map of R71 into itself, has
norm < 64, where €4 depends only on n,r,jD,Ci. Hence (3) follows from
(4) and (2).

We now formulate Theorem 2 of the Introduction with the present
notation.

THEOREM 11.1. — There exist constants (^,G, > 0 depending
only on n, r, D, Ci with 0 < ^ < (9s ^uch that, ifPeW.fe H0 and we
Set F=fo7^-leCOO{Bn.r(02mF(Xr^..^Xn)=f{^ Q/), . . . , ̂ {y), y)

with y = 7r(x) = (a^+i,. . . , Xn)}, then the following inequalities hold:

(A) Polynomial Growth. If 0 < 6 < ̂ , then
sup |F| < C^ sup |F|.

Bn-^(2<$) Bn-r(<5)

(B) Bernstein's Inequality. If VF = f-——,.. . , -—) is the gradi-
\dXr^-l OXn/

ent ofF, then, for 0 < 6 < ̂ ,
^

sup [VF| ^ — • sup |F|.
B^-rW 0 B^-r{6)
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(C) Equivalence of Norms. If 0 < 6 < 6^, then

sup \ F \ < ^ [ \F\d\
Bn-rW 0 JBr,-r(6)

where d\ is Lebesgue measure in W1'7'.

Proof. — Let C", Dr be as in the Extension Theorem, Part 1. Choose
constants ?*,<?* > 0 and po > 0 depending only on n,r,D,(7i such that
0 < po? P* < Pi a^d such that

(5.i) Ifqe H^.qW = 1, ||g|[ < C\ then J < q < 2 on Q^.

(5.n) IfPeW, then Tr?1^-^)) C Qp,.

(5.iii) IfPeW, then 7rp(QpJ C Bn-^(^).

By the extension theorem (Part 1), given P € W and / € H0\ we
can find G, q € jFf^^ such that

g(0)=l,|M|<C f /,g./=Gon^(P)

and

(7) |[G|| < C'p^ sup [/I.
ypoW

By (5.iii), we have
(8) SUp [/I < SUp I /OTT"1 ] , 7T = TTp.

Vpo(P) Bn-.(^)

Moreover,
(9) sup|G|<G||G||,

Qp.
where C depends only on p*,n,J9'. Using (5), (6), (7), (8) and (9), we
obtain

(10) sup |/ o Tr-1! < SUPQPJGI < 2C||G||
Bn-r(2^) ^Q. M

^ WC'p^m sup I/I
Vpo(P)

<2C(7/pom sup l/oTT-1!.
Bn-r(^)

Next, if F == f o Tr"1 and r < ^ < n, and we set /̂ = (rrr+i,..., a^n)? we
have

^=^G(^(2/),2/)).(^(2/),2/))-1

-(^(y)^))-2^^),^)^^^),^;
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if we remark that H ^ H ^ D'HGH and ||^|| ̂  D'\\q\\ ̂  D'C1(1 ̂  k ^ n)
oxk dxk

and use (3) and (5.i), we obtain
QF

sup —— < C^IGH < C^ sup |F|
Bn-r(^) dx^ Bn-r(^)

by (7) and (8); here C",C^ depend only on n,r,D,(7i. This gives
(11) sup |VF|<^/nC^ sup |F|.

Bn-r(^) Bn-r(^)

Next we make the following remark. Let U be a bounded convex open set
in R^, U ^ 0. Let (^ = C1^), [7 being the closure of U. Then

(12) supM < diam(E/)sup|V^| + ——— ( \^\d\.
u u vol(c/) Ju

To prove this, we first remark that it is sufficient to prove (12) when
y? is real-valued. In fact, if x C U and a C R is so chosen that e^^rr) € R,
we can apply (12) to the function <^i = Re(e^Q'y?) to obtain

|̂ )| = \^(x)\ < diam(E/)|V^| + ̂ y ̂  |(^i|dA;

since x € U" is arbitrary and |y?i| < [y?|, |V^i| < |Vy?|, we obtain (12) for
(/?.

Now, if ^ € C'l(?7) is real-valued and / -0dA = 0, then, there is a
Jc/

point a e U with -0(a) = 0. Hence, if x € E7, there is a point $ on the line
segment from a to rr such that

N ^ ,
^(x) = ̂ (x) - ̂ (a) = ̂ (^ - a,)-^(0,

^=1 aa;l/ _
which gives \^{x)\ ̂  \x-a\ |V^(0| ^ diam((7)sup|V^|. I f (^e C^y) and

we apply this to ^{x} = ip{x) - —-7—^ / (pd\, we obtain (12) when (p is
vol(u)j(/

real-valued, hence in general as remarked above.

Let e = —— where CA is as in (11) and let yo € Bn-r(6^) be4v/nC^
such that \F(yo)\ = sup |F|. We apply (12) with N = n - r , ( p = F

Bn-r(<5.)

and U = Bn-r(6^) H {y € R"'"7' | l^/ — 2/o| < €}. If we remark that there is
a constant 7 > 0 depending only on e, 6^ and n — r such that vol(LQ > 7,
we obtain

sup |F| = \F{yo)\ = sup|F| ̂  2esup|VF| + 1 ( \F\d\
Bn-r(^) U U 7 JU

< \ sup |F| + 1 / \F\d\ (by (11)).
^ Bn-r(^) ^ ^£/
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Thus
(13) sup \F\^2 [ \F\d\.

Bn-r{6^ 7 JU

If we take (7, = maxf2^1-7', >/nC^6^ 2CCfpom\ (10), (11), (13)

give, respectively, statements (A), (B), (C) of Theorem 11.1 for the
value 6 = 6^.

To prove these statements for 0 < 6 < <^, we simply rescale
as in the proof of Part 2 of the extension theorem. To do this, given

P = (pi, . . . ,pr) ^ W, let P = (p,. . . ,pr) where pj{x) = ~fPj[c~)'

Then P ^ W. We denote (a;y.+i,... ,Xn) = 7Tp(^i, • • • ̂ n) by y . Let
</? = ((^i, . . . ,^r) ; Bn-r(02) —> Br{0\) be the map given by (1), so that
Z(P) H Br(0i) x Bn-r{62) = {(^(?/), y) \ V ^ Bn-rW}' We claim that the
map ( < ^ i , . . . , <^.) = (p : Bn-r(02) —^ Br(0i) corresponding to P is given by

(pj(y) = —^ ' (—)- I11 fact, if \y\ is sufficiently small, this is clear, since,o \ o^c /
for 1 < j < r, pj((p(y),y) = P^T^^T')^) = ° O^Y the definition ofp^-
and ^); the above formula then holds for \y\ < 6^ since both functions are
real analytic.

If / € J^, set /(a;) = /(^). Then / 6 H0. Let TT = TTp be the
\ o^c /

projection Z(P) nBr(0i) x Bn-rW —^ Bn-rW corresponding to P. We
have, for \y\ < 6^

^)=/°i-l(.)=/(^^^)=(/°.-l)f^^f^.\ \ o ^ j o ^ / \ *7 V 7
It follows that

sup |F| = sup |F| ,^=1,2,
B-n-rW Bn-rW

ww=6w(6A
o* \ o* /

and

( \ 7i—r

/l |F|dA= ^) { \F\d\.
JBn-rW 0 ) JBr.-.W

Consequently (A), (B), (C) in Theorem 11.1 for the value ̂  and the pair
(F, P) are equivalent, respectively, to (A), (B), (C) for the value 6 and the
pair(F.P).

This proves Theorem 11.1.
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