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1. Introduction.

Consider the semilinear elliptic boundary value problem

(1) Au = -f(u) in Q , u = 0 on 9ft.

A very interesting problem concerns the extent to which one may determine
9u

the function f(u) from knowledge of the outward normal derivative —w an
corresponding to a nontrivial solution u. This inverse problem arises in

an

several contexts, for instance in plasma physics in connection with the
modelling of Tokamaks, [6]. For planar domains with corners some partial
answers to this problem are already known (cf. [3], [4]). Roughly described
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it is shown in these papers that if / is sufficiently regular and if one

requires that —f(u) < 0, then complete knowledge of — near a corner
w 9^

determines the value of / and all its derivatives at 0.

For smooth domains the situation is much more complicated. Con-
sider for instance a ball : due to the symmetry result of Gidas, Ni and
Nirenberg, [10], any positive solution to An = —f{u) in ^, u = 0 on 90, is

a function of radius alone (assuming / is Lipschitz). The function — is
w Qfl

therefore constant, and it is completely impossible to determine f(u) (even
the value of / at 0). There is however reason to believe that, at least in the
case of positive solutions, balls are the only simply connected domains for
which recovery of f(u) fails so miserably. A result of Serrin, [14], asserts
that balls are the only domains for which positive solutions of (1) can have

Qua constant normal derivative — (again assuming / is Lipschitz).
9y 9n

In this paper we shall study a very simplified version of this inverse
problem for smooth, planar domains. We shall take / : R —> R to be
an affine function and examine to what extent knowledge of the normal

r\

derivative — of a solution to An = —cu — d in Q, u = 0 on 90. permits
Qv 9^

us to determine the constants c and d.

To see how degenerate the inverse problem is on a disk, even for
affine /, consider f 2 = D = = { r ^ l } c R 2 . Let Jo and Ji denote the
Bessel functions of the first kind of order 0 and 1 respectively. Let Jo and
/i denote the modified Bessel functions corresponding to Jo and Ji (i.e.,
I^z) = e'^^J^iz)). The functions Jo and Jo solve the equations

(2a) - , -^JO+--T^O+JO==O,dz2 z dz

and

(2b) -^To+1-^o-^o=0,
dz1 zdz

respectively. The functions of order 0 and order 1 are related by

/ \ d _ - - d _ _
(3) —Jo = -Ji , and —Jo = h'dz dz

For values on the positive real axis the four functions Jo, Ji, Jo and Ji are
all real valued. The two functions Jo and Ji are furthermore positive on the
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positive real axis. Let ^//^ denote the smallest positivezero of Jo 5 then the
functions Jo and Ji are both positive on the interval (0, ^/7^). If \/c is a
zero of Jo then c is an eigenvalue for -A with Dirichlet boundary condition
and Jo(\/c r) is a corresponding eigenfunction. If ^/c is a zero of Ji then c
is an eigenvalue for —A with Neumann boundary condition and Jo(v/c r)
is a corresponding eigenfunction. The eigenvalues one obtains that way are
exactly those corresponding to which there exists a radial eigenfunction.
For any c € R for which ^/c is not a zero of Ji we define the function

,,, , . 1 fJo(Vcr)-JQ(Vc)\
(4) uc(r) = Tc [———W)———) •

For c < 0 the square root is defined as ^/c = ^V^l; in this case it may be
more natural to use the expression

1 (k(V\c\r)-lQ(^\)\
V\c\ { A(^R) ) '

for Uc. From the definition of Uc and the equations (2a), (2b) and (3) it
follows that Uc is a solution to the overdetermined Cauchy problem

AlAc = -cue - dc in D,
r\

(5) Uc =0 and -^-Uc = -1 on 9D,v / ov
with the constant dc given by

, ___ V^O^) Q

ac ~ ——7 / /-\ ?Ji(Vc)

and

^^o(^ ^o.
A(v^)

The formula (4) has a removable singularity at c = 0, and consequently
the Cauchy problem (5) also has a solution for c = 0; the corresponding
solution is UQ = (1 - r2)/2 and do = 2. It follows immediately that there
is a continuum of coefficient pairs (c,dc) € M2, and therefore a continuum
of affine functions, which give rise to the same normal derivative on the
boundary (one affine function corresponding to each value of c G K. for
which y^ is not a zero of Ji, as well as one corresponding to c = 0).

The smallest positive zero for Jo, y^, is also the square root of the
principal eigenvalue for —A with Dirichlet boundary condition. Using the
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remarks which we made above concerning the sign of the four functions Jo?
Ji, IQ and Ji it is not difficult to see that for c < ^i the function Uc is
indeed a solution to

(6a) /\Uc = —cue — dc <: 0 in JD,
r\

(6b) Uc = 0 and —Uc = -1 on 9D,6v

i.e., the same Cauchy problem as before, but with a sign condition on the
right hand side. The inverse problem with a sign imposed on the right hand
side therefore also possesses a continuum of affine solutions. It is easy to
see that there are no solutions to (6a), (6b) corresponding to c > /^i.

The results which we prove in section 3 of this paper show that for
"most" smooth, planar domains and "most" normal derivative data the
inverse problem is not nearly as degenerate as seen above. Indeed there
exist at most finitely many pairs of coefficients that give rise to solutions
with the same non-zero normal derivative. In the case where we consider
solutions to the boundary value problem with a sign imposed on the right
hand side it suffices to assume that 0 is not a disk to obtain such a result
(cf. Theorem 3.1). The strong version of the Maximum Principle makes
any assumptions on the normal derivative data superfluous. For the case
of solutions without the sign condition imposed we must impose extra
conditions on the domain and conditions on the normal derivative. The
conditions on the normal derivative are quite simple, the conditions on the
domain are more subtle; they are for instance satisfied for convex domains
which have maximal and minimimal diametrical thicknesses that are well
separated and whose boundary curvature is only zero at a countable number
of points (cf. Theorem 3.2). One of the extra conditions is that the domain
have the socalled Schiffer property. A simply connected C2^ domain Q. is
said to have the Schiffer property if (for any c) the only solution to the
overdetermined boundary value problem

At; = —cv — d in n,
r\

(7) v = 0 , —v = 0 on <9^,

is the trivial solution v = 0 (corresponding to d = 0). Here and in the
following when we talk about solutions to a problem like (7) we always
mean classical solutions in the strong sense that v € C2^). It is possible
to define a nontrivial notion of Schiffer property for domains that are less
smooth than C2^ (for instance for domains with corners) but then it is in
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general necessary to relax the notion of classical solution to the problem
(7). It is clear that there is some connection between the inverse problem
we study and other studies related to the Schiffer property. It is well known
that disks do not have the Schiffer property, indeed for any A 7^ 0 for which
Ji(\/A) = 0, the function

1 (Jo(V\r) \

^^A'M^'1)1

is a solution to (7) with c = A and d = 1.

The Schiffer conjecture asserts that in any dimension balls are the only
simply connected C250' domains for which (7) has a nontrivial solution for
even a single value of c. It has been shown in ([15]) that for simply connected
C2^ domains the possession of the Schiffer property is equivalent to the
possession of the socalled Pompeiu property. We shall not here define what
is the Pompeiu property, instead we refer the reader to the paper by Brown,
Schreiber and Taylor, [8]. In that same paper it was proven that any convex
planar domain with a corner has the Pompeiu property. Subsequently it
was shown by Williams, [16], that any simply connected Lipschitz domain,
the boundary of which is not real analytic, has the Pompeiu property; a
simply connected (72'0' domain, the boundary of which is not real analytic,
therefore has the Schiffer property. In a sense the result of Brown, Schreiber
and Taylor is similar in spirit to the uniqueness result we established in ([3])
and ([4]) for the inverse problem for analytic /. Recently large classes of
planar real analytic domains with the Schiffer property have been exhibited
(PI).

The result related to the Schiffer conjecture which falls closest to the
results we prove here is that of Berenstein ([!]). He shows that for any C2^
planar domain which is not a disk there are at most finitely many values
of c for which (7) has a solution for d 7^ 0 (the example given above shows
that for a disk there are infinitely (countably) many such c's). Indeed the
technique we use to prove our results about the inverse problem^applies to
give a very direct and elementary proof of Berenstein's result for convex
domains ^2, for which the curvature of the boundary is not too degenerate.
Since we find this of independent interest we start the paper by giving the
details of this proof.
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2. A result due to Berenstein.

In this section we prove in a very simple fashion a result due to
Berenstein [I], related to the Schiffer conjecture. The technique of proof
we develop has two main components - the formation of appropriate line
integrals (a Radon Transform) and a subsequent asymptotic analysis by
means of stationary phase. In the section following this we use the same
technique to obtain a similar "finiteness" result concerning the inverse
problem.

THEOREM 2.1. — Assume that Q, is a bounded, convex C2^ domain
in R2 such that the curvature of 90. vanishes at most at a countable set of
points. Assume that there exist infinitely many different A for which the
Cauchy problem

r\

(8) AZA = —\u — 1 in fl, , u = 0 and -^—u = 0 on 90,,
ov

has a solution. Then 0 is a disk.

Note. — For (8) to have a solution it is necessary that A be positive;
indeed A must be a nontrivial eigenvalue for —A with Neumann boundary
condition.

The theorem as stated in [1] does not only pertain to domains that are
convex, nor does it require that the curvature vanish at most at a countable
set of points. The requirement there is that Q, be simply connected. We
restrict attention to convex domains with the curvature condition because
this permits us to give a proof which does not depend on the (highly
nontrivial) result due to S. Williams [16], asserting that any domain which
does not possess the Schiffer property has a real analytic boundary. The
technique we develop here could in combination with that result also be
used to prove the more general result. In subsequent work Berenstein and
Yang have extended the "finiteness" result to higher dimensions. Even
though we have not carried out the analysis we suspect that the technique
we present here may also be applied to higher dimensions. D

Proof. — Fix a coordinate system and let ^ denote an arbitrary, but fixed,
unit vector. We introduce the notation

mf = inf { ' x , Mf = sup {• • x.s ^ s ^
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Corresponding to the numbers m^ and M^ there exist points on the
boundary, Xi and x^, such that

m^ =^-a;i , M^ =$-a;2,

(^ is a normal vector to 90, at such points x\ and ^2). Since ^ is strictly
convex (due to the curvature condition) it follows immediately that the
points x\ and x^ where $ • x attains its extremal values are unique for any
vector $ e S1. Let -R^(s), m^ < s < M^ denote the function

W = IJ^
u,

'^•x=s

where u e C'2(^) is a solution to (8). The integral is taken over that part
of the line $ • x = s which lies inside 0. The functions R^ for all $ e S1

represent the Radon Transform of u. It is not difficult to see that R^ is twice
continuously differentiable in (m^,M^). Let ^-L denote the vector obtained
by rotation of $ Tr/2 radian counterclockwise. Let 9/9^ and 9/9^ denoter\
the derivatives in the direction $ and ^-L respectively. Since —r^ vanishes

°^on the boundary it follows immediately that

/* f / f) \ ^ r / ^ \2 /* / ^ \ 2
(9) / An=/ (^) n+/ f^r) -= f^) -^^=s J^x=s\^U J^x=s\Q^ ) J^x=s\QU

A simple computation yields that

(^L-U^-
r\

Here we have used that u as well as —u vanish on 90. We recall that thed^
function u satisfies An = —An — 1 in 0; upon integration along the line
$ • x = s and use of the identities (9) and (10) this yields the following
equation for R^

2/ dY
( d s ) ^--^-^(^

where L^(s) denotes the length of the line segment {^ • x = s} D 0. Since
u and (9/9v)u vanish on 90 the function R^ satisfies the following set of
boundary conditions

R^(s) = ( — ) R^{s) = 0 at s = m^ and s = M^\as/
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The two conditions at s = m^ together with the equation for R^ imply that

i r8
R^(s) == --- / L^(t) sin V\(s -1) dt.

VA Jm^

The two conditions at s = M^ imply that

r^ r- r^
\ L^t) sin V\(M^ -1) dt = / ^(t) cos \/A(M^ - ̂  = 0,

^m^ Jyn^

which is equivalent to

(11) / ' L^t)e±ivxtdt=0.
</m^

It is not difficult to see that L^(t) is twice continously differentiable in
(m^,M^). We shall initially only consider $ which are regular in the sense
that they belong to the set

S = {^ e S1 : the curvatures at points on 9fl where $ • x attains
(12) its extremal values are nonzero}.

For $ € «S one obtains, as t \ m^, the asymptotics

L^t) w 2C(t - r^)1/2, L^t) w C(t - m^)-1/2

(13) andL^)^-^-m^)-3/2,

where the constant C is given by C = ^I/KQ^X^}, K^(x^ denoting
the curvature of 9fl at a;i. Here we have used the notation g(t) w h(t) to
signify that g(t)/h(t) -^ 1 as t \ m^ Similarly, as t / M^ one obtains

L^t) w 2D(M^ -1)1/2, L^t) ̂  -D(M^ -1)-1/2

(14) and L^) ̂ -^(M^)-3/2,

with D = ^/2/KQfl(x2). Integrating the left hand side of the identity (11)
by parts and using the fact that L^ vanishes at the endpoints we obtain

/.M(
(15) / L^e^ * dt = 0.

Jm^

Assuming there exist infinitely many A for which the problem (8) has a
solution, the identity (15) is satisfied for the same infinitum of A's. It is
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easy to see that these A's must necessarily form a sequence of positive

numbers whose only limit point is +00 (for any such A the pair ( A , u + - )
\ A )

represents a nonzero eigenvalue and a corresponding eigenvector for the
operator —A with Neumann boundary condition). Since V\ and Lc are
real, the two signs in (15) just correspond to complex conjugation. It is to
the identity (15) that we shall apply the method of stationary phase.

It is not difficult to check that, due to (13) and (14), the function
(j>(t) = Le(t) satisfies the prerequisites of Lemma 4.1. As a consequence we
conclude from (15) that

pTri/4 .,—7ri/4
(16) ——==e^ m^ - ———==e^^ M^ = o(l)

V/^anOKl) \/AW^2)

as A approaches 4-00 along a particular sequence of real values. Here and
in the following o(l) denotes a term that converges to zero as A approaches
infinity. It is important to note that the sequence of A's is independent of
$ € S - it consists of exactly those values for which (8) has a solution. The
equation (16) may be rewritten

(17) i+^^^-^J^2^12 =oW'
V K9fl(x^)

Consider the set

M={M^-m^ ' . ^ E S ^ C R .

Since f2 is strictly convex it is not difficult to see that the mapping
V : S1 3 ^ —^ M^ — m^ is continuous (convexity alone does not suffice
to guarantee continuity). It is therefore clear that M. is connected. We
now proceed to show that M. consists indeed of a single value. Due to
Al's connectivity we can accomplished this by showing that M. is at most
countable. The set M. may be decomposed as

M=/D(S)UV(S1\S).

Since the set of points on 90, where the curvature vanishes is at most
countable, the set V{S1 \S} is at most countable. Because of the continuity
of the curvature the set S is open. Let

00

S=\J^k
k=l
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be the decomposition of S as a union of its (at most) countably many
connected components. We now show that V is constant on each of the
connected components, from which it will directly follow that P(«S) is
at most countable. Let a; be anyone of the connected components (for
simplicity we drop the index k). To reach a contradiction let us assume
that V attains two different values

%)<%)

at two points ^o and $1 in a;. Select a subsequence {An} from those A for
which the problem (8) has a solution, with the property that (n+ l)V\n <
^/An+i. We now apply Lemma 6.1 with

^ == ^($o), b = P($i), L = 27T, Cn = n + 1, [in = V\n, and t = 0.

This lemma asserts the existence of an P($o) < s < P($i) such that

\\nS —^ 0 modulo 27T.

Since uj is connected it follows that there exists $* e u such that P($*) = s.
We have therefore found ^* G uj such that

(18) \/A^(M^ - m^) = \/An2>(r) -^ 0 modulo 27T,

i.e. such that

ei^^-rn^-^\ osn^oo.

It follows now directly from the formula (17), with $ = ^*, that

/^^D_
^V^^)

which represents an obvious contradiction. We therefore conclude that V
is constant on uj. This completes the proof of the fact that M is at most
countable, and thus shows that M. consists of a single value. In summary
there exists DQ such that

(19) M^-m^=Do ^eS\

Let (a;i,a;2) be a set of extremal points corresponding to any $ e 51, i.e.,
m^= inf ^ • x = ̂  • rci and M^ = sup ̂  • x = ̂  ' x^. Let t^ and ̂  be the

xewl x^fl
tangent lines to 9^1 through x^ and x^ respectively. The distance between
these two parallel lines is M^ - m^ == DQ. Consider the line £ that goes
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through a;i and x^. This line ^ must be orthogonal to t^ and t^ ; because
if not, then that segment of this line that lies between t^ and t^ will have
length greater than DQ and it follows immediately that M^ — m^ > Do,
where rj denotes a unit vector parallel to the line £. This however is a
contradiction to (19). If ̂  denotes the line through x € <9^, orthogonal to
(9f^, and if diam(a*) is defined by

diam(a*) = sup \x — y\,
2/e^no

we therefore have established that

diam(a;i) = Do, i = t^ = 4^ and x^ is the
(20) unique point on £ n Qfl, with |;z-i — 3:2! = diam(;ri).

It is quite clear that

(21) V\ Do -^ 7T/2 modulo TT,

as A approaches infinity along the sequence of values for which (8) has a
solution. If not, one could find a subsequence such that e^ Do approaches
some number with real part ^ 0, and according to (17) this is clearly
impossible. From insertion of (21) into (17) we get the limiting statement

(22) l±/^l)=0.V KQ^X^
It is obvious that the above equality with + is impossible (i.e. we must really
have V~\ Do —> 7T/2 modulo 27r). The remaining identity (corresponding to
—) implies that

(23) KQ^{X,) = ̂ (^2),

for any extremal pair (^1,3:2) corresponding to any ^ e S. The mapping
which given x\ selects a $ for which it is extremal (say ^ • x\ = inf^o $ • x)
and then assigns x^ (the other extremal point) is a continuous mapping.
It therefore follows immediately that (23) holds for the extremal pair
corresponding to any $ e S1. The statements (20) and (23) imply, according
to Lemma 5.1, that Q. is a disk of radius Do/2. D
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3. Two results for the inverse problem.

In this section we proceed to show how the technique developed in
the previous section applies to the inverse problem. We start by considering
solutions corresponding to nonpositive right hand sides.

THEOREM 3.1. — Assume that fl, is a bounded, strictly convex C3^
domain in ]R2, which is not a disk. Given any ^ e C1^), which is
not identically zero, there exist at most finitely many different pairs of
coefficients (ck.dk) € R2 such that the Cauchy problem

r\

(24) Ai; = -CkV - dk <: 0 in ̂ , v = 0 and —v = ̂  on 90,
ov

has a solution.

Note. — The case -0 = 0 is very special. It is not hard to see that the
only solution that can satisfy (24) with ^ = 0 is the trivial solution v = 0
(see the beginning of the proof of Lemma 3.1). This solution corresponds
to d = 0 and arbitrary c. D

Before we give the proof of Theorem 3.1 we shall show that the sign
condition on the right hand side of the P.D.E. in itself guarantees that
corresponding to a fixed c there is at most one d for which (24) has a
solution.

LEMMA 3.1 — Assume that fl, is a bounded C2 domain in R2. Given
any ^ e C^QO), and given any c € R there exists at most one d € R such
that the Cauchy problem

r\

(25) Av = -cv - d < 0 in 0, v = 0 and —v = ib on <90,
Qy

has a solution.

Proof. — The Maximum Principle asserts that any solution of (25) is
either strictly positive inside Q, or constantly equal to zero. The strong
version of the Maximum Principle, frequently referred to as the Hopf
Lemma, furthermore asserts that either —v = ̂  is strictly negative on all
of Qfl, or v is constantly zero (cf. [13]). If the function ip is equal to zero it
therefore follows that the only possible solution is v = 0, which necessarily
corresponds to d = 0 (for any value of c). We proceed to consider the case
that '0 is not identically zero.
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If c is not an eigenvalue o f — A with Dirichlet boundary condition,
then the uniqueness of d is clear. If such a d exists it must necessarily be
positive (since ^ is not identically zero) and be given by

(26) ^fc^,
J^t^

where w is the unique solution to

(27) Aw = -cw - 1 in 0 , w = 0 on 00.

Note that the fact that there exists d > 0 for which (25) has a solution
implies that the right hand side of (27), -cw-1, is nonpositive. The strong
version of the Maximum Principle, implies that the functions ^ and —

Qv
are both strictly negative on all of 90,. As a consequence the denominator
as well as the numerator of (26) are both strictly negative.

It remains to consider those c's that are eigenvalues for —A with
Dirichlet boundary condition. Let ii\ and <^i denote the principal eigenvalue
and the principal eigenfunction o f — A with Dirichlet boundary condition.
The eigenvalue /ii is simple and the eigenfunction <^i is of one sign; we
shall take it to be positive inside fl,. By integration by parts it follows
immediately that

P'i j v</>i dx = - Av<^i dx = c / v^i dx -h d \ <^>\ dx,
Jn Jfl J^ Jn

i.e.,

(28) (/^i - c) / v0i dx = d [ <^i dx.
Jfl J^i

If there exists a solution to (25) then we necessarily have v > 0 in fl,
(since we at this point assume that ^ is not identically zero). For c = /^i
the left hand side of (28) becomes zero and the only possibility for d is
therefore d = 0. For c > [i\ the left hand side of (28) would be negative,
since J^v^i dx > 0. The right hand side would be nonnegative, since
d >. 0. This shows that (25) has no solution for any c > ̂  (eigenvalue
or not). In combination with the result for c = [i\ this in particular gives
the uniqueness of d for any c which is an eigenvalue o f — A with Dirichlet
boundary condition. D
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We are now ready for

Proof of Theorem 3.1. — As noted in the previous proof it follows
directly from the strong version of the Maximum Principle (and the fact
that '0 is not identically zero) that when (24) has a solution then we must
necessarily have

^ < 0 on 9^.

To arrive at a contradiction let us now assume that (24) has a solution
corresponding to a sequence of infinitely many different pairs (c^, dk) € M2.
We denote by Vk a solution corresponding to the pair (ck^dk). From
Lemma 3.1 it follows immediately that there must be infinitely many of the
constants Ck that are different. By extraction of a subsequence, if necessary,
we may assume that all the constants Ck are different and nonzero. By
subtraction we arrive at the functions Wk = Vk - v\ which satisfy

r\
Awjfc + CkWk = (ci - Ck)vi + (di - dk) in 0 , wj, = 0 and —Wk == 0 on 9^1.

w
Using the exact same approach as in the derivation of the identity (11) we
now get

/*^$ /»M$
(29) (ci - Ck) / V^e^^ t dt + (di - dk) / L^e^^" ( dt = 0,

Jm^ J m^

for any ^e S1. Here L^(t) is the length of the line segment {$ • x = t} D ̂
and V^(t) is defined by

V^t) = I v,.
J^x=t

We already know that for $ 6 S

L^t)w2C(t-m^l/2 ost\m^ and
(30) L^t) w 2D(M^ -1)1/2 as t / M^

including derivatives of order < 2 (cf. (13) and (14)). The constants C and
D are given by

C = v/2/^Q^i) and D = ̂ 2/^(^2).

Similarly it is very easy to see that for $ € S

(31) V^t) ̂  -^C^(x,)(t - m^2 ̂  t \ m^ and

(32) V^t) ̂  -JD^-(^)(M^ - t)3/2 ̂ st/M^
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including derivatives of order < 3. Integrating the terms on the left hand
side of (29) by parts (twice and once respectively) and using the vanishing
of the boundary contributions, we get

_(c^_^^ , , ^ ^ , ^
°k Jm(,

(33) _(^__^) /^ ̂ ±iV^ t ̂  o.
^VCk Jmf, -

Since there are no solutions to (24) for /^i < Ck (see the end of the proof of
Lemma 3.1) there are now two possibilities :

(34a) there exists a subsequence {c^} such that c^ —>• —oo as £ —> oo,
(34b) the entire sequence {cjc} is bounded.

We start by considering the case (34a) and for simplicity we also denote the
subsequence by {c^}. As the square root (of a negative real number Ck) we

select -Jck = zv/l^l- ^e^ us ^rs^ suppose that the sequence { ———k)- \
I zVck }

stays bounded. Select a subsequence (also indexed by k) so that

(di - dfc) _ (di - dfc)
- d as k —>• oo, Jc

^ V\Ck\

If we apply Lemma 4.2 to (33), say with the + sign, we now get

(35) -e-^^l^——————(^,)+J+o(l))=0
^/KQ^x-i)

as Ck approaches —oo along a particular sequence of real values (for any
^ € <S). This implies that ^(a;i) = -d for any $ e S. Since 0 is strictly
convex it follows easily that the points x\ corresponding to $ € <? are
dense on 90, (these are the points x\ for which the curvature together with
the curvature at the "opposite extremal" point is nonzero). By continuity
we therefore get that '0 = —d on all of 9^, and due to Serrin's theorem
this implies that ^ is a disk, i.e., we have arrived at a contradiction. If

the sequence {——=— \ is unbounded, then we similarly arrive at a
I zVck )

subsequence along which

-e-^^^————^ 4- o(l)) = 0,
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for any $ e S as Ck approaches -oo . This is clearly a contradiction. At
this point we have by contradiction eliminated the case corresponding to
(34a). It remains to eliminate the case (34b). By extracting a subsequence,
if necessary, we may suppose that there exists c* € R such that

Ck —> c^ as k —> oo.

We may also (by extraction of a further subsequence) obtain that none of
the Cfc's are eigenvalues of -A with Dirichlet boundary condition. For any
z C C which is not an eigenvalue of -A with Dirichlet boundary condition
we define Wz as being the solution to

(36) Aw^ = -zwz - 1 in Q, Wz = 0 on 90,.
r f)

The function z —> j —w^dsis meromorphic (and nontrivial) as follows
easily from the formula

(37) / a^ds=f^-^(f^dx\\
JQ^I 9y ^ z - ̂  \J^ 3 )

where /^j, (j>j denote the eigenvalues and a complete orthonormal set of
real eigenvectors for —A with Dirichlet boundary condition. The function

n f\ ~

z —> f —Wzds has a pole at fij iff the corresponding eigenspace is not
JQ^. ov

orthogonal to constants. We now define the function

^ ds
JQ!(38) d(z) = -/^

/ —Wz ds
JQ^I Qv

The function d(z) is also a meromorphic function on C. As pointed out in
the proof of Lemma 3.1, the components of the sequence (c^, dk) are related
by dk = d(cfc). Using the function d we define a meromorphic function

/•A^ -M(
W = (ci - z2) / V^e^ t dt + (di - d{z2)) / L^e^ t dt.

Jm^ Jm^

Note that the function F^ is analytic in a neighborhood of the point z if d is
analytic in a neighborhood of the point z2. The identity (29), corresponding
to the 4- sign, may now be expressed

Wci0=o vfc.
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Since a nontrivial meromorphic function (defined on all of C except at its
poles) cannot have a sequence of zeroes with a finite limit point, it follows
that F^ = 0. In particular there exists a sequence of real numbers Sk / +00
such that -5)1 are not poles of d and such that F^(isk) = 0 (for all $). The
identity F^(isk) = 0 may also be written

r^ r^
(39) (ci + 4) / V^e-8^ dt + (di - d(-4)) / L^e-3^ dt = 0.

Jm^ Jm^

Just as in the case corresponding to (34a) the existence of a sequence of
real numbers Sk / +00 along which (39) holds leads to a contradiction.
Having thus by contradiction also eliminated the case (34b), we conclude
that it is impossible to have an infinite number of different pairs (c, d) € R2

for which the Cauchy problem (24) has a solution. This completes the proof
of Theorem 3.1. D

We now turn to the case where there are no restrictions on the sign of
the right hand side of the PDE. In order to ensure that there can at most
be one value d, corresponding to a fixed c, for which the Cauchy problem

r\

Av = —cv — d in f2, v = 0 and —v = -0 on 9?},
m

has a solution, we shall assume that the domain fl, has the Schiffer property
(cf. the introduction).

LEMMA 3.2. — Assume that Q is a bounded, simply connected C2^
domain in R2, which has the Schiffer property. Given any ^ e Cl{9n),
and given any c € R there exist at most one d € R such that the Cauchy
problem

r\

(40) Av = -cv - d in 0, v = 0 and —v = ̂  on 90.,
ov

has a solution.

Proof. — Assume, to arrive at a contradiction, that there exists a c
for which (40) has a solution for two different values c?i and d^. We denote
by v-t and v^ two solutions corresponding to d\ and da respectively. The
function w = v\ — v^ satisfies

Q
(40) Aw = -cw + (^2 - di) in n, w = 0 and —w = 0 on 90,.w
The existence of w contradicts the fact that fl, has the Schiffer property
(since d\ — d^ ̂  0). This completes the proof of the lemma. D
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At this point it is convenient to introduce a couple of definitions.
Given a point x C 90 let ̂  denote the line through x, orthogonal to 90,.
As in the proof of Theorem 2.1 we define

diam(a;) = sup \x -y\.
2/e^nQ

In the following we shall always by x ' denote a point on ̂  H 90 such that
diam(a:) = \x - x'\. For convex C2^ domains it is very easy to see that one
has the following equivalence

diam(a;) = Do and 4 = 4/ Va; € 90 ̂  M^ - m^ = Do V$ € 5'1.

The <= part of this statement was already proven in the proof of Theorem
2.1. The =^ part follows directly from the observation that x ' must be
unique (given x) and that the tangents to 90 at x and x ' must be parallel.

We say that a convex C2^ domain 0 has constant diametrical
thickness (Do) ifdiam(a;) = Do and 4 = t^ for all x e 90 (or equivalently
if M^ - m^ = Do V$ e 51). We shall say that a bounded, convex C2^
domain 0 is non-degenerate if

0 does not have constant diametrical thickness, 0 possesses the
Schiffer property, and there is at most a countable set of points where
90 has zero curvature.

It is well known that any bounded, convex C2^ domain for which

(41) 2 mm(Mt — m^) < maxfM^ — m^)
W1' s s/ - ̂ s^ s s/

has the Schiffer property ([7]). It therefore follows that any bounded, convex
C2^ domain which satisfies (41), and which has at most a countable set of
points where the curvature of 90 vanishes, is non-degenerate in the sense
defined above. We shall say that a function -0 e Cl(90) (the candidate for
the normal derivative) is non-degenerate if
^ is not identically constant, and ^ has at most countably many zeroes.

THEOREM 3.2. — Assume that 0 is a bounded, convex, non-
degenerate C3^ domain in R2. Given any ^ € Cl(90), which is also non-
degenerate, there exist at most finitely many different pairs of coefficients
(cfe,dfc) € R2 such that the Cauchy problem

r\

(42) Az? = -CkV - dk in 0, v = 0 and —v = ib on 90,
dv

has a solution.



AN INVERSE PROBLEM FOR THE EQUATION An = -cu - d 1199

Proof. — To arrive at a contradiction let us assume that (42) has
a solution corresponding to a sequence of infinitely many different pairs
{ck.dk) € R2. From Lemma 3.2 it follows immediately that there must
be infinitely many of the constants Ck that are different. By extraction of
a subsequence, if necessary, we may assume that all the constants Ck are
different and nonzero. Let vjc denote a solution corresponding to the pair
(cfc, dfc). As in the proof of Theorem 3.1 we have the identity

_(ci-Cfe) f^v^t^^^dt
°k Jm^

(43) _(di-dk) f^ ̂ ±i^ t ̂  ̂  Q
=^^Cfc J^ (v

where L^ (t) denotes the length of the line segment {^ • x = t} D 0 and Vf (t)
is denned by

V^t) = f v,.
J^x=t

There are now two possibilities :

(44a) there exists a subsequence {c^} such that c^ —^ ±00 as t —>oo,
(44b) the entire sequence {ck} is bounded.

We start by considering the case (44a) and for simplicity we also denote
the subsequence by {cfc}. If Ck —> -oo we may proceed exactly as in the
proof of Theorem 3.1 , eventually showing that -0 = -d (a constant) on all
of 9^1. This represents a contradiction to the fact that ^ is non-degenerate.

The case Ck —> +00 gives rise to slightly different asymptotics, much
like that exhibited in the proof of Theorem 2.1. There are two possible
scenarios : 1) the sequence ^ v 1 fc; \ is bounded, or 2) the sequence

I V^ Jr (^ - dk\)
^ — — _ i ^g unbounded. Let us first assume that 1) is the case, and
I v^ J

select a subsequence (also indexed by k) such that

^'^-^-.Jasfc-.oc, JeR.
V^Cfc

Using the known asymptotic behaviour of the functions L^ and V^ near
the points m^ and M^ (the statements (30), (31), and (32)) we apply the
method of stationary phase to (43), say with the + sign. After some simple
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manipulations Lemma 4.1 leads to the asymptotic identity
7TZ/4

-(^(a:i) - i d)—-=====ei^ck m^
\/KQ^{X\)

(45) -Wx2) + i d)e^==e^^k ̂  = o(l)
\/KQ^(X^)

as Ck approaches +00 along a particular sequence of real values, for any
$ € iS7. Here the set Sf is given by

«?' = S H {$ e 51 : ^ is nonzero at the points on 9f} , where
$ • x attains its extremal values}.

The formula (45) may be restated

(46) (̂ i) - i d ) - zJ^^L^ ̂ -^(^2) + z J) = o(l).V ^actw)

If J == 0 then we proceed along the same line as in the proof of Theorem
2.1, the only essential difference being that the set <? gets replaced by <?'.
The set of values M^ — m^ corresponding to $ € S1 \ <?' rests at most
countable, and as in the proof of Theorem 2.1 we can, based on (46), prove
that M^ — m^ is constant on any connected component of <S'. As in the
proof of Theorem 2.1 it follows that

(47a) Mf, - m^ = Do V$ € S1 , and

(A^\ ^i)2 ^2)2
v / Ka^x,) Ka^Y
for any extremal pair (x-^.x^) corresponding to any $ C 5'. The identity
(47a) clearly represents a contradiction to the fact that Sl does not have
constant diametrical thickness. If d of (46) is not zero, then we may again
proceed as in the proof of Theorem 2.1 provided we make an additional
change. To show that M^ - m^ = Do we use Lemma 6.1 with t = -Tr/2
instead of t = 0. This way (if M^ - m^ is not constant) we find $* e S/ so
that ^/Cfc P($*) —^ -7T/2 mod 2?r, i.e., such that

e^ (^r-^r) -^ -i as cfc ̂  +00.

Inserted into (46) this gives

(W) - i d) - J l̂̂ (^(^) + i d) = o,
v Kan (x^)
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which is a contradiction (since d ̂  0). As in the proof of Theorem 2.1 this
shows that

(48a) M^-m^=Do V$e51.

We also immediately get that

^(x^+d2 ^O'+d2
(48b)

KQ^X^) KQ^X^}

for any extremal pair (x\,x'z) corresponding to any $ e <?''. Again, the
identity (48a) represents a contradiction to the fact that ^ does not
have constant diametrical thickness. Suppose on the other hand that
the sequence { ———— \ is unbounded. Application of the method of

I V^ )
stationary phase (Lemma 4.1) to (43) then leads to the asymptotic identity

e^/4 ,/.-_ e-^/4,^i^k mf, _ e _^y/Cfc M^ ^ /i\
r / T " ? 7 ^ " v- /

as Ck approaches +00 along a particular sequence of real values (for any
$ € <S7). By use of the exact same argument as in the proof of Theorem 2.1
it now follows that

(49a) M^-m^=Do V$ € S\ and

(49b) . 1 = 1

^KQ^(X^ ^/KQ^X^

for any extremal pair {x\,x^) corresponding to any $ e <S'. Just as in the
proof of Theorem 2.1 this implies that f2 is a disk, which clearly represents
a contradiction.

At this point we have by contradiction eliminated the case corre-
sponding to (44a). It remains to eliminate the case (44b). By extracting a
subsequence, if necessary, we may suppose that there exists c+ € R such
that

Cfc ~* c* as fc —+ oo.

As before we define the meromorphic function

(50) d(̂  ^ds ,
Jw -Qv^ ds
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where for any z e C, which is not an eigenvalue of -A with Dirichlet
boundary condition, Wz is defined as being the solution to

(51) Aw^ = -zwz - 1 in n, w^ == 0 on <90

By extracting a subsequence, if necessary, we may suppose that none of the
Cfc's are eigenvalues o f — A with Dirichlet boundary condition, nor zeros of/* ^
the function z —> / —Wzds. The components of the sequence (c^, d^) are

JQ^I uv

then related by dk = d(ck). Using the function d we define a meromorphic
function

/»M$ /.M^
F^z) = (ci - ̂ 2) / ^(t)e" * dt + (di - d(z2)) / £^)<'" t ̂ .

«^m^ «/m^

Note that the function F^ is analytic in a neighborhood of the point z if d
is analytic in a neighborhood of the point z2. After undoing the integration
by parts we may express the identity (43) (with the + sign) as

FdV^k) = 0 Vfe.

Since a nontrivial meromorphic function (defined on all of C except at its
poles) cannot have a sequence of zeroes with a finite limit point, it follows
that F^ = 0 V$ € 5'1. This yields a contradiction in exactly the same way
as in the proof of Theorem 3.1. We have thus also excluded the case (44b),
and we may finally conclude that there are at most finitely many different
pairs of coefficients (c^;, dk) € R2 such that the Cauchy problem (42) has a
solution. This completes the proof of the theorem. D

4. Asymptotic integral formulas.

Let <^>(t), m < t < M be a real valued function which is smooth in the
open interval (m, M) but which has singularities at t = m and t = M. In a
way to be made specific just below we shall assume that the singularities at
t = m and t = M are of the types (t-m)~1/2 and (M-^)~1/2 respectively.
The first task of this section is to find an asymptotic formula for the integral

pM
(52) J(A) = / (^)e^ * dt

J m

as the real parameter A approaches +00. Formulas like this are well known
and date back to Kelvin. They are commonly referred to as approximations
of stationary phase. We shall assume that
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i) (f)(t) is continuously differentiable in (m,M),

ii) (t)(t) w Cm(t - m)-1/2, and ^(t) w -^(t - m)-3/2 as t \ m,

iii) ^(<) » CM(M -t)~1/2, and 0'(t) w °^(M - t)-3/2 as t / M.
Here we have used the notation (f)(t) w ^(t) to signify that

(f){t)/^(t) — ^ l 8 ^ s t \ m ( o T t / { M). The constants Cm and CM are
nonzero.

LEMMA 4.1. — If(j) satisfies the conditions i), ii) and iii) above, then

J(A) = A-1/4 (Cme^VTre^ m + CMC-^^^ M) + o(A-1/4),

as the real parameter \ approaches +00.

Proof. — This result follows immediately from Theorem 13.1 on page
101 of [11] by considering the endpoint singularities one at a time. In
adapting the formulas given in [11] we have used the fact that F(l/2) = ^/TT.

D

The second task is to find an asymptotic formula for the integral
(52) as the real parameter A approaches —oo, i.e., we shall seek asymptotic
formulas for the integrals

J±W= t (t>(t)e±^t dt
Jm

as p, approaches +00. Formulas like this are also well known, they date
back to Laplace.

LEMMA 4.2. — Jf0 satisfies condition i) and the first part of conditions
ii) and iii), then

J^) = /x-1/^^ M (CMV/TT + o(l))

and J-^)^-1/^-^ ̂ 0,^+0(1)),

as the real parameter ft approaches +00.

Proof. — By the change of variables, s = M — t and s = t — m
respectively, we get

fM—m
J^^e^M \ (|)(M-s)e~^tIS ds and

Jo
/*M—m

J_(^) = e-^ m <f> (m + s) e~^ s ds.
Jo
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The asymptotic results stated follow now directly from Theorem 7.1 on
page 81 of ([11]). D

5. A geometric lemma.

In this section we shall state and prove a geometric lemma which
we have already used in the proofs of Theorems 2.1, and 3.2. Before we
state the lemma we shall need a little bit of notation. Let 0 be a bounded
C2 domain in R2. For any x € 90. we denote by KQQ,{X) the curvature
of 90, at x. This is defined as [[/"H where / is a parametrization of 90.
by arclength. In terms of an arbitrary parametrization, g, it is given by
19^92 "^P^l/ll^'ll3? (see ^or instance [5] page 290). In geometric terms the
curvature may also be expressed as

(53) K^= 11̂ 11 =|(^).r|,

where v and r denote a unit normal- and unit tangent-vector fields to
90, respectively. For any x € 90, let £x denote the line orthogonal to 90
through x. We define

diam(:r) = sup |a:—t/| .
ye£xr\fl

The following lemma provides a somewhat unorthodox characterization of
a disk. It is a special case of a characterization due to Berenstein and Yang
(cf. [2]). For the convenience of the reader we provide a simple proof.

LEMMA 5.1. — Assume that 0 is a bounded C2 domain in R2 with
the following two properties :

i) there exists a constant DQ so that diam(:c) = DQ for all x € 90,

ii) for any x € 90 one has KQQ, (x) = KQ^X'), and £x = ^x' where x '
denotes any point on £x H 90, with \x — x'\ = diam(rc).

• Then 0 is a disk of radius Do/2.

Proof. — It is quite easy to see that given any x € 90 there is only
one point x ' € tx H 90 with \x — x'\ = diam(:r) (= Do). To verify this let
x ' be on ix H 90 with \x — x'\ = diam(a;). If there were a second point x"
on tx n 90 with \x — x"\ = diam(a;) it now follows that x" € ix = ^x' and
\x' — x"\ = 2-Do so that diam(a/) > 2Do, a contradiction.
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Let XQ be a fixed point on 90,. Pick a coordinate system with origin
at XQ and first axes tangent to 90. Near XQ, 90, is now of the form
{(t,h(t)) : t e J}, for some interval 7. For a; e 50, near XQ, the points
a/ e 4 H 90 with [a; - a;'| == Do are given by

"•^Tr^w'-'-'c'-1' t e /-
Using the fact that there is only one point x/ on 4 D 90 with |a; - x'\ = Do
one easily sees that the same sign applies throughout I . We may without
loss of generality assume that the points x ' e ix H 90 with \x - x'\ = DQ,
near a;o, are parametrized by

(54) (giW^g^t)) = (t^h(t)) + ——£——^(-fa'(^), i) t C I .
^/l + h'(tY

The above parametrization describes a proper curve, i.e., (^1(^),^2(^))
does not vanish near t = 0. To see this we note that the roles of x and
x/ are completely reversible, since ^ = i x ' - If g[(Q) = g^O) = 0 this
would correspond to an infinite value of the gradient for a corresponding
parametrization of x near a?o. Due to the smoothness of 0 this is impossible.
The unit normals (as well as the unit tangents) to the curve 90 at the points
(*, h(t)) and (gi(t),g^(t)) are the same. Let J C I denote the parameters t
for which the curvature of 90 at the point (t, h(t)) is non-zero. From the
definition (53) and the fact that the curvatures at the points (t, h(t)) and
(gi(t),g2(t)) coincide for each t e J it now follows that the mapping

(t,h(t)) -. (gi{t),g2(t)) t e J ,

must necessarily preserve arclength. This implies that

(55) I+^^PIW+^W2 ,

for all t € J. By continuity it immediately follows that (55) is satisfied for
all t € J . For t € I \ J there exists a small open interval uj of parameters,
containing t, such that the curve (t,h(t) is linear. For these values the
mapping {t,h{t)) -^ (g^(t), g^(t)) is a translation. It follows immediately
that (55) also holds in I \ J . In summary we conclude that (55) holds in
all of I . From the formula for (gi(t),g^(t)) one readily computes that

9[w2 -^(o2 = fi - Dohll{t) ,}\ L'w - w^y
V yTTW I \ yTTTw /

_ i , .,̂ 2 , D^"(t)2 Woh"(t)
~ ' w ' (i+W)2 ./i+h'w
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so that (55) is satisfied if and only if

Doh^t)2 = 2h/f(t)^l-^hf(t)2 .

Since the first axis of the coordinate system is tangent to 90, at XQ^ the
initial conditions for h are /i(0) = /^(O) = 0. The C2 solutions to this initial
value problem consist of h(t) =. 0, together with the solution to

Doh"(t) = 2^1 + /W 3, ^(0) = h\0) = 0.

This latter problem has the unique solution

Do lfDo\2 ,2
^-T-Vh'J ~ ' 5

with the maximal interval of definition —Do/2 < t < Do/2. It therefore
follows that if the conditions i) and ii) are satisfied then 90, locally around
XQ and XQ consist of two line segments or two pieces of a circle of radius
jDo/2. Since we require that 90 be a C^-curve (and since 0 is bounded) it
now follows that 0 must necessarily be a disk of radius -Do/2. D

As before we shall say that the domain 0 has constant diametrical
thickness ifdiam(a:) = DQ and £x = ty^i Vrr € 90 (and any x/ € £x^90 with
\x — x'\ = diam(a;)). There are plenty of C2 domains which have constant
diametrical thickness but which are not disks. To construct an example
consider the curve a given by

^^(I'O' ̂ ^
Assume that p is a (7°°-function with p(0) = p('Tr) = — and p ' ( Q ) =

2i
p ' ( ^ ) = 0 and assume that p is sufficiently close to —° in C2. Given any
point cr(t), the point

, , . / - s in t \ , . / cos t \
., ^fcost\ ^^^^cosj-^^sinj

a(t) = p(t) . ) + Do———-^—, / —-^———/-v / ^^smtj ^pW~^~PW2

lies on the line through a(t) orthogonal to the curve a (we previously called
that ^r(t))- The point a(t) lies at a distance \a(t) — o-(t)\ == Do from a(t).
Furthermore the curve a U a forms the boundary of a bounded set 0. It
is not difficult to see that if p^ (0) = p^ (7r) = 0 then 0 is a C1 domain.
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Due to its construction it follows immediately that Q is starshaped and has
constant diametrical thickness. By further computation one verifies that 0
is a C2 domain if additionally ^(O) = ^(TI-) = 0. One will continue to
increase the regularity ofQby imposing the condition p^)(0) = p^^Tr) = 0
on derivatives of ever higher order.

6. A simple algebraic lemma.

In this section we prove a simple algebraic lemma which we have
already used in the proofs of Theorems 2.1, and 3.2. We shall say that a
sequence {tn}^=i converges to t modulo L as n approaches infinity, if there
exists a sequence of integers {kn}^ such that in - knL —^ t as n —^ oo.

LEMMA 6.1. — Let a < b and L > 0 be three real numbers. Let
{cn}^=i be a monotonely increasing sequence of positive numbers tending
to infinity and starting with 1 < ci. Let {^n}^ be a sequence of positive
numbers which satisfy Cn^n < A^n+i. Given any t € R there exists a number
s : a < s <b such that

finS —> t modulo L as n —>• oo.

Proof. — We may without loss of generality assume that

(56) ^n(b-o)>L

for all n; if this is not apriori satisfied we just disregard those finitely many
fJ,n for which the inequality is not satisfied. We first select a number «i such
that

a < si < b and «i satisfies /AiSi = t modulo L.

This is possible because (56) holds for n = 1. Given a < Sn < b we now
select a closed interval In of length L/^n+i which is contained in (a, b) and
which contains Sn. This is possible due to (56). We now select a number
Sn+i in the closed interval In so that /An+iSn+i = t modulo L. This again is
possible due to (56). Following this iterative procedure we obtain a sequence
{^rj^i with the properties that

P"nSn = t modulo L and
(57) \Sk - Sfc+il < Lc^1^1 < Lc^-1^1 Vfc ^ n.
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Here we used the facts that p,^ < c^1^1 and that c^1 < c^1, k > n.
Because of the second property in (57) the values Sn converge to some
s € [a, b] in such a way that

oo
\S - Sn\ ̂  Lfl^^C^ = L^1————.

fc=l cn ~1

Because of this estimate and the first property of (57) be get that there
exist integers kn for which

\P"nS - (t + knL)\ = \p,nS - fJinSn\ <
" v / 1 " " "-C,-l

This immediately implies that

p,nS —> t modulo L as n —> oo.

The s constructed here is in the interval [a,&], but not necessarily inside
(a, b) - this however could be guaranteed by performing the above con-
struction using a slightly smaller interval (a7, &') CC (a, b). D
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