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SPECTRAL ASYMPTOTICS FOR MANIFOLDS
WITH CYLINDRICAL ENDS

by T. CHRISTIANSEN AND M. ZWORSKI

1. Introduction and statement of results.

In this note we obtain spectral asymptotics for manifolds with
cylindrical ends. Since the Laplacian has continuous spectrum one expects
Weyl asymptotics for the sum of a term measuring the behaviour of the
continuous spectrum and the counting function for embedded eigenvalues.
Following ideas originating in mathematical physics the first term is
expressed using an appropriately defined scattering matrix for manifolds
with cylindrical ends [2]. In fact that term is an exact analogue of the
scattering phase: see [I], [9], [14] for a discussion of the Euclidean situation,
[8] and [11] for finite volume hyperbolic surfaces and [12], [13] for infinite
volume hyperbolic manifolds. The consequent bound on N(\), the number
of embedded eigenvalues less than or equal to A2,

N{\) = O^)
is optimal as shown by the example in Section 3. Here n is the dimension
of the manifold.

[0,c\x9X

Figure 1. A manifold with a cylindrical end.

Manifolds with cylindrical ends (see Fig. 1) are a special case of
5-manifolds [10] and since our results are expected to hold in that more
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general setting we recall the definition of the scattering matrix in that
case. Thus let X be a compact manifold with boundary 9X and let a- be a
defining function of 9X, that is

^ |x°>0, X\QX=Q, da-j^^O.

Then a complete metric g on X is an exact fr-metric if near the boundary
it can be written as

(i) ,»©^
where h is a semi-positive metric on X which restricts to a non-degenerate
metric on 9X.

If Ax is the Laplace operator for (X^g) then the spectrum
decomposes as

a(Ax)=a^(^x)+0'pp(^x), CTac(Ax) = |J [/^ oo),

^eo-(Aax)

where A^x is the Laplacian of (9X^h\Qx)' Hence the multiplicity of
^2 ^ <^ac(^) 1s given by A^^(A), the number of eigenvalues of A^x less
than or equal to A2 — see [10], Section 6.9.

If cr2 € O"(AQX) and 0 < 0'k < A, then there exists a generalized
eigenfunction of the Laplacian, <I>^ ̂  ^, (A — A2)^^ ^ == 0, which has the
following expansion at the boundary:

(2) 2<^=^v^^^

+ E (^r4)l/4^^(A)^^x/A2^^+0(•zle(A))-
0<<7m<A am

where e(A) > 0. Here 0yn's are the orthonormal eigenfunctions on 9X
corresponding to (Trn^- The scattering matrix ^(A) = {^x,mkW) is an
NgxW x Ng^W unitary matrix whose entries are given above, for A > 0.
The relationship ^(—A) = ̂ (A) gives the matrix for negative A — see [2]
for a detailed discussion. We recall here that the scattering matrix depends
mildly on the choice of boundary-defining function re, as the notation
indicates. This definition should be compared to that in the simpler finite
volume situation (see [8] and [11]) where the scattering matrix is given
by the coefficient in the expansion of the Eisenstein series: there, however,
only o-o = 0 contributes.
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The scattering phase is defined as the winding number

(3) a,(A) = ̂ (logdet^(A) - logdet^(O)),

and we refer to Section 1.3 of [2] for its continuity properties.

A manifold is said to have cylindrical ends if it is a ^-manifold and if for
some c > 0 we have h = h\Q^ for some identification X\^c ̂  [O?c) x °X.
By changing the defining function of the boundary we can change the value
of c and below it will often be convenient to take c > 1. For manifolds with
cylindrical ends we have:

THEOREM. — For any boundary defining function x such that the
metric on X is an exact product (dx/x)2 + ^|ax ^or x < 6, for some 6 > 0,
we have

N{\) = 0(A71),

N(\)+a^\)=Cn\im \f l+logeVol^X^+e^A71-1)
eio ^l^c J

as A —> oo, where n is the dimension of X, Cn = cc^^Tr)"77', and (^n is the
volume of the unit ball in R"-.

Here, the leading term depends on the « b- volume »

lim \f l+logeVol((9X)1
cio ^l^e J

as one expects. The estimate improves the estimate of [4]:

N(\) = (9(A271-1).

It is natural to conjecture that the theorem holds for manifolds with exact
b- metrics as well.

After this note was completed, we learned that L. Parnovski has
independently obtained similar results.

We would like to thank Charlie Epstein, Richard Froese, Laurent
Guillope and Richard Melrose for their help in our work on this paper.
The partial support of the second author by the National Science
Foundation is also gratefully acknowledged.
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2. Proof of the asymptotic formula.

The method of proof is inspired by the pseudo-Laplacian of
Lax-Phillips [8] and Colin de Verdiere [3]. If X is a manifold with cylindrical
ends such that for some 8 > 0

O / d'37 \2 \{x\^^g)= o , i+^)x9x,(^-) +/^x),

we decompose X into

X=XoUX-t^ XQ = ̂ |o;>i.

If u is an eigenfunction of the Laplacian, that is

ueL^X), ^xu=X2u

(here Lg(X) = L^X.dvol^)) then

00

(u\x,){x,y) =^Uj(x)^(y^ (x,y) e [0,1] x 9X
j=o

and to have u\^^ ^ Lj(Xi) the coefficients must satisfy

(u.^xV^2-^ if\2<a2

(4) ^•(^)=^J [0 i f A 2 ^ ^ 2 ,

and that extends to x < 1 + ^. This implies that

(5) (^(A^-A^y^xo-O,

where 9^ is the outward unit normal derivative and where (A^jc — A2)^
is defined using the spectral decomposition as the positive square root of
the positive part of (A^jc ~ A2).

Let T\ be defined as the Laplacian Ajcp on XQ with the boundary
condition given by (5) and with the domain C°°{XQ). The operator T\ is
symmetric and we define its Friedrichs extension using the form

(6) Qx(u^v)= { VnW+ ( (Aax - A2)^ (A^ - A2)^
JXo JQXo
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with the form domain

PA = [u 6 L\Xo):Q^u) < 00} = ̂ (Xo).

We will denote the corresponding self-adjoint operator by T\ as well. For
Dirichlet and Neumann problems on XQ the forms and form domains are
given by

QD(U,V) = ( V^ VD = ̂ W));
JXo

QN{^V) = ( V^W, VN = H^Xo).
JXo

Hence Q\{u,u} > QN{U^U) for u € AT^Xo) and Q\(u^v) = QD(,U,V) for
u, v C H^(Xo) C ff^Xo) = V\. Thus the spectrum of T\ is discrete and if
^i(A) <: ^W <! • • • < l^jW < " • are the eigenvalues, then the max-min
characterization

/^•(A) = sup inf QA^,^),
Mj_i ne^^l(Xo)nM^^

dimMj_i<j ||n||=l

the fact that Q\{u^u) is non-increasing in A, and comparison with the
Dirichlet and Neumann forms gives the following

LEMMA 1. — The eigenvalues ofT\ depend continuously on \ and are
non-increasing. If N\(r),NN(r),ND(r) denote the number of eigenvalues
less than or equal than r2 for T\^ the Neumann and the Dirichlet Laplacians
on XQ respectively, then

(7) ND(r) ^ Nx(r) ̂  A^v(r).

By applying the standard Weyl law for the Dirichlet and Neumann
problems, (7) immediately yields

(8) N^r) = ̂ Vol^o^ + O^-1).

We also note that the error estimate is independent of A.

From the comments in the beginning of this section we see that
if u is an -Lj eigenfunction of A^-, then u\^^ is in the domain of T\ and
T\{u\xo) = A^lxo). that is

A'G^Ax) =^ A2^^),

with at least the same multiplicity. Other eigenvalues A2 of T\ are
characterized by
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LEMMA 2. — If A2 is in the spectrum ofr^, but does not correspond
to an eigenvalue of the Laplacian on X, then the scattering matrix ^(A)
has 1 as an eigenvalue. Conversely, ifl is an eigenvalue of ̂  (A), then A2 is
in the spectrum ofT\. The multiplicity of A2 as an eigenvalue ofT\ is equal
to the sum of the multiplicity of A2 as an eigenvalue of Ax and the
multiplicity of'1 as an eigenvalue of ̂  (A).

Proof. — Suppose A2 is in the spectrum ofr\, but does not correspond
to an eigenvalue of the Laplacian on X. There is an eigenfunction u of 7\,
which, near the boundary of XQ, can be expanded in terms of the boundary
eigenfunctions, with

h.<i+.)(^)= ̂  (c^xV^^c^x-'V^)^
0<(Tj<\ _______

+ ̂  d,xV^2^.
CTj>\

Clearly u can be smoothly extended to u on X by allowing x to range
down to 0 (as in the expansion above), and then A^n = A2^. The fact
that u does not correspond to an L2 eigenfunction for the Laplacian on X
means that not all the c^+, c^_ are 0, and the boundary condition implies
that Cj^ = c^_. Since we can write u as a linear combination of the
generalized eigenfunctions ̂ ^ (and possibly L2 eigenfunctions), this
means that 1 is an eigenvalue of the matrix

S.W = {S^rnkW} = {(A2 - ̂ (A2 - a^-^mkW} , A ̂  a,.

Then it follows that 1 is an eigenvalue of ^(A), if A ^ cr^, since 63; (A)
and ^xW are similar matrices. When A = cr^, using the fact that ^(A)
and 5^(A) are continuous as [A| [ \(TJ\ (see [2], Section 1.3), we see the
eigenvalues of ^(A) and S^ (A) are equal at these points as well.

Conversely, assume 1 is an eigenvalue of ^(A), and thus of S^(\).
That is, there is a v which is a linear combination of the generalized
eigenfunctions ^^ of the Laplacian on X which is given, near the
boundary, by

^d^V^l+^V^l)^ +^^v/^,
^J^2 <rJ>A2

for some constants dk and Ck, with not all dk = 0. If we restrict v to XQ, we
find Axo(v|xo) = A^|xo, and (^ + (A^ - A2)^2)^^ = 0.
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This proves the lemma, except for the question of multiplicities. From
the argument above it follows that to independent eigenfunctions of T\ with
eigenvalue A2 which do not correspond to eigenfunctions of A^ 5 we obtain
the same number of eigenvectors of ^x (A), corresponding to eigenvalue 1.

Thus it remains to show that the multiplicity of A2 as an eigenvalue
of T\ is at least as great as the multiplicity of 1 as an eigenvalue of ^(A).
Suppose that 1 is an eigenvalue of ^(A) with multiplicity J . Then,
since ^(A) is unitary, it has J linearly independent eigenvectors with
eigenvalue 1. If A -^ aj, any j, then we get J linearly independent
eigenvectors of 63; (A) and thus, by the discussion above, J linearly
independent eigenfunctions ofT\.

If A2 = cr2^, we proceed as follows: if c = (ci, ...Cyn) is an eigenvector
of ̂  (A), let

^I^2-^2)"174^ if^M,
I Ci if i = M.

Then

(^E^^))^- E d^v^+x-v^i)^
^1<^M v-^ ^-^ / 2 x2

+ E Q^ 4- E c^V^-^ ^.
^^i^ a^>a2M

Restricting ̂  dk^ k x to ^o^ we ̂ et a function that satisfies the boundary
conditions for T\, and thus is an eigenfunction for T\. Additionally, if we
start with J linearly independent eigenvectors of ^(A) with eigenvalue 1,
we get J linearly independent eigenfunctions of T\. D

This motivates the following definition:

(9) PxW= E dim{^€ C^^0: ^(0^=2;},
o<^<\

that is, Pa; (A) is the number of times 1 is an eigenvalue of ^(O for
0 < ^ < A (counted with multiplicities). Lemma 2 shows that

(10) N(r) +P,(r) = ̂ A^A2 € a(7\), 0 ^ A < r},

where the eigenvalues are counted with their multiplicities.

For the right hand side we get:

LEMMA 3. — IfNr is defined as in Lemma 1 then

({A 2 : A2 € a(7\), 0 ^ A < r} = 7v,(r).
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Proof. — By Lemma 1, /-^-(A) € o-(T\) are continuous and non-
increasing in A. Hence if /^j(A) == A2 < r2 for some j then
A^7*) ^ /^j(^) < r2- Conversely, if ^-(r) < r2, then /-Aj(A) = A2 for
exactly one 0 < A < r, since JL^(A) — A2 is a strictly decreasing func-
tion, and /^(O) > 0. D

The next lemma gives the desired upper bound for the sum of the
counting function Pa; (A) and the number of embedded eigenvalues:

LEMMA 4. — If the metric on X is of exact product type for x < 1 + 6,
some 6 > 0, then

N(\) +P.(A) = cj ( l)A71 -^(A"-1).
Vx,a;>l /

Proof. — This follows from (8), (10) and Lemma (3). D

The following lemma bounds the variation of o~x.

LEMMA 5. — For any boundary-defining function x such that the
metric has the form (1) near the boundary,

|a,(A + 1) - a,(A)| < P,(A + 1) - P,(A) + 0(A71-1).

Proof. — We note that the unitarity of ^(A) implies that

(ii) ^w = ̂  E ^-(A)'
0<(Tj<\

where the 0j(\) are the arguments of the eigenvalues of ^(A). We recall
(see [2], Section 1.3) that ^(A) is continuous, except where A2 crosses a
point in the spectrum of the boundary Laplacian ^QX ' The magnitude of
the jump in o-x(\) at A = o-j is no worse than ^ times the multiplicity of a2

as an eigenvalue of A^jc? a contribution which is (^(A72"1). Since there are
©(A71"1) Oj's in (11), and if any is to change by more than 27r it must cross
an integral multiple of 27r (and hence a point where 1 is an eigenvalue of
the scattering matrix), we get the lemma. D

For completeness, we include the following lemma which describes the
variation of the scattering phase under a change of a boundary defining
function.
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LEMMA 6. — If a > 0 is a constant and if the metric on X is of the
form (1) for x < e, some e > 0, then

^axW - <^(A) = - log a V^ ^/A2 - ̂ 1 •
7T -—^

0<o-fe^A

Proof. — Recall that the entries in the scattering matrix corresponding
to the boundary defining function x are determined by the leading terms of
a generalized eigenfunction of the Laplacian at the boundary, as in (2):

xiv^^+ y (S-4.}1^^^-^V^^+ E (——o^)^,^(A)^-^^r<^+(!?(^A))
0<(Tm<\ arn

= f(a;c)^v/A2^^

+ E (^^4)l/4^^(A)a^^^^+^^2^(^)-^x/^^
0<cr^<A arn _____

+o((aa;)6W)1a-^v/A2-^.

The sum in square brackets on the third line is the expansion, at the
boundary, of the generalized eigenfunction which determines the entries in
the scattering matrix for the boundary defining function ax. Therefore,

^a^mkW = ̂ ^(A^V'^^+^V^2'^

and a straight-forward computation completes the proof of the lemma. D

Proof of Theorem. — We recall the trace formula of [2]:

^[&-TY,(cos(tv/A))](A)=7^^a,(A) + ̂  ^ 6{X - ̂ )
o-^GspecAax

<7fe/0

(12) +i7rTY^(0)^(A) + TT ^ 6(\ - A,)
A^GppSpecA

and the behaviour of &-Tra; cos^^/A) near t = 0 (see [2], Lemma 1.1)

(13) ^[p(t) b-Tr^ cos(t\/A)j (A)

=nc^lim \{ l+logeVol^JOlA^+C^A71-2),
eio ^l^. J
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where Jo e C^°(M), Jo(0) = 1, and p(t) has sufficiently small support. We
will also require that p > 0. Let

(14) e ,(A)=a,(A)+AT(A).

Then for A > 0, the formula (12) shows that

(15) ^*dex(A) = ^(p^b-Tr^cos^v^^+^A^2),

where we used the standard estimate A^x(A) = ^(A71"1) to estimate the
contribution of the second term.

We will now apply Hormander's Tauberian argument [7] to obtain
asymptotics for e.c(A) in the special case where x is chosen so that the
metric is a product for x < 1 + 6, some 6 > 0. We do not, however, have the
positivity of d e^(A), and to circumvent this problem we use the asymptotics
of Lemma 4 and the estimate of Lemma 5. In fact, they yield immediately

(16) e^\^l)-e^\)=0(Xn-l).

Integrating (15) from 0 to A gives the theorem in this special case, since (16)
shows that

(17) \[p{\-^e^)d^-e^\)=0(\n-l).

The proof for the more general choice of x satisfying the conditions
of the theorem follows from the result in the special case above, along
with (13), (15), Lemma 6, and Hormander's argument. D

3. An example.

This section describes a class of examples of compact manifolds with
boundary and exact b-metrics which have an infinite number of eigenvalues.
In fact, the manifolds are n-dimensional, and N{\) grows like A71. This
shows that the bound on the growth of the number of eigenvalues proved
in the previous section is sharp. These examples were motivated by the
example of [5].

It will be helpful to consider manifolds with two infinite cylindrical
ends instead of two boundary components. Let (V, h) be a smooth, compact,
(n — 1) dimensional Riemannian manifold without boundary, and let

(X,g)=(RxY,dt2+f(t)^n-l)h),
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where / € C^QR) — see Figure 2. We choose f(t) = 1 outside a compact
set; then a change of variables makes X a compact manifold with two
boundary components and an exact 6-metric. The Laplacian on X is

(is) A - m-^ + ̂  + ̂ ^^)m,
where Ay is the Laplacian on V.

0 )̂ (X,g) ̂  (R x V, dt2 +/%4/(n-l)^

Figure 2. A manifold with many embedded
eigenvalues: f(t) large on a compact set.

If {crj} are the eigenvalues of the Laplacian on V, listed with multipli-
city, and {(f)j} are a set of corresponding orthonormal eigenfunctions, then
we may expand (18) in terms of the eigenfunctions on Y. If^(t, y) e (7^°(X),
then

(19) A,(^)=^^+^+^^.j)

xf(t)^(y)[w)^t,y')
JY

= J(D ̂ D2t + ̂  + ̂ fWW ^ W) ̂  v')
where

vj=fJ^+ W'"^ -1)^-
If we choose f(t) ^ 1, and f(t) > 1 on a compact set, then Vj has

compact support, and l^ <€ 0 on a fixed compact set for j sufficiently large.
Using (19), we see that Aj is an eigenvalue of the Laplacian on X if and
only if (Aj| — o-J) is an eigenvalue of D^ + Vj for some j.
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To find the asymptotic behaviour of N{\) for X , we need to know the
asymptotic behaviour both of the a] and of the eigenvalues of D] + V^ as j
goes to infinity. The standard Weyl law for QX gives that

(20) Z^ °j = !L——^-! Vol(V) A71 + ̂ (A71-1),
a,<A n

where c^ = o^Tr)-7" and o;̂  is the volume of the unit ball in R^

To study the behaviour of the one dimensional Schrodinger operator
we take the semi-classical point of view with h = a~1 — see [6]. As j -> oo,
the operator D^ + Vj has

(21) ^ (/ ̂ /l-/-4/(n-l)(^ + 0(1))

eigenvalues, and they lie in the interval [-(r]a + c, O], where

a = max(l - /-4/(n-l)^)).

Finally, using (20) and (21), we can bound N(\) from above and
below as A -^ oo. Summing over aj such that a] < A2, we get, as A -^ ex):

A^(A) {n-l)cn i /• /——————————
A- > ^^Vo^y ^l-/-4/(-i)(,)d,+o(l).

This shows that the order of growth of embedded eigenvalues given by
the theorem in Section 1 is indeed optimal. Similarly, summing over
those a] such that a] < A2/(l - a), we can bound 7v(A), as A -. oo, by:

T ̂ (nr^ ̂ w - ̂  / ̂ -/-4^-1^ + O(D.
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