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REGULARITY PROPERTIES OF COMMUTATORS
AND BMO-TRIEBEL-LIZORKIN SPACES

by Abdellah YOUSSFI

1. Introduction.

Let b be a locally integrable function and 1 < p < +00. It is a well
known fact that the commutators {[b,Rk])i<,k<,n are bounded on L^R71)
if and only if b € BMO^ where (Rk)i<,k<n are the Riesz transforms in
the n-dimensional euclidean space W1. This result is due to Coifman-
Rochberg-Weiss [5], and extends to the Hardy space 7Y1 in several variables
certain well known factorization theorems on the unit disk. In [4] this result
gives the regularity of various nonlinear quantities (like the jacobian, "div-
curl"...) identified by the compensated compactness theory.

Another interest of commutators comes from the pseudo-differential
calculus and the theory of singular integral operators (see [7]). In particular
in the case when b is Lipschitz, the commutators ([b^Rk\)k are bounded
from L2 to the homogeneous Sobolev spaces H1. This result is due to
Calderon [3] and has been generalized to the commutator [&, T] when T is
a reasonable Calderon-Zygmund operator.

Our purpose here is the study of the intermediate case, in particular
we give necessary and sufficient conditions for the boundedness of ([6, Rk}k
from Lp into the Besov space B^P for 1 < p < +00 and 0 < s < 1.

Key words : Commutators - Besov spaces - BMO.
Math. classification : 42B - 46E - 47B.
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Notice that our result is similar to the Murray's theorem [8] when the
Riesz transforms Rk is replaced by the Riesz potential operator of order s
and p = 2.

The paper is organized as follows. In Section 2 we give the statements
of our results. In section 3 we establish some results which are related to the
boundedness of the paraproduct. In section 4 we prove our main results.

In the sequel, C will denote a constant which may differ at each
appearance, possibly depending on the dimension or other parameters. The
symbols / will stand for the Fourier transform of / and / for inverse Fourier
transform of /. We also use the notations :

V^) = space of C'°°-functions with compact support, P^R71) its dual.

^(R71) = the space of Schwartz test functions.

(S^R71) = space of tempered distributions.

[s] = the greatest integer smaller than or equal to s and s* = s — [s].

2. Definitions and statements of the main results.

Let (p C S^W) be supported in the ball |̂ | <, 1 and satisfy <^($) = 1
for |$| < ^. The function

^(0=^/2)-^)

is (7°°, supported in

{ J < 1 $ 1 < 2 }

and satisfies the identity
][>(2-^)=1
jez

for $ 7^ 0. We denote by Aj and Sj the convolution operators with symbols
^y^"-7^) and y^"-^) respectively.

For s e R, 1 < p <. +00 and 1 <: q <: +00 the homogeneous Besov
space is defined by

imiB^-lE^ii^ii^
jez

with the usual modification if q = +00.
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For s € M, 1 ̂  p < +00 and 1 < g ^ +00, the homogeneous Triebel-
Lizorkin space F^'9 is defined by

11 /11^ -lllE2^!^!9]'!
jez p

with usual modification if q = +00. To give the definition of the BMO-
Triebel-Lizorkin space I%9, let us first recall the definition of Carleson
measures. We shall say that a sequence of positive Borel measures (^j)jez
is a Carleson measure in R71 x Z if there exists a positive constante C > 0
such that

^(B)<^C\B\
j>k

for all k G Z and all euclidean balls B with radius 2"^, where \B\ is the
Lebesgue measure of B. The norm of the Carleson measure v = (vj)j^z is
given by

\M\=^p{—^Wv i^
where the supremum is taken over all A; € Z and all balls B with radius
2-^.

The homogeneous BMO-Triebel-Lizorkin space F^1 (1 < q < +00) is
the space of all distributions b for which the sequence (2s:)q\^j(b)(x)\qdx)j
is a Carleson measure (see [6]). The norm of b in F^ is given by

n6!!^—811? 1-1 E I^ y^wxwdx
1 1 ^ > k J B

where the supremum is taken over all k G Z and all balls B with radius
2~k. For q = +00, we set F^°° = B^00. In the inhomogeneous case, the
BMO-Triebel-Lizorkin spaces were studied by different methods in [12].

When 9 = 2 , the space F^2 is the Sobolev space (1 <p< +00) and the
space F^2 is, modulo polynomials, the BMO space. More generally, F^2

is, modulo polynomials, the BMO-Sobolev space considered by Strichartz[ii].
Note that the spaces F^ and B^ consist of distributions modulo

polynomials. We consider now the operator

7Z(/)=^A,(/).
jez
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Notice that, when / e ^(R"), / = 7Z(/) in ^'(M71). But this equality does
not hold for / is a polynomial.

Let s C M, 1 < p, q < +00 and let m = [s - n] and denote by A5'9

either F^ or B^. Then for all / € A;'9 one can show that

/=$>,(/)
j'ez

modulo polynomials of degree less than or equal to m. In particular
U(f) € S^R^/P^ where S'^/Prn is the space of distributions modulo
polynomials of degre less than or equal to m. Moreover, K is an embedding
from Ay to S'^/Prn' For / e A;'9, we set

\\f\\n^}=\\f\\A^

The space 7^(A^9) is isomorphic to A^9 and invariant by dilations and
translations. Throughout the paper we identify A8^ with K(A8^). For the
study of these realizations the reader is referred to [2]. In the particular
case where 0 < 5 < - , A = F and q = 2, we have

P
^(^^(^(r1))

where

WW-j^-.-iy
is the Riesz potential.

The paraproduct of J.-M. Bony between two functions /, g is defined
by

^J)=7r,(/)=^A,(^-3(/).
JCZ

It is a well known fact that, for b € ̂ °°, TT^ is bounded on L2 if and only
if b € F^2 = BMO.

Our main results are the following.

THEOREM 1. — Let s € R, b G B^°° and 1 < p < +00.

1) If be F^f, then 7^ is bounded from L^ into B8^.

2) IfTTb is bounded from B^ into B^, then b € F^.

Notice that B^ c F^ C LP for 1 ̂  q < 2, then we obtain the
following.
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COROLLARY 1. — Let s € M, b C B^°°, 1 <p< +00 and 1 < q < 2.
Then b G F^ if and only if the operator TTb is bounded from F0^ into B8^.

THEOREM 2. — Let 0 < s < l , l < p < +00, q = inf(p, 2) and b be
a locally integrable function.

1) If b C ^p, then the commutators ([b^Rk])i<k<n o-re bounded
from F^ into B^P.

2) If the commutators ([b^Rk])i<k<n are bounded from B^ into
B^P, then b € F^P.

COROLLARY 2. — Let 0 < s < 1, 1 < p < +00, 1 < q < inf(p,2)
and b be a locally integrable function. Then b € F^ if and only if the
commutators ([b^Rk])i<k^n 0're bounded from F^ into B^.

3. Preparatory results.

The connection betwen the spaces F^ and B^ is given by the
following.

PROPOSITION 1. — Let 1 < p, q < +00 and s € R. Then

1) F^CB^ ifp<q;

2) B^CF^ ifq<p.

The spaces F^ and B^ are independent of the choice of ^. This is
due to the following lemma [13], [14], which will be needed herein later.

LEMMA 1. — Let s C R, 1 < p,q ^ +00 and 7 > 1. For any
sequence (/j)j'ez of functions such that for each j, fj is supported in
{^~1^3 < l^ l < 72 '̂}, we have

IIE^L^^IE^II^II^
j'ez p j-cz

and for 1 <: p < +00,

llE^IL^OE^w]^
j'ez p j-ez p

where C = C(n, p, 9,5,7).
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For s > 0 we can replace {7~12J ^ |$| < 72-7} by the ball {|^| ^ 72-7'}.

LEMMA 2. — Let s > 0, 1 < p, g ^ +00 and 7 > 1. For any sequence
(/j)jez of functions such that for each j, fj is supported in {|$| <; 72^}, we
have

lE^^E2^!^
"jez "^ S-ez J

where C = (7(n,p,^,s,7).

Now we consider the boundedness of the paraproduct operator on
Besov spaces. One of the most useful characterizations of the boundedness
of the paraproduct on Besov spaces comes from the following.

PROPOSITION 2. — Let b e B^°, s e R, 5i e M and 1 ̂  p, ̂ , ̂  <
+00, gi < ^2- Then

1) TTfc is bounded from B^'91 to ̂ +sl'92 if and only if there exists
C > 0 such that

[E^^^n^w^^a)!!?]^ < ^ii/iia3^
jez p

for an f C B^.

2) The commutator [TT;,,^] is bounded from B^1'91 to B^31^2 if
and only if there exists a constant C > 0 such that

[E^^^II^W-^K5^^))!!?]^ < ^11/11^—
J€Z

for an /C^1 '9 1 .

Proof. — Proposition 2 is due to the author [15] for the case 5 = 0
and «i > 0. To obtain extension for the general case we observe that

^^^We^00.
j'ez

Using this remark we are led to establish Proposition 2 for s = 0 and «i < 0.
Indeed, by Peetre's Theorem ([9], p. 155-158) one has that, for 5i < 0,

[^y^ll^-sWII^ <G||/||^.
j'ez

Hence we obtain the "only if part" ; for the "if part" we use the Lemma 1.
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Remarks. — 1) Notice that for si < 0 the operator TT;) is bounded
from B^ to ̂ +sl'92 if and only if b e B^.

2) In Proposition 2, one can replace Rk by polynomials of the Riesz
transforms.

The first approach in dealing with the commutators consists of
Lemmas 3 and 5 below. The Lemma 3 is classical and due to Calderon
[3].

LEMMA 3. — Let h be a differentiable function and suppose that
r\

-—h € L°° for i = 1, ...,n. Then the commutator [h^Rk] is bounded from
dxi
L^ into the Sobolev space F^2 (1 < p < +00) and

11[^W)11^ < c?[f: 1^11 J.H/llp.

The following lemma related to the Bernstein's inequality, is classical
and will be used in the proof of Lemma 5 below.

LEMMA 4. — Let 7 > 1 and 1 <: p < +00, then for all R > 0 and
each function f such that f is supported in

{^7-1^1^7}

we have

ciRm? < E|̂ i|| ^ ^n/iip
where Ci = (7(7,p), i == 1 ,2 .

LEMMA 5. — Let b € B^°°, 1 < p < +00, 1 <, q < +00, 0 < s < 1,
N € N and Si e] — 5, +oo[, then the operator

T(f)=^[S^N(b),R^(f))
3

is bounded from B!p1^ to B^81^.

Proof.— Since the Fourier transform of [^+^v(6),J?fe](Aj(/)) is
supported in the ball {$, |$| < 2•7+J?V+2} and s + s-i > 0, then by Lemma 2,
it suffices to show that

^S^^^II^.^W.^KA^/))!!^ < c\\f\\^
3
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and it is enough to prove that

\\[S^N(b)^R^(fmp < G2-^||A,(/)||^
But

J'+N
S^{b)=S^(b)+ ^ A,(6)

^=J-2

and
||[A^)^](A,(/))||p <, C72-^||&||^oc||A,(/)||^.

Thus we are led to show that

||[^-3W^](A,(/))||p < C2-^||A,(/)||^
To do so, we observe that the Fourier transform of [Sj-sW,Rk](/^j{f)) is
supported in

{2J-2 < |^| < 2^2}.

By virtue of Lemma 4, we obtain

||[5,-3(6),^](A,(/))|^<C2-^||^([^,_3(&),^](A,(/)))HL^j-aw^^j^j

Indeed

1 1 ^ < G2 ^^^ii^—u^-s^^^/cj^^
._- ' i '~"^"i i ip

^-(^•-3(6)) ^ < C2^-5)19^
so that by Lemma 3 we see that

—([^_3(6),^](A,(/)))|| ^ ^^-^IIA.^IIp.
L/J/^ Up

This completes the proof.

We recall now the definition of the maximal function related to a
sequence of measurable functions. For a sequence of measurable functions
F = (/j)jez m W1, the maximal function F* is defined by

F^x) = sup{|^Q/)| /\x -y\< 2-^j e Z}.

The Carleson measure and the maximal function are related by the
following classical lemma (see [1]).

LEMMA 6. — If (^)jez is a Carleson measure in R71 x Z and
p c]0,+oo[, then

^/'I^^I^^^CIII^III.IIF*!^
1-cy. J
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4. Proof of the main results.

4.1. Proof of Theorem 1.

To prove "part 1)'\ notice that F^P C %°°. By Lemma 1 we only
need show that

[^2^||A,(&)^-3(/)||^ <C||/||,
jez

for all f eS^).

Denote by F = (Sjf)j and observe that F*(x) ^ Cf^x) where /*(a;)
is the Hardy-littlewood maximal function. By virtue of Lemma 6 we obtain
that

[^2^||A,(6)5,-3(/)||^ ^ C\\r\\, < C\\f\\,.
jez

Next we prove "part 2)". Proposition 2 implies that

[^2^||A,(^-3(/)|d' <C\\f\\^.
j'ez

Let B = (a;o,2-^) (^ e Z) and let / € ^(R71) be such that f(x) = 1 for
\x\ < 1. Set

fB{x)=f(2\x-xo)).

For j > t one has that
sj<<fB){x) > C > 0 for all x <E B.

Thus
^2^ /* |A,(&)(^)|^ < C||/B||^o,i < C|B|,
j>^ JB p

from which the theorem follows.

4.2. Proof of Theorem 2.

To prove "part 1)", we write

[b.Rk](f)=[^Rk}{f)^Ak{f)
where

^(/)=E^+2W,^](A,/).
j'ez
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By virtue of Lemma 5, Ak is bounded from B^ to B^ ; in particular, Ak is
bounded from ̂ 'lnf^2) fo ̂ 'p. On the other hand, Theorem 1 guarantees
that TTb is bounded from ^'mf^'2) fo ̂ 'p. Since the Riesz transforms are
bounded on B^ and on F^'9, it follows that the commutators ([b,Rk})k
are bounded from p^^ into B^P.

To prove "part 2)", we use the following lemma.

LEMMA 7. — Let 0 < s < 1, 1 < p < +00 and 6 be a locally
integrable function. If the commutators ([b,Rk])i<k^n are bounded from
By toB^P^thenbeB^.

Let us first assume Lemma 7 and prove "part 2)". As in [5] we shall
make use of spherical harmonics. Let (Ym)m be an orthogonal basis for
the space of spherical harmonics of degree n. There exists a finite sequence
(Ym)m (see [10], p. 137-145) such that {Ym)m are homogeneous polynomials
of degree n; i.e. Ym(x) are of the form

Ym{x) = ̂  C^

H=n

and satisfy ^(^(^
2^ M2n - G"-
m ' '

In particular the operator Tm of kernel
Ym(x-y)
\x - y^

is a polynomial in the Riesz transforms and

Ym(x-y)= ^ C^mX^.
I^H/3|=n

Suppose that the commutators ([b,Rk})k are bounded from B°'1 to B8^.
By virtue of Lemma 7, we see that b e %°°. Lemma 5 implies that the
operator

Ak(f)=^[S^(b)^R^f)
jez

is bounded from B^ to B^. Hence the commutators ([jTb,Rk})k are
bounded from B^51 to B^. Indeed, a little computing shows that

[^RkRk'} = [^Rk}Rk'+Rk[^Rk'}'
Hence [^b'>Tm} is bounded from B^1 to ̂ 'p.
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For £ e Z and a ball B with radius 2~^, we prove that b satisfies

^2^ f \^(b)(x)\Pdx<C\B\.
j>e J B

Let / e ^(R71) be such that f(x) > C > 0 for |a;| < 1, / supported in
{1^1 <^} and

ff(x)dx=l.

For any ball B = B(xo, 2-^) ( £ £ Z), we set

/B^)=2"^(2^a--a;o)).
Since, for j > ^, the Fourier transform of Aj(&)/5 is supported in

{y-2 ^ |$| < 2^2},
it follows that

f^(b)(y)fB(y)dy=0.

We write

AjW(a-)^(a;) = f(Mx)^(b)(x)f^y) - f^(x)Aj(b)(y)f^y))dy

_ y ly (x — v}\2
-E / -^——^-(/B(.")A,(&)(a-)/,(y)-/,(^)A,(6)(y)/,(y))dym J ^ v\
=E E ^^/^—^(^^A.w^/^y)

m H+|/3|=n J 1 '/1

-^(^)A,(6)(^)^(2/))^
where f^(x) = {x -XQ^f^x). Then we get

^W(x)f,(x)=^ ^ Ca,^^(^)[A,(6)(^)r^(^)(^)
m |a|+|^|=n

-r^(A,(6)/f)(^)].
But

( \^{b)(x)\Pdx < 02-^ ( \^(b)(x)f^x)\^dx.
J B J B

Therefore,

f \^(b)(x)\Pdx]^ C2-"^ ^ ll/:lloo||A,(6)r^(/f)[/,B m |a|+|/3|=n

-r^(A,(^)||p.
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On the other hand, SJ-^B) = f^ for j > £, so that by Proposition 2 we
see that

[^2^||A,(6)r^(/f)-r^(A,(6)^)||^ ^ CH/^II^.
3>l J

Since |a| + \{3\ = n, ||/^||oo ^ C'2("-H^ and
ll/fll^i ^ C2^"-^l-?),

it follows that
^sjp [ \^(b)(x)\Pdx < C\B\.
j>e J B

This completes the proof.

4.3. Proof of Lemma 7. — We need to prove that
l|A,(6)||,o<C2-<

For t > 0 and u e R71, we set

bt,u(x) = b(u --)

and denote by ||[^,n,^]||s,p the norm of the bounded operator [^,n,^]
from B^ into B^. Next we write

^j(b)(x)=<b^^^> .
Let / € <S(ir) be such that J f{x)dx = 1 and write

W = [Wy)f{z) - {-W(z)f{y)dz
because

I ^(z)dz=0.

Using now the spherical harmonics, we obtain

^ = E E c^^mf - (-1)^7^)
m |a|+|/3|=n

where ^(.r) = ̂ ^(.r) and f^(x) == x^f{x). Hence

<^^>= -(-1)^ ^ G,,^ < [^^(/̂ r >,
m |a|+|^[=^

showing that
1< ̂ ^ >\ < C^ ^ l̂ ^m|||[̂ ,.,̂ ]||̂ ||̂ ||̂ ,i||̂ ||̂ ,,,.

7^ |o'|+[^|=n p P7

To complete the proof it is enough to notice that
ll[^,.,^]||^<2-^||[6,r^]||^.
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