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FOLIATIONS OF M° DEFINED
BY R2-ACTIONS ®

by J.L. ARRAUT and M. CRAIZER

1. Introduction.

Let M bea C", r =00 or r =w, m-dimensional closed orientable
manifold and F a C" p-dimensional foliation of M. Define the rank of
the foliated manifold (M,F) as the maximum number of C” commuting
vector fields, 1.i. at each point, that are tangent to F, and denote it by
rank(M,F). When p = m, this definition gives rank(M), the rank of
M in the sense of Milnor, see [7]. Observe that rank(M,F) = p if and
only if F is the underlying foliation of a C7 locally free action ® of
R? on M. We say in this case that ® is tangent to JF. Note also that
rank(M, F) < rank(M).

Let ®:RP x M — M be a C" action. For each € M the map
@, : R? - M defined by ®,(v) = ®(v,z), and also its image &,(RP),
will be called the orbit of x by ®. To each v € RP is associated a flow
Y :R x M — M, defined by ®(t,z) = ®(tv,z). Let {v;}, 1<j<p,
be an ordered base of RP. The ordered set {X,}, where X, is the
vector field of M tangent to the flow ®%s, is called a base of infinitesimal
generators of ®. The canonical infinitesimal generators of @ are those
associated to the canonical base of RP.

From now on, we shall assume that m = 3 and p = 2. Our aim
is to give a geometric characterization of the foliated manifolds of rank 2.
A substantial part of this work had already been done by G. Chatelet,

(*) Partially supported by CNPq.
Key words : Foliated manifolds - Foliations of rank 2.
Math. classification : 57TR.
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H. Rosenberg, R. Roussarie and D. Weil. They proved the following
properties of a foliated manifold (M,F) of rank 2 :

T.0 ([9]). — M is a torus bundle over the circle. In other words, M
is up to diffeomorphism, the manifold Mp obtained from 72 x R by
identifying (z,t) with (F(z),t+ 1), for some F € SL(2;Z).

T.1 ([4]). — Suppose that F is a foliation by planes. Then M is
diffeomorphic to- 7% and F is conjugated to a foliation given by the
suspension of two commuting diffeomorphisms of T.

T.2 ([4]). — Suppose that F has no compact leaves, but it is not
a foliation by planes. Then F has the two eigenvalues equal to +1, and
F is a foliation by cylinders, conjugated to the suspension of the foliation
T! x {8}, 6 € T, of T?, by a diffeomorphism that leaves it invariant.

T.3 ([4]). — Suppose that F has a compact leaf L. Then the
manifold obtained by cutting M along L is diffeomorphic to 72 x [0, 1].
If L' is another compact leaf then L U L’ bounds a manifold which is
also diffeomorphic to T2 x [0, 1].

Let N be a compact orientable 3-manifold. Denote by G”"(N),
r=o00 or r=w, the set of C” 2-dimensional foliations F of N,
tangent to the border if ON # ¢, which are transversally orientable, its
leaves are tori, cylinders or planes and satisfy the restrictions imposed by
T.1, T.2 and T.3, and by G,(N) the foliations of G"(N) that have at least
one compact leaf. We can summarize the contribution of the mentioned
mathematicians to the characterization problem as follows :

1.1. If rank(M,F) =2, then M is diffeomorphic to Mp, for some
F € SL(2,Z), and F € G"(M). Besides, if F € G"(M)\G,(M), then
rank(M,F) = 2.

The second statement in 1.1 follows easily from T.1 and T.2. In this
paper we give a criterion to decide which foliations F € G7(MF) are such
that rank(Mpg,F) = 2.

For F € G,,(MFp) the characterization is workout by first cutting the
manifold along a compact leaf, obtaining, by T.3, a tube 72 x [0,1]. Next,
proving that the induced foliation on this tube, that we keep calling F, is
the underlying foliation of infinitelly many C™ R2-actions. Finally, finding
the obstructions for one such action to be compatible with the glueing map
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F :T? x {0} = T? x {1}. We consider two different cases. The first one is
when the union of the compact leaves of F has non-empty interior; for
r = w this is equivalent to say that all leaves are compact. In this case we
prove :

THEOREM 1.2. — Let F € G(MF), with r =00 or r =w, be
such that the union of its compact leaves has non-empty interior. Then
rank(Mp, F) = 2.

To talk about the second case we need some preliminaries. Consider
in T2 x [0,1] = R%/Z2 x [0,1] the coordinates (z,y,z) with (z,y) € R?
and z € [0,1]. Denote by s(z,y) the segment (z,y) x [0,1] C T2 x [0, 1]
and identify s(0,0) with [0,1]. Let F bea C* foliation of T2 x [0, 1]
whose compact leaves are just 72 x {0} and T? x {1}. Clearly F
is transversal to s(0,0) in a neighborhood of 0 and 1, therefore the
holonomy of F at the leaf T2 x {j}, j = 0,1, is given by a representation

Xj* 71'1(T2 X {.7}’ (O, 0)) i D([O’ 1]>j)

where D([0,1],7) denotes the group of germs of local C*° diffeomorphisms
of [0,1] at j. Since F has no compact leaves in T2 x (0,1), it follows
that at least one of the two germs xo(e;) or xo(e2) has 0 as its
unique fixed point, where e; and ey denote the canonical generators
of m(T? x {0},(0,0)). If f € xo(e;) has O as the only fixed point,
it follows from Theorem A.2 of appendix A, that there exists § > 0 and
a C! vector field £ on [0,6) such that &! = f, where &' is the
time t of the flow associated with £. Moreover, if g € xo(ez2), it follows
from A.3 that g = (7 for some T € R. Write a = (T,—1). If every
f € xo(e1) has a fixed point besides 0 we will have g = £, by A.2, and
by [6] f = ¢£9. Write in this case o = (1,0). We call the straight line o,
generated by «, the principal direction of F.

Example 1.3. — Let p:[0,1] — R be a non-increasing C* function
such that wu(z) = +1,(—1), in a neighborhood of 0,(1). This function
will remain fixed through the paper. Let A:[0,1] - R bea C* function
such that A(2) =0 ifandonlyif 2=0 or z=1, a=(a1,a2) # (0,0),
and i € {0,1}. The foliation of T2 x [0,1] defined by the equation

(1.1) Aagdz — Aaydy + p'~idz =0

will be denoted by F (), @,4). The vector fields p'~—*0/0z —\a20/0z and
pl=%0/8y + Aa18/0z are tangent to this foliation and through them we
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can compute the generators xo(e1) and xo(ez). It is easy to see that the
principal direction of F(\,@,4) is a and that the leaves inside 72 x (0, 1)
are planes if and only if o; and a2 are li. over @, and cylinders
otherwise. To sense the role of 7 it would be convenient, at this moment,
to draw pictures of (1.1) for 7 =0,1.

T.4 ([3] and [8]). — Let F be C foliation of T2 x [0,1] whose
compact leaves are just 72 x {0} and T2 x {1}, and with principal
direction a. Then, there exists i € {0,1}, and fixing « € a there exists
A such that F is C° conjugated to F(),a,i) by a homeomorphism
homotopic to the identity. The number ¢ is called the type of F.

Assume now that the union C of the compact leaves of F is a
nowhere dense set. Mr —C is an open and dense set that, by T.3, can be
decomposed into a countable number of open connected components R;,
j €3, each one diffeomorphic to 72 x (0,1). Observe that, since F is
transversally orientable, only a finite number of R;s are of type 0. If one
cuts Mp along a compact leaf, one obtains a natural linear order on .
We call a subset [j1,j2) = {j € X_; j1 <j < Jj2} an interval. Let [ji, 2]
be an interval such that F|g, has principal direction o V; € [j1,j2].
Then S=cl( |J R;) is called a simple tube with principal direction

el
a. A maximal ;11'.£111191]e2 ]tube is a simple tube that is not properly contained in
any other simple tube. One can decompose My into a countable number
of maximal simple tubes S;, with j € A, where A is a set endowed

with the order inherited from Y.

Let ® be a locally free action of R?2 on 72 x [0,1] which has
T? x {0} and T? x {1} as orbits. For each v € R2, the restriction of
the flow ®” to T2 x {j}, 7=0,1, defines a unique asymptotic direction
u; € Hi(T? x {j}) = R%2. The linear map Ae : RZ — R2, given by
Ag(uo) = uy, will be called the continuation map of ®.

One can assume w.l.o.g., that the canonical infinitesimal generators
{X1,X2} of & are constant when restricted to (T2 x [0,1]) i.e.,
Xe|T2x{j} = X14(5)0/0x + X2¢(j)0/0y, with Xge(j) € R, for j =0,1
and k,f = 1,2. It follows that the matrix of As in the canonical base
of R? is Ag = X(1)X(0)~1, where X(j) = [Xke(4)]- It is clear now
that for one such action to project into a C* RZ?-action on My it is
necessary that Ag = F. This shows that the presence of the continuation
map in the characterization problem is inevitable. In section 4 we prove its
main properties :
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THEOREM 1.4. — Let ® be a C™ R2-action tangent to F €
G*®(T? x [0,1]). Assume that T2 x [0,1] is a simple tube of F with
principal direction a and n components of type 0. Then

14.1. As(a) =0, YVa € a.

1.4.2. Ap preserves orientation <= n is even.

Let & be a R2-action tangent to F € G®(T? x [0,1]) that has
T? x {a;}, 0 =ap < a1 < az <..<ap=1, asorbits. If ®; denotes
the restriction of ® to T2 x [aj_1,a;], 1< j < n, then it is clear that
As = Ag, 0...0 Ap,. We enunciate now Theorems 1.5 and 1.6, which
together with 1.2 characterize the elements of Gj(Mp) of rank 2.

THEOREM 1.5. — Let F € G(Mp) and assume that the union
of its compact leaves is a nowhere dense set. Let Mp = |J S; be the
jea
decomposition in maximal simple tubes, o’ the principal direction of
Fls;» and n; the number of components of type 0 contained in S;.

1.5.1. Suppose that A = {1}. Then, rank(Mp,F) = 2 if and only
if Fla)=a, Va€al.

1.5.2. Suppose A = {1,2}. Then, rank(Mp,F) = 2 if and only if
(=1)"2 det(F(a),8) >0 forany a € o' and 8 € a* withdet(a, 3) > 0.

1.5.3. Suppose card(A) > 3. Then, rank(Mp, F) = 2.

An example of a nontrivial application of this theorem is the follow-
ing:If F e Gg° (T?) has exactly 2 compact leaves, bounding 2 components
of type 0 with different principal directions, then rank(73,F) = 1.

In the C“ case, the hypothesis that the union of the compact leaves is
a nowhere dense set implies that F has a finite number of compact leaves.
Besides, the analyticity of the holonomy at the compact leaves implies that
the principal direction of each component is the same. Hence A = {1}.

THEOREM 1.6. — Let F € G§(MF) be a foliation with a finite num-
ber of compact leaves and principal direction a!. Then, rank(Mp,F) = 2
if and only if F(a)=a, Yo € al.

Remark 1.7. —If F € SL(2;Z) admits an eigenspace with irrational
slope associated to the eigenvalue +1, then F = I. Using this fact one
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obtains sharper informations in some cases of Theorems 1.5 and 1.6. For
example, if A = {1} and the open leaves of F are planes, then necessarily
Mg =T3.

Section 2 is devoted to the construction of C*™ R2-actions tangent
to any given F € G°(T? x[0,1]). The construction of analytic R2-actions
for the foliations F € G§(Mp) which satisfy the hypothesis of 1.6 is done
separately in section 3. The proof of 1.2, 1.5 and 1.6 are given in section 5.
For the proofs of these theorems we needed some results on the structure of
foliations F € GT(T2?x[0, 1]). Since we did not find them written anywhere,
we decided to include appendices A, B and C, containing the statements
and the proofs of them. We would like to call attention on Theorem B.2,
which talks about the immersion of certain diffeomorphisms of [0,1], with a
countable number of fixed points, in C!-flows. This theorem allowed us to
prove Theorem B.1, a C'-conjugation theorem of simple tubes to models,
which in turn is essential for the proof of Theorem 1.4.

The notion of principal direction for foliations of 72 x [0,1] whose
compact leaves are just 72 x {0} and T2 x {1}, is already present in [3].
In [11], it became clear that this notion is essential for the understanding of
R2-actions in the neighborhood of a compact leaf. Here, it is present in the
continuation map, and was also used in [1] and [15]. We make use of this
oportunity to thank N.C. Saldanha, for helpful conversations, S. Matsumoto
for suggesting us the way to construct the analytic actions of section 3, and
the referee for valuable suggestions for the presentation of this paper.

2. Actions on tubes.

Let F be any element of G®(T2 x [0,1]) and A*®(T? x [0,1],F)
the set of C*® RZ%-actions on T2 x [0,1] with underlying foliation F.
In this section we construct some elements of this set.

Let ® € A®(T? x [0,1],F) and X = {X;,X;3} its frame of
canonical infinitesimal generators. Assume that X; and X, restricted
to T? x {j}, j = 0,1, are constant vector fields i.e., Xp|r2x(;} =
X1(5)0/0z + Xze(j)a/ay with sz(j) € R, k4 = 1,2. Write
X(j) = [Xke(§)] and call X(0) the initial condition frame and X(1)
the terminal condition frame. For this kind of actions, it is clear that,
X(1) = ApX(0), where Ag is the continuation map of ®, defined in
the introduction.
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LemMA 2.1. — Let F € G*®(T?x[0,1]) be a foliation whose compact
leaves are just T? x {0} and T? x {1}, with principal direction a and
type i. If A€ GL(2;R) is such that :

i) Aa=a, YVa€a.

ii) (—=1)"idetA > 0.

Then, fixing a € a and taking ( such that det(a,() > 0, there
exists ¥ € A>°(T?x[0,1],F) such that its canonical frame X = {X1, X»}

s } and X(1) = AX(0).

of infinitesimal generators satisfy : X(0) = [Zl ﬂl
2 B2

In particular Ay = A.

Proof. — Let Fy be the foliation of 72 x [0,1], defined by the kernel
of the 1-form Aaodz — Aaydy + pl~tdz, to which F is conjugated by H,
according to Theorem A.1l. Note that the vector fields a18/0z + 020/8y,
By = p'7'0/8z—Aa20/0z and E; = pu'~'0/8z+\a10/0z generate T,F
at every p € T? x [0,1]. Define v = AB. Byi)andii), 8 and (—1)"iy
are on the same side of the line a. Let Yi(2) = 18/9z + a20/0y and
Y2(2) = Y12(2) E1 + Ya2(2) Ea, where (Yi2(2),Y22(2)), 0<2<1, isaC*®
path in R? which coincides with (81, 82) near 0 and with (—1)1"%(vyy,72)
near 1 and which do not cross a. Y = {Y1,Y2} is a frame of TFy. From
A.1.2, one knows that Y, is smooth in 72 x (0,1), C! at T? x {0}
and, if the open leaves of Fy are planes, it is also C' at T2 x {1}.
In any case [Y3,Y2] is well defined and null. Define now X, = H*Y,,
£=1,2. X; and X, aresmoothin T2 x (0,1) because Y;,Y, and H
are. It follows from A.1.1, that in a neighborhood U, of T2 x {0}, X;
and X, are the liftings of a;0/0z + a20/0y and (310/0x + 320/0y on
T? x {0} to Flu,, and in a neighborhood U; of T2 x {1} they are
the liftings of @,0/0x + a20/8y and 7,0/0x + ¥20/0y on T? x {1} to
Fly,. Therefore X; and X, are C*™ inall T2 x [0,1]. We conclude
that X = {X;3,X2} isa C°° commutative frame of T'F that defines
an element ¥ € A®(T? x [0,1],F). The assertion about the infinitesimal
generators of W is clear from the construction.

2.2. Let F € G®(T? x [0,1]) be a foliation without components
of type 0. It is shown in [4] that F is C*-conjugated to a foliation
F' of T?x[0,1], transversal to the segments s(z,y) = (z,y) x [0,1],
and the conjugation can be taken to be the identity in a neighborhood of
9(T? x [0,1]). Given any pair of Li. constant vector fields on T2 x {0},
their liftings to F define an element & € A%°(T? x [0,1],F). It is worth
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noting that the restriction of the infinitesimal generators of & to T2 x {0}
coincide with their restriction to T2 x {1}, or in other words : Ag = I.

2.3. Let F be any element of G*°(T? x [0,1]). We shall construct
some elements of A (T2 x [0,1],F). Denote by U;, 1< j < n, the
closure of the components of type 0 of F and by o’ the principal
direction of F|y,. We can assume w.l.o,g., that U; = T? x [a;,b;], with
0=0by<a1 <by <ax<by<..<ap<b, <any1 =1. For those j,
0 < j < m, suchthat b; < aji;, define V; = T? x [bj,a;31], and for
those j with b; =a;y1, define V; =@. One obtains a decomposition

T2 x[0,1] =VoUU, UV UU, UVaU...UU, UV,

Fix a € o' and take B such that det(e,3) > 0. Let
D; = 010/0z + a20/8y and Dy = (,0/0x + ($20/8y. Given matrices
Aj, 1<j<n, with detd; <0 and such that A;(a) =, Va € o,
one constructs, using 2.1, actions ¥;, tangent to F |U,-, with initial
condition frame A;_jo...0A;0D. The terminal condition frame of ¥; is
Ajo...0A10D and the continuation map is Ay; = A;. For 0 <j <n one
constructs, using 2.2, actions ®;, tangent to F|y, with initial condition
frame Ajo..0A;0AgoD, where Ag =1I. The terminal condition frame
of ®; isalso Ajo..0A;0D and Ag, = I. Observe that these actions
have been constructed in such a way that the terminal condition frame of a
tube is the initial condition frame of the next. Besides, in a neighborhood
of every leaf T2 x {b;} and T2 x {a;} the infinitesimal generators are
liftings of constant vector fields. Therefore the action ® = ®(Ay,...,A,)
whose restriction to V; is ®; and to U; is ¥;, is an element of
A*®(T? x [0,1],F), with initial condition frame D, terminal condition
frame A, o..o0A;oD and continuation map Ag = A, 0...0 A;.

Remarks 2.4. — Let (T?% x [0,1],F) be a simple tube with principal
direction @, n components of type 0, and ® = ®(A,,...,A,) any
one of the actions constructed in 2.3. Denote by {Xo,Yp} the frame of
canonical infinitesimal generators of ®. The vector field X, has the
following properties :

24.1. XOszx{aj} = X0|T2x{b,} = 10/0z + @28/0y, Vj

24.2. If a; and a9 arel.d. over @, then the orbits of X, are
all closed with the same period. If ma; = nog, with m, and n integers
n m

without common factors, then this period is — = —.
aq (6%)
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243. If a3 and ap are Li. over @, then there exists a
C!' diffeomorphism H of T? x [0,1] which conjugates X, with
10/0z + a20/dy.

2.4.1 and 2.4.2 follow easily from the construction of ®. To see 2.4.3,
le¢ H; : U; - Uj, 1 <j<n, bethe C'-diffeomorphism given by
Theorem A.1 and K;:V; - V;, 0<j<n, bethe C!.-diffeomorphism
given by Theorem B.1. Properties A.1.1 and B.1.1 show that H; and K
can be pasted together to define a global C!-diffeomorphism H such that
H,. Xy = 010/0x + a28/y. The following two lemmas will be useful in the
proof of the sufficiency part of Theorem 1.5.

LEmMA 2.5. — Let T? x [0,1] be a simple tube of a foliation
F € G®(T? x [0,1]) with principal direction a and n components
of type 0. If A € GL(2;R) satisfies :

i) Ala)=a Ya€a
ii) (=1)"detA > 0.

Then, there exists a C>® R2-action ® on T?x[0, 1], with underlying
foliation F, and whose continuation map is A.

Proof. — Choose a component R of type 4, that we can assume,
w.l.o.g., to be T2 x [a,b], with 0<a<b<1 and put E; =T? x [0,a],
E, = T? x [b,1]. Let ¥;, j = 1,2, bea C® RZaction on Ej,
tangent to F|g;, and constructed by the procedure given in 2.3, and B;
its continuation map. It is clear that B;'!o Ao Bi*(a) = o and that
det(B;' o Ao By')(=1)'"* > 0. Hence, by 2.1, there is a C*™ action
®; on R, tangent to F|gr, whose continuation map is By lodo By 1
As in 2.3, the actions ¥, ®;, ¥, can be pasted together to define a C*
R2-action ®, tangent to F, and with Ag = Byo(B;'0AoB;)oB; = A.

LEMMA 2.6. — Let F € G®(T? x [0,1]) be such that T? x [0,1] =
S1UWUS,, where S;, j =1,2, isasimple tube with principal direction
a’, n; components of type 0, and W has no components of type 0.
Assume ol # a? and take a € a' and € a? with det(a,3) > 0. If
C € GL(2;R) satisfies

i) (-1)"2det(C(e),8) >0
ii) (—1)m*n2det C > 0.
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Then, there exists a C*® R2-action ® on T? x [0,1], tangent to
F, such that its continuation map Ae is equal to C.

Proof. — We can assume that S; =T? x [0,a], W = T2 x [a,b] and
So =T2% x [b,1], with 0 < a <b< 1. Define linear isomorphisms A and
B of R? by:

Ala) =« B(a) = C(a)
A(CH(B)) =8 B(B) =8

We have C = Bo A and hypothesis i) becomes det(B(ca), B(3)).
(-=1)™ > 0; which says that B preserves orientation if and only if ny is
even. By 2.5 there exists a C® R2%-action ®; on S, tangent to Flg,
and with continuation map B. Now, from A = B~1oC and det(a,3) > 0,
we obtain det(A(a), A(8)).(=1)™ = det(B~'oC(a), B~1oC(8)).(-1)™ =
det(C(a),C(B)).(=1)™*"2 > 0. Again by 2.5 there exists a C> R2-action
®, on S;, tangent to Fl|s, and with continuation map A. The initial

condition frame of ®; is D = [al b
az P2

is AoD. Next,let ¥ be an action on W, constructed according to 2.2,
tangent to F|w, with initial condition frame Ao D. Since Ag = I, the
terminal condition frame of ¥ is also Ao D. Finally, choose infinitesimal
generators for ®, in such a way that its initial condition frame be Ao D.
The R2-action ®, whose restriction to S; is ®; andto W is U, is
the required action.

] and its terminal condition frame

3. Construction of analytic actions.

Let F € G§(Mp) be a foliation with k£ compact leaves and principal
direction a with F(a) = o, Va € a. We shall construct a locally free
analytic action of R?2 on My with underlying foliation F. Fix an
a=(a1,0) € a.

3.1. By cutting Mp along the compact leaves we obtain k
submanifolds diffeomorphic to 72 x [0,1] that we denote by Wi, ..., Wy.
It follows from A.1 that, for each 1 < £ < k, there exists a homeomorphism

Hy, Wy, > T?x [é —1¢ , whichisa C' diffeomorphism when restricted

k 'k
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to H;? (T2 X [%_l,g)), such that (H).F is given by

Aeapdr — Maydy + pl~*dz =0

for some i, € {0,1} and a continuous function A, : [gl_c—l’ —g] — R that
is C! in Z——;—l, % . We denote by H the homeomorphism of Mg

whose restriction to W, is Hy, 1 < £ < k. Let ¢ : Mp — Mr be

1
the translation (z,y,z) — <m,y,z + —2—5) Then ¢.H,F is a foliation
£ 1

transversal to H,F and whose compact leaves are given by z = P
1<£€<k Take J: Mgp — Mp of class C¥, C° near to H, and
£—-1 ¢

kE 'k
1<£4<k. Then F :=J,F and G, = ¢.J,F are transversal analytic
foliations. Hence G := J*(G;) is transversal to F.

whose restriction to each H™! (T2 x is C! near to Hp,

3.2. Assume that the open leaves of F are cylinders. Then, the
leaves of F; NG; are circles. By making a change of coordinates of the
form (z,y,z) — (A(z,y),2), for some A € SL(2,Z), if necessary, we
can assume that o = e;. Consider the vector field E; on T2 x [0,1]
given by FE;(p) = e1, Vp € T? x [0,1]. Since F(e;) = e;, this vector
can be projected onto Mp. Let X; be the vector field on Mp tangent
to F1 NG and whose projection on the direction of E; is unitary. It is
clear that the orbits of X; are closed with period 1. Therefore the same
holds for the vector field X := J*(X;). Let s be an X-invariant analytic
metric on Mpg. It can be obtained by averaging any analytic metric with
respect to the flow of X. Take Y to be the vector field tangent to F
s-unitary and s-orthogonal to X. Y is then an analytic vector field which
commutes with X.

3.3. Suppose now that the open leaves of F are planes. By T.1, in
the introduction, F =id and Mr =T3. Let 7 be the foliation by tori
of T® given by dr =0 and M = J*(7). It is clear that F and G
are transversal to H. The vector field X tangent to F NG defined in
3.1 can also be defined here, although its orbits are not closed any more.
Let Ty be a fixed leaf of ‘H and R: Ty — Ty be the return map of X.
Let K be a compact leaf of F and L a compact leaf of G such that
in the region V' between K and L all leaves of F are open. Denote
by U(K) a small neighborhood of K. By [5], G|y(k) can be written
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as IM*(GNK), where II: U(K) —» K is some C“ projection. Hence
by C.1, there exists an analytic diffeomorphism A sending F NG|y(x)
to the linear foliation defined by a2dr —a1dy = 0. Therefore, R|7,nu(x)
is analytically conjugated to a rotation and thus can be embedded in an
analytic S'-action. The same fact is true near L. We can extend this
action in an unique way to To NV preserving the foliations F and G.
Proceeding in the same way with the other regions we conclude that there
is an analytic S!-action, ¥y, such that R embeds in it. Take now an
analytic Riemannian metric m; on 7y and consider the Riemannian
metric m obtained by averaging m; with respect to V.

m = \II;‘;ml dt.
5 ‘

It is clear that m is analytic and R-invariant. Take Z the vector
field on T tangent to F N7y and m-unitary. Next, take Y tangent to
HNF, invariant by X and such that Y|, = Z. Y is then an analytic
vector field on T3 that commutes with X. :

4. The continuation map.

This section is dedicated to prove Theorem 1.4. Let ® be a C*®
R2-action tangent to F € G®°(T? x [0,1]). Assume that (72 x [0,1],F)
is a simple tube with principal direction @ and n components of type 0.
Fix a=(ai,a2) #(0,0) in a.

4.1 Let ®; be one of the R2-actions, tangent to F, defined
in 2.4 and Xo and Yj its canonical infinitesimal generators. Recall that
X0|T2x{0} = 010/0z + a20/0y.

Define the C* function V : T2 x [0,1] — R? by

and for each p € T2 x [0,1] let

1 T
Ulp) = lim = | V(Xj(p))dt
T Jo

T—o0

where X{ is the flow defined by Xp. If a;m = agn, with m and
n integers without common factors, then, by 2.4.2, the orbits of X¢ are
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closed with period Ty = L ﬁ. Therefore
Q1 (67

To
U(p) = Tio /0 V(X(p))dt

is a function of class C*°. If o; and ay are li.over @, then by 2.4.3,
there exists a C' diffeomorphism H of T2 x [0,1] conjugating X,
with the vector field 010/0x + a208/0y. Write H(p) = (z(p), y(p), z(p)).
Then, by Birkhoff’s theorem

Ulp) = V(H(q))dp(a),
T2 x{2(p)}

where p is the Lebesgue measure of 72 x {2(p)}. Hence U is of class
Ccl.

Let W Dbe the closure of a connected component of the complement
of the union of the compact leaves of F. Fix y € W. Let L(y) denote
the leaf of F containing y and &, : RZ — L(y), the covering map
®,(v) = ®(v,y). For any a € R?, denote by Ci(a), t €R, the lifting of
the Xo-orbit of ®,(a) with initial point Cp(a) = a. We have then

T
(4.1) /O V(XY(®,(a))dt = Cr(a) —a, VT €R.

4.2. Assume that «; and o are l.d. over @, asin 2.4.2. Then

To
UG = 7 / V(X3 ()dt = 7-Cri(0)

which implies that ®,(ToU(y)) = ®,(Cr,,(0)) = y and hence ToU(y)
belongs to the isotropy group Z(y) of ® at the point y. Now, Z(y)
is constant along L(y) and since L(y) accumulates on W, it follows
that ToU(y) € Z(OW). Finally, since U(y) is continuous and Z(0W) is
discrete, one concludes that ToU(y) is constant in W.

4.3. Assume now that o; and ag are li.over Q. For z € L(y),
write z = ®,(a) for some a € R?. One has, by (4.1),

U(:) - U) = Jim 7(Cr(@) - a = Cr(0).
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Let 6 = inf{|D;®(v)|; v € R?, |v| =1}. Then

(Cr(a) ~ a - Cr(0)| < 5 d(XE(2), X{ @), VT €R

where d is the metric on the leaf L(y). Take now a linear combination
Zy of Xo and Yy such that Z}(y) = z. Then Z}(XT(y)) = X{(2),
VT € R, and hence

(X3 (2), X5 @) < | Zolloo

where ||Zo]|loo = sup{|Zo(y)|; ¥ € W}. These facts together show that
U(z) = U(y). Since each leaf of F inside W is densein W, it follows
that U(y) is constant in W.

4.4. It is now easy to conclude that U is constant in the simple
tube T2 x[0,1]. In fact, by 4.2 and 4.3, U is constant in each component
W, of the complement of the compact leaves of F, UW, is an open and
dense subset of the simple tube and U is of class C*.

If yo € T? x {0}, then D;®(0,y%)V (%) = Xo(yo). Similarly,
if y1€T?x{1}, D1®(0,41)V(y1) = Xo(y1). Since V(yo) = U(yo) =
U(y1) = V(y1), and Xo(yo) and Xo(y1) are defined by 18/0z+0a20/0y,
one concludes from the definition of Ag that

Ad>(a1, az) = (011, 012)-

This proves 1.4.1.

If two compact leaves Ty and T; are sufficiently near to each other,
then the continuation map associated to them is near the identity, and
hence preserves orientation. This observation reduces the proof of 1.4.2 to
the proof of the following :

LEMMA 4.5. — Assume that the compact orbits of ® are just T? x {0}
and T?x{1}. Then Ag preserves orientation if and only if the underlying
foliation F of ® is of type 1.

Take (B = (f1,P2) with det(a,3) > 0 and choose A € GL(2,R).
such that Aa = o and (—1)!"*detA > 0. By 2.1 there exists
¥ € A®(T? x [0,1],F) such that its canonical frame of infinitesimal
generators Zy = {Xo,Yp} satisfies : Xo(0) = 018/9z + a20/dy,
Yo(0) = $19/0x + 520/8y, Xo(1) = AXo(0), and Yo(1) = AYy(0). Of
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course Ay = A. Assume w.l.o.g., that ® acts by translations on T2 x {0}
and T2x {1}, andlet Z = {X,Y} be its frame of infinitesimal generators
determined by the initial condition X(0) = Xo(0) and Y (0) = Y,(0).
Since ¥ and ® are both tangent to F one can write X = aXg + bYp,
Y = c¢Xo+dYy, where a,b,c and d are smooth functions on T2 x [0,1],
which restrict to constants aj,bj,c; and d; on T? x {j},j = 0,1,
with a9 = 1,bp = 0,c9 = 0,dyp = 1. We know that ad — bc # 0 at
every point of T2 x [0,1]. Since aody — boco =1 > 0 we conclude that
ajd; —bie; > 0. It is clear that Ae = A; 0 A, where A; = [2 31]
Therefore sgn(detAs) = sgn(detA). Since (—1)!"*detA > 0 we obtain
(=1)—'detAs > 0, which proves the lemma.

5. Proof of the characterization theorems.

In this section we prove Theorems 1.2, 1.4, and 1.5. Each one of them
refers to a foliation F € Gj(Mp), with r =00 or r =w. To start the
proofs we cut Mp along a compact leaf L obtaining a C"-foliation of
T? x [0, 1], tangent to the boundary, that we keep calling F. A convenient
choice of L will help. We recall a statement, already used in section 2,
that permits to paste actions whose underlying foliations are restrictions
of F to contiguous tubes. '

5.1. Given F € G®(T? x [0,1]) with T2 x {b} as a compact leaf,
let ®; bea C™ action defined on T2 x [a,b], tangent to F, and &,
a C* action defined on T2 x [b,c], tangentto F, 0<a<b<cgl.
Assume that in a neighborhood of 7% x {b} the infinitesimal generators
of ®; and ®, are the liftings to F of a pair of constant vector fields on
T? x {b}. Then, the action ® on T2 x [a,c], that restricts to ®;, and
to P, is also C.

5.2. Proof of Theorem 1.2. — Since the union of the compact leaves of
F has non-empty interior, we take two compact leaves Ty and 77 such
that the submanifold of T2 x [0,1] bounded by them has only compact
leaves. We can assume w.l.o.g. that Tp = T2 x {a}, Ty = T? x {1}, for
some 0<a <1, and also that each leaf of F in the tube T2 x [a,1] is
of the form T2 x {z}, z € [a,1]. Define an action ®; on T? x [0,a] by
2.3 and denote its continuation map by B. On T2 x [a, 1], define &, by

d®;(z,y, 2)v = A(2)v
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where v € R?, (z,y,2) € T? x [a,1], and A : [a,1] —» GL(2;R) is a
C>-function with A(z) = B, for z near a, and A(z) = FoB™!, for 2
near 1. By 5.1 the action ® on 72 x [0,1] whose restriction to 72 x [0, a]
is ®; andto T? x [a,1] is ®,, is C™. Besides, Ap = FoB~'oB=F,
hence ® can be projected to Mr and this completes the proof for r = co.

When 7 = w, all leaves are compact and it is simple to show that
F is C¥ conjugated to the foliation T2 x {z}, z € [0,1]. Define the C¥
action ® on T?% x [0,1] by

d®(z,y,z)v = A(2)v

Y(z,y,2) € T? x [0,1], v € R?, where A :[0,1] » GL(%R) is C¥,
A(0) =1 and A(1) = F. By conjugating back one obtains the desired
C¥ action.

Assume now that F € G§°(Mp) and that the union of the compact

leaves is a nowhere dense set. Decompose Mp = |J S; into maximal
jea

simple tubes, as explained in the introduction. For j € A, denote by o’
the principal direction of S; and by n; the number of components of
type 0 contained in S;. If & is a smooth RZ-action with underlying
foliation F, we will assume w.l.o.g., that the infinitesimal generators of ®
on T? x {0} and T? x {1} are constant. Under this assumption, as was
explained in the introduction, the continuation map Ag coincides with
F.

5.3. Proof of Theorem 1.5. — We keep in mind that since F' preserves
orientation, and JF is transversally orientable, then the total number of
components of type 0 is even.

5.3.1. Suppose that A = {1}, or in other words that (72 x [0, 1], F)
is a simple tube with principal direction a!. If ® is a smooth R2-action
with underlying foliation F then, by 4.1, Ag(a) = a, Va € a!, and
recall that F = Ag. Now assume that F(a) = @, Va € a!. Since n
is even and det(F) > 0, we can apply Lemma 2.5 to F and obtain a
smooth R2-action ®, tangent to F, and such that Ag = F.

5.3.2. Suppose that A = {1,2} and let a € o' and B € o?
with det(a,3) > 0. If A and B are the continuation maps of
®|s, and P|g, then BoA = A = F. It follows from 4.1 that
det(B(w), B(8))(—1)"2 > 0 and that B(a) = F(a) and B(B) = B.
We conclude that det(F(a),5)(—1)" > 0.
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Now assume that det(F(c),3)(—1)"* > 0. Since n;+ny is even and
detF > 0, we can apply Lemma 2.6 to F and obtain a smooth R2-action
®, tangent to F, and such that Ag = F. Therefore, ® projects to an
action on Mp.

5.3.3. Suppose that card(A) > 3. Cut Mp through a compact
leaf L which belongs to the boundary of a maximal simple tube S, with
principal direction «, and such that A, with the induced linear order,
has a first element that we denote by 1. S becomes S;. If A has a
last element denote it by 3 and let 4 be the principal direction of Ss.
It is clear that S3 is not contiguous to S; and that F(a) #v. If A
has not a last element we can choose an element, and denote it by 3, such
that Ss is not contiguous to S, its principal direction v # F(a), and

W3 = |J S; does not contain components of type 0. Next, choose an
3<j
element in A and denote it by 2, with 1 < 2 < 3, such that a # B,

where f is the principal direction of S, and that Wy = |J S; does
) 1<j<2
not contain components of type 0. Finally let W = [J S;. Observe
2<j<3
that none of the S7s is empty but any of the W}s, j =1,2,3, could be.

In any case we have a # 8 and F(a) #7.

Let Uy, 1 <€ < m be the components of type 0 contained in W;
and & the principal direction in U;. The total number of this components
is even and equal to m; + ny + ng +m. We will distinguish two cases :

I. v# B. In this case the diagram

summarize the situation.

II. y=pB. In this case W5 # @ and we can choose a maximal simple
tube S C W, with principal direction € # B such that either S is to
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the right of U,,, and therefore do not contain components of type 0, or
S D U, and then e=8§.

We now proceed to prove case I. Decompose W, as we did with
T2 x [0,1] in 2.3. We can assume w.l.o.g., that each component of the
boundary of each tube that received a name is a product T2 x {pt}. Since
there are no components of type 0 in V;, 0 < j < m, define, as in 2.2,
an action on each V; tangent to F|y;, and with continuation map I. Do
the same thing on Wj. Next choose a€a, B€8, y€v and & €&,
1 < £ < m, such that det(a,8) > 0, det(3,7) > 0, det(6%,3) > 0 if
& +£p, and §¢ =0 if §=p.

é
\l Fa

The idea is to construct, using 2.5, smooth actions on the tubes Uy,
1 < ¢ < m, and S3, with pre-assigned continuation maps D, and
C, respectively, chosen in such a way that S; UW; US; and the map
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(CoDyo..D))"toF satisfy the hypothesis of Lemma 2.6. Define
Dy by Dy(6%) = 6 and Dy(8) = —0 if 6 # B8 or Dyla) = —a
if =8 If D= Dpo..oDy, itis clear that (—1)™detD > 0
and D(B) = £08. Apply Lemma 2.5 to the pair (F|y,,D¢) to obtain
an action tangent to F|y, and continuation map D,. The fact that
R2\(yU F(a)) has four connected components allows one to define a map
C with C(v) =+ and such that, for any parity value of ny and ns, one
has both (—1)"sdetC >0 and (—1)"2det(Fa,CoDf3) > 0. Again by 2.5
there is an action tangent to F|s, and continuation map C. Consider
now the map (CoD) o F. From (—1)™*"2det(C)det(D) > 0 and
(=1)"2det(Fa,C o DB) one obtains (—1)"2det((C o D)~ ! o Fa,3) > 0.
We also have (—1)™*+"2det((C o D)~! o F) > 0. Therefore we can apply
lemma. 2.6 to the pair (F|s,uw,us,,(C o D)"! o F) to obtain an action
whose continuation map is (CoD) !0 F. Using 5.1 we paste together the
actions defined above and obtain a C*® action ® on T2 x [0,1], tangent
to F and with continuation map F. ® can of course be projected to
Mrp.

The proof of case II is completely similar. We will just say how
to choose the pre-assigned continuation maps on the tube W5, where the
change is necessary. If S with principal direction € is to the right of U,
define Dy, 1 <€ < m, exactly as in case I. Next, choose € € g, such that
det(e,8) > 0 and define a linear map E by E(e) =¢, E(B) € F(a)UB
and detE > 0. Define C asin case I and use C o F oD instead of
CoD. If SODU,, define Dy 1 <€ <m-—1 asaboveand D,, by
Dy, (6™) = 6™ and Dpn(B) € F(a)UB with detD,, < 0. This completes
the proof of 5.3.3.



1110 J.L. ARRAUT, M. CRAIZER

5.4. Proof of Theorem 1.6. — The sufficiency part was done in section
3. The necessity part follows from 4.1.

6. Appendices.

A. Foliations of T2 x [0,1] whose only compact leaves are
T? x {0} and T2 x {1}.

As we mentioned in the introduction, T.4, every smooth foliation on
T? x [0,1], tangent to the boundary and with no compact leaves in the
interior, is topologically equivalent to a foliation defined by the kernel of
the 1-form

Aagdzr — Aady + ,ul‘idz.

Now, we enunciate a sharper result, which says that the equivalence
can have some differentiability. We shall use the notation s(z,y) =

(z,y) x [0,1].

THEOREM A.l. — Let F bea C* foliation of T? x [0,1], tangent
to the boundary, with no compact leaves in the interior, with principal
direction a and type i € {0,1}. Then, fixing « € a there exists
a continuous function A : [0,1] — R, and a homeomorphism H of
T? x [0,1], isotopic to the identity, conjugating F with the foliation
F(A, a,1). Moreover

A.1.1. There exists neighborhoods U, of T? x {0} and U; of
T? x {1} such that H preserves each set s(z,y)NUy and s(z,y)NUi,
Y(z,y) € T?, and is equal to the identity map when restricted to the sets
T? x {0}, T? x {1}, s(0,0)NU, and s(0,0)NU;.

A.12. X is C® in (0,1), C' at 0 and if the open leaves of F are
planes it is also C' at 1. Correspondingly, H is a C*™ diffeomorphism
of T? x (0,1), C' at T? x {0} and, if the open leaves of F are planes,
H isa C' diffeomorphism of T? x [0,1].

To prove A.1 we need some preliminaries.

THEOREM A.2 ([12],[13],(14]). — Let f : [a,b) — [a,c) be a
diffeomorphism having a as its unique fixed point. There exists a unique
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C' vector field ¢ on [a,b) such that &' = f. Moreover ¢ is C™ in
(a,b).

THEOREM A.3 ([5],(6]). — If g: [a,b) — [a,d) is another diffeomor-
phism having a as its unique fixed point and such that go f = fog, then
there exists T € R such that g = ¢7.

LemMMA A4. — Let n = B(z)0/0z be any vector field defined on
(a,b) such that n' = f. Then lim ((z) = 0.

Proof. — Assume, w.lo.g.,, that f(z) < z, Vz € (a,b). Fix
zg € (a,b). By Lemma 2.5 of [12] there exists a constant A > 0 such that

(F) ()
oy <4

Vz,y € [f(%0),z0] and Vn € N. Since

/ “ (Y @)da = F(w0) - F(20)
f(zo)

converges to 0 as n — oo, we conclude that

lim (f7)'(2) = 0
Vz € [f(zo),zo]. From this and the equation B(f"(z)) = (f*)'(z)B(z) it
is easy to conclude that 1151_131 B(z) = 0.

LEmMA A.5. — Let n be any vector field on (a,b) such that n° = &5
and nT = ¢T for some pair of rationally independent real numbers S and
T. Then £ =n.

Proof. — The set {t € R;n* = &'} is a closed subgroup of R
containing S and 7. Hence it is equal to R.

We begin now the proof of A.l. Assume w.lo.g, that as # O.
Take & > 0 small and write sy = {(0,0,2); 0 < 2z < 2} and
s1 ={(0,0,2); 1—2e < z< 1}. Denote by x;:mi(T? x {j}) x s; — sj,
j =0,1, the holonomy maps of T2 x {j}. Since as # 0, xo(e1) has0 as its
unique fixed point. By A.2, there exists a C* vector field & = \o(2)8/0z,
C> out of 0, such that xo(e1) = §;**, and by A.3, xo(ez) = &> for
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some «a; € R. It is now easy to show that there exists a neighborhood Uj
of T? x {0} and a C! diffeomorphism Hy : Uy — Ho(Up) conjugating
Flu, with the foliation defined by

2o(2)(aodz — a1dy) + dz = 0.

The torus Tp = Hy *(T? x {0}) is transversal to F and we can
construct, in a similar way, a transversal torus 7; near T2 x {1}.

Let A= S'x {0} x[0,1]. It is clear that A is transversal to F in
a neighborhood of the boundary and if we choose ¢ small enough it will
also be transversal to Ty and T;.

In Theorem 1.2 of [10] it is proved that if the open leaves of F are
planes then A is isotopic to an anulus Ag such that Ag is transverse
to F and A = Ao in a neighborhood of OA. The same proof, given
there, works when the open leaves of F are cylinders if we assume that the
generators of m;(A) and of m; (Cylinder) do not define the same element
in (T2 x [0,1]), but this is precisely the case here because as # 0.
Therefore, w.l.o.g., we can assume that A itself is transversal to F.

Let Co=TyNA and C; = TiNA. The foliation FNA induces the
holonomy maps Py : so\{0} — Co, P, :s\{1} = C; and P:Cy— C;.
The fact that Py o xo(e1) = Po implies that the vector field (o = (FPo)«&o
is well defined on Cp, and also that (;** =id. One can check that (§*
is exactly the Poincaré map of F N Ty with respect to the transversal
circle Cj. Notice, that these observations imply that F NTy is a C*
linearizable foliation of Tg.

Let ¢3 = Pu({o). It is clear that (;** =id and that (' is the
Poincaré map of FNT; with respect to the transversal circle C;. Hence
the vector field &; := Py(¢1) satisfies £7%2 = x1(e1) and &% = x1(eg).
Writing &1 = A\1(2)9/02, we can conclude from A.4 that 21_>ml A1(z) =0,
and therefore &; can be extended continuosly to 1. If the open leaves of
F are planes, we can use Lemma A.5 to conclude that &; is equal to the
vector field given by A.2, and henceis C! at z=1.

It is now easy to show that there exists a neighborhood U; of T2x {1}
and a homeomorphism H; : Uy — H;(U;) conjugating F|y, and the
foliation given by the equation

A1(2)(azdz — andy) + (—1)"*dz = 0.
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Moreover, H; is C*® out of T% x {1} and, if the open leaves of
F are planes, it is C' at T2 x {1}.

Let A:[0,1] — R be any function extending Ao and A; such that A
is C*® in (0,1) and A(z) =0<= 2=0 or z=1. Denote t(¢) the time
required for the flow of A(2)3/0z to go from z=¢ to z=1—e¢. Define
now Zo = H{(0/0z—azX00/02) and Z; = Hy(8/0z—(—1)'"tap)10/0%).
Adapting the proof of lemma 3 of [3], we can show that there exists a C*
vector field Z defined in W, the region between Ty and Tj, tangent to
F suchthat Z =2y in WNU,, Z =2, in WNU; and Z!)(Tp) = T1.

Let H=Hy in Ug, H=H; in U; andextend H to W as
follows : for p € W p = Z%(q) with q € Uy, H(p) := Y¢(H(q)) where
Yo = 0/0z — asA(2)u(2)8/0z. One can easily verify that this definition
does not depend on ¢ € Uy and that H coincides with Hy at UpNW.
and with H; at U; NW. This completes the proof of A.1.

B. Simple tubes whose open leaves are planes.

THEOREM B.1. — Let (T?x[0,1],F) be a simple tube with principal
direction a of irrational slope and without components of type 0. Fixing
(0,0) # (a1,a2) € @, there exists a C' function X:[0,1] > R and a C!
diffeomorphism H of T? x [0,1], isotopic to the identity, conjugating F
with the foliation given by

(6.1) Aagdr — Aaydy +dz =0

moreover :

B.1.1. There exists neighborhoods Uy of T?x{0} and U; of T?x{1}
such that H preserves each segment s(z,y) NUp and s(z,y)NU; for
all (z,y) € T?, and is equal to the identity when restricted to T? x {0},
T? x {1}, s(0,0)NU, and S(p, 0)NUs.

Any foliation F € GT(T? x [0,1]) without components of type
0 is conjugated to the foliation obtained by the suspension of a pair of
commuting diffeomorphisms of [0,1]. Hence, the proof of B.1 can be
reduced to the proof of a theorem on diffeomorphisms of the interval.

Let f:[a,b] — [a,b] be a C*. diffeomorphism and denote by P
the set of fixed points of f. Assume that a,b € P and that int(P) = 2.
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Decompose [a,b]\P into its connected components I, = (a,,b,), v €T,
where T' is countable set. Denote by C*°(f|r,) the centralizer of f]z,.

THEOREM B.2. — Suppose that C*°(f|r,) is not isomorphic to Z,
Vv € I'. Then there exists a C! vector field £ = A\(2)0/0z on [a,b] such
that ¢! = f.

We now show how B.1 follows from B.2. Assume w.l.o.g., that F is
transversal to each segment s(x,y), (z,y) € T2?. Next, observe that any
foliation given by (b.1) is also transversal to each segment s(z,y) and its
holonomy with respect to s(0,0) = [0,1]

x : m1(T%,(0,0)) — Diff[0, 1]

satisfies x(e1) =& 2 and x(ez) =&, where & = \(2)0/0z. Therefore,
in order to prove B.1 it is enough to show the existence of a C! function
A:[0,1] > R such that f = xz(e1) =& and g = xr(e2) = £,
where ¢ = \(2)0/0z.

Let P be the set of fixed points of f. Since the open leaves of
F are planes and the union of the compact leaves is a rare set it is clear
that int(P) = @. Decompose [0,1]\P into its connected components I,
~v €T, with T' a countable set. Since a has irrational slope it follows
that C*(f|r,) # Z; Vv € I'. We can therefore apply B.2 to find a ok
vector field & = A\(2)0/0z on [0,1] such that f=¢72. By A3 g=¢7
for some T € R. Since (T,az) € a then necessarily T = a;. This shows
that g =&t and completes the proof of B.1.

The proof of B.2 is based in the following lemma, :

LEMMA B.3. — Let f : [a,b] — [a,b] be a diffeomorphism whose
fixed points are a and b. Suppose that C*(f) is not isomorphic to Z.
Then there exists a C' vector field ¢ = \(2)0/8z such that f = £L.
Moreover,

(6.2) IN(2)] < [N (a)] + Cp(b — a)?
!
Vz € [a,b], where p = %)(_a)l, and C is a constant which only depends

on the norm of log(f’) in the C*-topology.

Proof. — Let & bea C! vector field defined in a neighborhood of
a such that ¢! = f, see A.2. Extend it to [a,b) using iterations of f.
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By the same argument, there exists a C! vector field 7 on (a,b] such
that n* = f. Let g € C=°(f). By A3, g =¢T =nT for some T € R.
By hypothesis there exists some g € C*®°(f) that yields an irrational T,
and by A.5, £ =7. The estimate (b.2) is based on the estimate

(6.3) |A(2)| < C2pA(2)|2 — al
Vz € [a,b], proved in [14], 3.12. Here A(z) = |f(z) — 2| and C, is a
constant depending only on the norm of log(f’) in the C!-topology.

From f.£ = £ one obtains A(f(2)) = f'(2)A(z), and derivating
it, we obtain N (f(2))f'(z) = f"(2)A(2) + f'(2)N(z). Writing ¢(z) =
(log(f"))'(2), this last equality becomes

N(£(2)) = X(2) = —\(2)-4(2).

Now, adding this expression along the orbit of z we obtain

i—1

N(fi(2) = N(2) = = D AF(2)9(f(2))
§=0

Therefore, [X(fi(z)) — N(2)| < 4]l 3= IN(f9(2))], and hence, by
i=0
(b.3)

IN(£1(2)) = X (2)| < Cplb - al Y A(F7(2))

Jj=0

where C' depends only on the norm of log(f’) in the C'-topology. Taking
limits with ¢ — oo, we conclude that

IN(a) = X' (2)| < Cp(b — a)?
which proves (b.2).

Proof of B.2. — For each € I', denote by \,0/0z the vector field
on I, given by B.3. Define A:[a,b] =R by A(z) =0 if z€ P and
Mz) = A\ (2) if z €I,. It is clear that £ = \(2)0/0z satisfies ¢! = f,
hence it remains to be proved that A is a C!-function. If 2z € [a,b]\P
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it is clear that A is C! at 2. If z is an isolated point of P, then
A_(2) = logf’ (z) = logf!(2) = N, (z), where — and + as indices denote
left and right lateral derivatives, respectively. Hence, A is C! at such a
point.

Forany z€ P let P_(z) =[a,2]NP and P,(z) = [z,b]NP. Take
now 2 to be an accumulation point of P. We assume, w.l.o.g., that 2z
is an accumulation point of P,. Then clearly f/(z) = 1. We shall now
calculate XN (2). If y € (2,b) isnot in P, then y € I, = (a,,b,), for
some 7 €I'. By the Mean Value theorem and (b.2),

@) < supyer, IN®)(Y — ay) < [IXp(ay)] + Colby — a4)*](y - 2),
hence
Ay) — A(z
‘ (i;:ﬁ < Jlog"(ay)| + Ch(by — a)*.

When y tendsto 2, a, and b, tend also to z and p tends
to 1. Therefore M, (z) =0. If z is also an accumulation point of P_,
then the same argument shows that M\’ (z) = 0. If not, then there exists
Yo € T’ such that I,, = (a,,.). Hence A\_(z) =logf’ (2) = 0. This shows
that M (z) = 0. Take now a sequence {z,} converging 2. Assume for
the moment that 2, > z, V.. If z, € P, then M(2,) =0, as we have
shown above. If 2, ¢ P, then 2, € I,,, for some 7, €I'. By (b.2),

IX(2a)| < [l0gf"(ay, )| + Cpn(by, — ay,)*.

Now, when n tends to oo, a,, and b,, tendto z and p, tends
to 1. Therefore M(z,) converges to 0. The case 2, < z, Vn, is treated
in an analogous way. We have then proved that A is C! on [a,b], which
completes the proof of B.2.

C. Analytic foliations near a compact leaf.

In this appendix we prove a conjugation theorem for analytic folia-
tions in the neighborhood of a compact leaf.

THEOREM C.1. — Let F € GY§(MF) be a foliation with a finite
number of compact leaves, principal direction «, and whose open leaves
are planes. If K is a compact leaf, then there exists a neighborhood
Uo(K) of K and an analytic diffeomorphism H : U(K) — T? x (—¢,¢),
conjugating F|y(kx) with the foliation given by

(e1) Aagdr — daydy +dz =0
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on T? x (—e,e), where X : (—e,e) — R is analytic. Moreover, if
Il : U(K) - K is some C“ projection, H sends the fibers of this
projection to the sets s(z,y) NU(K), (z,y) € T?

To prove C.1 we need the following lemma :

LemMMmA C2. — Let f be a C¥ diffeomorphism of R such that
f(0) = 0. If the centralizer C“(f) is not isomorphic to Z, then f is
the time 1 of an analytic flow.

Proof. — Take f € Diff¥(R). By A.2, f is the time 1 ofa C®
flow ¢'. Our task is to show that, for each t,¢’ is in fact analytic. We
know that G = {t € R;#® is analytic} is an additive subgroup of R that,
by hypothesis, is not isomorphic to Z. Hence g is dense in R. For any
s € R, take then a sequence {t,} C G converging to s. Then {¢; } is
converging to ¢, in the CO®-topology. Since each ¢, is analytic, so is
¢s. This proves C.2.

Proof of C.1. — Let x : m(K) x 8(0,0) — s(0,0) be the holonomy
map. By hypothesis, the open leaves of F are planes and hence the
centralizer of £(e;) is not isomorphic to Z. Therefore, by C.2,
x(e1) = £ 2, for some analytic vector field & = A(2)8/0z. By A.3,
x(e2) = £*1. With this information at hand, we can complete the proof as
we did in appendix A.
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