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FOLIATIONS OF M3 DEFINED
BY REACTIONS (*)

by J.L. ARRAUT and M. CRAIZER

1. Introduction.

Let M be a C^, r = oo or r == a;, m-dimensional closed orientable
manifold and F a C7' p-dimensional foliation of M. Define the rank of
the foliated manifold (M, F) as the maximum number of C'7' commuting
vector fields, l.i. at each point, that are tangent to J7, and denote it by
rank(M,.F). When p = m, this definition gives rank(M), the rank of
M in the sense of Milnor, see [7]. Observe that ranUM,^) = p if and
only if T is the underlying foliation of a C7' locally free action <I> of
R^ on M. We say in this case that $ is tangent to F. Note also that
rank(M,^') ^ rank(M).

Let <I> : W x M —^ M be a ̂  action. For each x e M the map
^ : M^ -^ M defined by ^(i;) = ^(-u,a;), and also its image ^(M^),
will be called the orbit of x by <I>. To each v € R^ is associated a flow
^v : M x M -^ M, defined by ^(t.x) = <^(tv,x). Let {u,}, 1 ̂  ̂  p,
be an ordered base of W. The ordered set {Xj}, where Xj is the
vector field of M tangent to the flow <^, is called a base of infinitesimal
generators of <I>. The canonical infinitesimal generators of ^ are those
associated to the canonical base of W).

From now on, we shall assume that m = 3 and p = 2. Our aim
is to give a geometric characterization of the foliated manifolds of rank 2.
A substantial part of this work had already been done by G. Chatelet,

(*) Partially supported by CNPq.
Key words : Foliated manifolds - Foliations of rank 2.
Math. classification : 57R.
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H. Rosenberg, R. Roussarie and D. Weil. They proved the following
properties of a foliated manifold (M, F) of rank 2 :

T.O ([9]). — M is a torus bundle over the circle. In other words, M
is up to diffeomorphism, the manifold Mp obtained from T2 x R by
identifying (x,t) with (F(a;),t+1), for some F e SL(2,Z).

T.I ([4]). — Suppose that F is a foliation by planes. Then M is
diffeomorphic to r3 and T is conjugated to a foliation given by the
suspension of two commuting diffeomorphisms of T1.

T.2 ([4]). — Suppose that F has no compact leaves, but it is not
a foliation by planes. Then F has the two eigenvalues equal to 4-1, and
F is a foliation by cylinders, conjugated to the suspension of the foliation
T1 x {0}, 0 e T1, of r2, by a diffeomorphism that leaves it invariant.

T.3 ([4]). — Suppose that F has a compact leaf L. Then the
manifold obtained by cutting M along L is diffeomorphic to T2 x [0,1].
If L' is another compact leaf then L U t! bounds a manifold which is
also diffeomorphic to T2 x [0,1].

Let N be a compact orientable 3-manifold. Denote by (^(TV),
r = oo or r = a;, the set of C7' 2-dimensional foliations F of N,
tangent to the border if 9N ^ <^, which are transversally orientable, its
leaves are tori, cylinders or planes and satisfy the restrictions imposed by
T.I, T.2 and T.3, and by G^(N) the foliations of G7'^) that have at least
one compact leaf. We can summarize the contribution of the mentioned
mathematicians to the characterization problem as follows :

1.1. If rank(M, J^) = 2, then M is diffeomorphic to Mp, for some
F e SL(2, Z), and F € G^M). Besides, if T € G^M^C^M), then
rank(M,.F)=2.

The second statement in 1.1 follows easily from T.I and T.2. In this
paper we give a criterion to decide which foliations F C G^Mp) are such
that rank(M^,^') = 2.

For F G G^Mp) the characterization is workout by first cutting the
manifold along a compact leaf, obtaining, by T.3, a tube T2 x [0,1]. Next,
proving that the induced foliation on this tube, that we keep calling .F, is
the underlying foliation of infinitelly many C^ Reactions. Finally, finding
the obstructions for one such action to be compatible with the glueing map
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F : T2 x {0} —^ T2 x {1}. We consider two different cases. The first one is
when the union of the compact leaves of T has non-empty interior; for
r ===u} this is equivalent to say that all leaves are compact. In this case we
prove :

THEOREM 1.2. — Let T C G^(M^), with r = oo or r = a;, be
such that the union of its compact leaves has non-empty interior. Then
rank(MF,^)=2.

To talk about the second case we need some preliminaries. Consider
in T2 x [0,1] = R^Z2 x [0,1] the coordinates (x,y,z) with (x,y) € R2

and z € [0,1]. Denote by s(x,y) the segment (x,y) x [0,1] C T2 x [0,1]
and identify 5(0,0) with [0,1]. Let F be a C°° foliation of T^O,!]
whose compact leaves are just T2 x {0} and T2 x {1}. Clearly F
is transversal to 5(0,0) in a neighborhood of 0 and 1, therefore the
holonomy of F at the leaf T2 x {j}, j = 0,1, is given by a representation

Xj^i^x^iW^W^j)

where 'D([0,l],j) denotes the group of germs of local C°° diffeomorphisms
of [0,1] at j. Since F has no compact leaves in T2 x (0,1), it follows
that at least one of the two germs Xo(ei) or ^0(^2) has 0 as its
unique fixed point, where e\ and 62 denote the canonical generators
of 7Ti(r2 x {0},(0,0)). If / € Xo(ei) has 0 as the only fixed point,
it follows from Theorem A.2 of appendix A, that there exists 6 > 0 and
a C1 vector field $ on [0,6) such that $1 = /, where ^ is the
time t of the flow associated with $. Moreover, if ^€^0(62) , it follows
from A.3 that g = ^T for some T 6 R. Write a = (T, -1). If every
/ e Xo(el) has a fixed point besides 0 we will have g = ̂ , by A.2, and
by [6] / = $°. Write in this case a = (1,0). We call the straight line a,
generated by a, the principal direction of F.

Example 1.3. — Let IJL : [0,1] —^ R be a non-increasing C°° function
such that p,(z) = +1,(-1), in a neighborhood of 0,(1). This function
will remain fixed through the paper. Let A : [0,1] —^ R be a C°° function
such that \{z) = 0 if and only if z = 0 or z = 1, a = (ai, 02) 7^ (0» 0)»
and i e {0,1}. The foliation of T2 x [0,1] defined by the equation

(1.1) Xa^dx - Xa^dy + ̂ dz = 0

will be denoted by F{\a,i). The vector fields ^ ' ' ' ' Q / Q x - X a ^ Q / Q z and
fi^^'Q/Qy + Xa^9/9z are tangent to this foliation and through them we
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can compute the generators Xo(^i) and \o(e^). It is easy to see that the
principal direction of ^(A, a, i) is a and that the leaves inside T2 x (0,1)
are planes if and only if a\ and 02 are l.i. over Q, and cylinders
otherwise. To sense the role of i it would be convenient, at this moment,
to draw pictures of (1.1) for i = 0,1.

T.4 ([3] and [8]). — Let F be C°° foliation of T2 x [0,1] whose
compact leaves are just T2 x {0} and T2 x {1}, and with principal
direction a. Then, there exists i € {0,1}, and fixing a € a there exists
A such that T is C° conjugated to ^'(A, a, i) by a homeomorphism
homotopic to the identity. The number i is called the type of J-'.

Assume now that the union C of the compact leaves of T is a
nowhere dense set. Mp —C is an open and dense set that, by T.3, can be
decomposed into a countable number of open connected components Rj,
j € ̂ , each one diffeomorphic to T2 x (0,1). Observe that, since F is
transversally orientable, only a finite number of R^s are of type 0. If one
cuts Mp along a compact leaf, one obtains a natural linear order on ^.
We call a subset [jij2\ = {j e S; ji ^ j ^ 32} an interval. Let [.71, .72]
be an interval such that ^F\RJ has principal direction a V -̂ C [ji,j2]-
Then S = c£{ (J Rj) is called a simple tube with principal direction

je[ji,j2]
a. A maximal simple tube is a simple tube that is not properly contained in
any other simple tube. One can decompose Mp into a countable number
of maximal simple tubes <?j, with j € A, where A is a set endowed
with the order inherited from ^.

Let <I> be a locally free action of R2 on T2 x [0,1] which has
T2 x {0} and T2 x {1} as orbits. For each v € R2, the restriction of
the flow ^v to T2 x {j}, j = 0 , l , defines a unique asymptotic direction
Uj € Hi(T2 x {j}) = R2. The linear map A^ : R2 -^ R2, given by
A<s>(uo) = ZAi, will be called the continuation map of <I>.

One can assume w.l.o.g., that the canonical infinitesimal generators
{X\^X^} of <I> are constant when restricted to 9(T2 x [0,1]) i.e.,
Xe\T^x{j} = XuU)9/9x + X^{j)9/9y, with X^(j) € R, for j = 0,1
and k^t = 1,2. It follows that the matrix of A$ in the canonical base
of R2 is A$ = X(1)X(0)-1, where X(j) = [X^(j)]. It is clear now
that for one such action to project into a C°° Reaction on Mp it is
necessary that A$ = F. This shows that the presence of the continuation
map in the characterization problem is inevitable. In section 4 we prove its
main properties :
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THEOREM 1.4. — Let <I> be a <700 Reaction tangent to F €
C?°°(r2 x [0,1]). Assume that T2 x [0,1] is a simple tube of F with
principal direction a and n components of type 0. Then

1.4.1. A$(a) = a, Va C a.

1.4.2. A<s> preserves orientation ^=^ n is even.

Let ^ be a Reaction tangent to T e G°°(T2 x [0,1]) that has
T2 x {aj}, 0 = do < ai < 02 < ... < On = 1, as orbits. If <l>j denotes
the restriction of <!> to T2 x [0^-1,0^], 1 ̂  j ^ n, then it is clear that
A$ = A$^ o ... o A^i. We enunciate now Theorems 1.5 and 1.6, which
together with 1.2 characterize the elements of G^Mp) of rank 2.

THEOREM 1.5. — Let T C G§°(MF) and assume that the union
of its compact leaves is a nowhere dense set. Let Mp = U ^j ^e ^ne

J6A

decomposition in maximal simple tubes, a3 the principal direction of
F\Sj, and rij the number of components of type 0 contained in Sj.

1.5.1. Suppose that A = {1}. Then, rank(M^,^) = 2 if and only
if F(a) =a, Va Ca1.

1.5.2. Suppose A = {1,2}. Then, ran^M ,̂̂ ) == 2 if and only if
(-1)712 det(F(a),/3) > 0 for any a € a1 and /? € a2 with det(a,/?) > 0.

1.5.3. Suppose card(A) ^ 3. Then, rank(M^,^') = 2.

An example of a nontrivial application of this theorem is the follow-
ing : If F € Gg°(r3) has exactly 2 compact leaves, bounding 2 components
of type 0 with different principal directions, then ran^T3,.^) = 1.

In the C^ case, the hypothesis that the union of the compact leaves is
a nowhere dense set implies that F has a finite number of compact leaves.
Besides, the analyticity of the holonomy at the compact leaves implies that
the principal direction of each component is the same. Hence A = {1}.

THEOREM 1.6. — Let T € G^(MF) be a foliation with a finite num-
ber of compact leaves and principal direction a1. Then, rank(M^, F) = 2
if and only if F(o) = a, Va € a1.

Remark 1.7. — If F € S'L(2; Z) admits an eigenspace with irrational
slope associated to the eigenvalue +1, then F = I . Using this fact one
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obtains sharper informations in some cases of Theorems 1.5 and 1.6. For
example, if A = {1} and the open leaves of F are planes, then necessarily
MF = T3.

Section 2 is devoted to the construction of C°° Reactions tangent
to any given T G G°°(T2 x [0,1]). The construction of analytic Reactions
for the foliations F C G^(Mp) which satisfy the hypothesis of 1.6 is done
separately in section 3. The proof of 1.2, 1.5 and 1.6 are given in section 5.
For the proofs of these theorems we needed some results on the structure of
foliations F € G^r2 x [0,1]). Since we did not find them written anywhere,
we decided to include appendices A, B and C, containing the statements
and the proofs of them. We would like to call attention on Theorem B.2,
which talks about the immersion of certain diffeomorphisms of [0,1], with a
countable number of fixed points, in C^-flows. This theorem allowed us to
prove Theorem B.I, a C1 -conjugation theorem of simple tubes to models,
which in turn is essential for the proof of Theorem 1.4.

The notion of principal direction for foliations of T2 x [0,1] whose
compact leaves are just T2 x {0} and T2 x {1}, is already present in [3].
In [II], it became clear that this notion is essential for the understanding of
Reactions in the neighborhood of a compact leaf. Here, it is present in the
continuation map, and was also used in [1] and [15]. We make use of this
oportunity to thank N.C. Saldanha for helpful conversations, S. Matsumoto
for suggesting us the way to construct the analytic actions of section 3, and
the referee for valuable suggestions for the presentation of this paper.

2. Actions on tubes.

Let F be any element of G°°(T2 x [0,1]) and A°°(r2 x [0,1],^)
the set of C°° Reactions on T2 x [0,1] with underlying foliation F.
In this section we construct some elements of this set.

Let <S> e A°°(T2 x [0,1],^) and X == {X^X^} its frame of
canonical infinitesimal generators. Assume that X\ and Xa restricted
to T2 x {j}, j = 0,1, are constant vector fields i.e., Xe,\^x{j} =
Xu(j)9/9x + X^j)Q/9y with X^(j) € R, M = 1,2. Write
X(j) = [Xk^(j)] and call X(0) the initial condition frame and X(l)
the terminal condition frame. For this kind of actions, it is clear that,
X(l) = A$X(0), where A<s> is the continuation map of <I>, defined in
the introduction.
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LEMMA 2.1. — Let F e G°°(T2 x [0,1]) be a foliation whose compact
leaves are just T2 x {0} and T2 x {1}, with principal direction a and
type i. If Ac GL(2',R) is such that :

i) AOL = a, Va € a.

ii) (-l^-MetA > 0.

Then, fixing a € a and taking f3 such that det(a,/?) > 0, there
exists ^ G A°°(r2 x [0,1], F) such that its canonical frame X = {Xi, X^}

of infinitesimal generators satisfy: X(0) = \oil ( 1 and X(l) = AX(0).
L °'2 P2 J

Jn particular A^ = A.

Proof.—Let FQ be the foliation of T2 x [0,1], defined by the kernel
ofthel-form Xa^dx- \a\dy-\- /^"^ck, to which .F is conjugated by H,
according to Theorem A.I. Note that the vector fields a\9/Qx 4- a^Q/Qy,
EI ^^a/Qx-Xa^Q/Qz and E^ =p>~iQ|Qx^\a^Q|9z generate T^FQ
at every p € T2 x [0,1]. Define 7 = A/3. By i) and ii), (3 and (-l)1"^
are on the same side of the line a. Let Yi(^) = a\9/9x + a^Q/Qy and
y2(^)=yi2(^i+ ̂ 22(^2, where (^2^), ̂ 22^)), 0^2 :^1 , is a C00

pathin R2 which coincides with (/^i,/^) near 0 and with (-l)l-^(7l572)
near 1 and which do not cross a. Y = {Vi, V2} is a frame of TJ^Q. From
A.1.2, one knows that V2 is smooth in T2x(0 , l ) , C1 at T2 x {0}
and, if the open leaves of FQ are planes, it is also C1 at T2 x {1}.
In any case [YI,^] is well defined and null. Define now Xi = ff*Y^,
^=1,2. Xi and X^ are smooth in T^^,!) because Y^YI and H
are. It follows from A.I.I, that in a neighborhood UQ of T2 x {0}, Xi
and X2 are the liftings of a^Q/Qx-^a^Q/Qy and f3^9/9x-^-^Q/Qy on
T2 x {0} to ^\UQ, and in a neighborhood U\ of T2 x {1} they are
the liftings of a^9/9x + a^Q/Qy and 71 Q/Qx + 729/92/ on T2 x {1} to
^\u^ Therefore Xi and X^ are C00 in all r^IO,!]. We conclude
that X = {Xi,X2} is a C00 commutative frame of TF that defines
an element ^ € A^T2 x [0,1],^'). The assertion about the infinitesimal
generators of ^ is clear from the construction.

2.2. Let F € G°°(T2 x [0,1]) be a foliation without components
of type 0. It is shown in [4] that F is (7°°-conjugated to a foliation
F ' of T2 x [0,1], transversal to the segments s(x,y) = (x,y) x [0,1],
and the conjugation can be taken to be the identity in a neighborhood of
9(T2 x [0,1]). Given any pair of l.i. constant vector fields on T2 x {0},
their liftings to F define an element ^ € A°°(r2 x [0,1],^). It is worth
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noting that the restriction of the infinitesimal generators of ^> to T2 x {0}
coincide with their restriction to T2 x {1}, or in other words : A$ = I .

2.3. Let T be any element of G°°(T2 x [0,1]). We shall construct
some elements of A°°(T2 x [0,1],^). Denote by Uj, 1 < j ^ n, the
closure of the components of type 0 of F and by a3 the principal
direction of ^F\Uj' We can assume w.l.o,g., that Uj = T2 x [aj,&^], with
0 = &o ^ ^i < &i ^ ^2 < &2 ^ ••• ^ ^n < bn < On+i = 1. For those .7,
0 ^ j ^ n, such that bj < Oj+i, define Vj == T2 x [&^,o^i], and for
those j with &^ = Oj+i, define Vj = 0. One obtains a decomposition

T2 x [0,1] = VQ U (7i U Yi Ut/2 U V2 U ... U E/n U Vn.

Fix a C a1 and take /? such that det(a,/3) > 0. Let
DI = a\Q/9x + a^Q/Qy and D^ = f3\9/9x 4- /3^9/9y. Given matrices
Aj, 1 ̂  j ^ n, with detAj < 0 and such that Aj(a) = a, Va € a*7,
one constructs, using 2.1, actions ^-, tangent to F\u^ with initial
condition frame Aj-i o... o Ai o D. The terminal condition frame of ^j is
Aj0...oA\oD and the continuation map is A^. =A^-. For 0 < j ^ n one
constructs, using 2.2, actions ^-, tangent to f\Vj with initial condition
frame Aj o... o Ai o Ao o\D, where Ao = I . The terminal condition frame
of ^j is also Aj o ... o AI o D and A$. = J. Observe that these actions
have been constructed in such a way that the terminal condition frame of a
tube is the initial condition frame of the next. Besides, in a neighborhood
of every leaf T2 x {bj} and T2 x {aj} the infinitesimal generators are
liftings of constant vector fields. Therefore the action <I> = ^(Ai, ...,Ayi)
whose restriction to Vj is ^j and to Uj is ^j, is an element of
A°°(T2 x [0,1],^'), with initial condition frame D, terminal condition
frame An o ... o Ai o D and continuation map A<s> = An o ... o Ai.

Remarks 2.4. — Let (T2 x [0,1], .F) be a simple tube with principal
direction a, n components of type 0, and <I> = <I>(Ai, ...,An) any
one of the actions constructed in 2.3. Denote by {Xo,Yb} the frame of
canonical infinitesimal generators of <I>. The vector field XQ has the
following properties :

2.4.1. Xo\T^x{aj} = ^o|r2x{^-} = OL^Q/QX -\- a^9/9y, Vj

2.4.2. If a\ and 02 are l.d. over Q) then the orbits of XQ are
all closed with the same period. If ma\ = naa, with m, and n integers
without common factors, then this period is — = —.

ai 02
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2.4.3. If ai and 02 are l.i. over Q, then there exists a
C1 diffeomorphism H of T2 x [0,1] which conjugates XQ with
a^9/9x + a^Q/Qy.

2.4.1 and 2.4.2 follow easily from the construction of <I>. To see 2.4.3,
let Hj : Uj —> Uj, 1 ^ j ^ n, be the (71-diffeomorphism given by
Theorem A.I and Kj : Vj —^ Vj, 0 < j < n, be the G1.-diffeomorphism
given by Theorem B.I. Properties A.I.I and B.I.I show that Hj and Kj
can be pasted together to define a global C^-diffeomorphism H such that
U^Xo = OL\Qj9x + a^9/9y. The following two lemmas will be useful in the
proof of the sufficiency part of Theorem 1.5.

LEMMA 2.5. — Let T2 x [0,1] be a simple tube of a foliation
T C G°°(T2 x [0,1]) with principal direction a and n components
of type 0. If A^GL(2',R) satisfies:

i) A(a) = a Va € a

ii) (-^detA > 0.

Then, there exists a C00 Reaction <1> on T2 x [0,1], with underlying
foliation T^ and whose continuation map is A.

Proof. — Choose a component R of type z, that we can assume,
w.l.o.g., to be T2 x [a, &], with 0 ^ a < & ^ 1 and put Ei = T2 x [0, a],
^2 == T2 x [&,!]. Let ^-, j = 1,2, be a C00 Reaction on Ej,
tangent to ^l^, and constructed by the procedure given in 2.3, and Bj
its continuation map. It is clear that B^ o A o Bf^a) = a and that
det(B2'1 o A o ̂ ^(-l)1-' > 0. Hence, by 2.1, there is a C°° action
<I>i on J2, tangent to ^1^, whose continuation map is B^1 o A o B^1.
As in 2.3, the actions ^i, <I>i, ̂ 2 can be pasted together to define a C°°
Reaction ^, tangent to T, and with A$ = B2o(B2"loAoBfl)oBl = A.

LEMMA 2.6. — Let F € G°°(r2 x [0,1]) be such that T2 x [0,1] =
SiUWU <S'2, where 5j;, j = 1,2, is a simple tube with principal direction
a3, rij components of type 0, and W has no components of type 0.
Assume a1 ̂  a2 and take a € a1 and (3 € a2 with det(a,/?) > 0. If
CeG'L(2;R) satisfies

i) (-^det^a),/?):^

ii) (-l^+^det G > 0.
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Then, there exists a C00 R2-action $ on T 2 x [ 0 , l ] , tangent to
f, such that its continuation map A$ is equal to C.

Proof. — We can assume that 5i = T2 x [0, a], W = T2 x [a, b] and
82 = T2 x [&, I], with 0 < a ^ b < 1. Define linear isomorphisms A and
B of JZ2 by :

A(o)=a B(a)=C(a)
A^/?))^ B(/3)=/?.

We have G = B o A and hypothesis i) becomes det(B(a),B(/?)).
(-I)712 > 0; which says that B preserves orientation if and only if 713 is
even. By 2.5 there exists a C°° Reaction ^2 on 52, tangent to ^"[^
and with continuation map B. Now, from A = B~1 oC and det(a, /?) > 0,
we obtain det(A(a),A(l3)).(-l)^ = det{B-loC(a),B-loC((3)).(-l)nl =
det^a),^/?))^-!)711-^2 > 0. Again by 2.5 there exists a C°° Reaction
<I>i on 5i, tangent to ^{si and with continuation map A. The initial

condition frame of ^i is D = al pl and its terminal condition frame
1^2 132\

is AoD. Next, let ^ be an action on W, constructed according to 2.2,
tangent to ^F\w'> with initial condition frame AoD. Since A^ = J, the
terminal condition frame of ^ is also AoJ9. Finally, choose infinitesimal
generators for $2 in such a way that its initial condition frame be A o D.
The Reaction <I>, whose restriction to Sj is ^ and to W is ^, is
the required action.

3. Construction of analytic actions.

Let FEG^^Mp) be a foliation with k compact leaves and principal
direction a with F(a) = a, Va € a. We shall construct a locally free
analytic action of R2 on Mp with underlying foliation F. Fix an
a = (01,0:2) C a.

3.1. By cutting Mp along the compact leaves we obtain k
submanifolds diffeomorphic to T2 x [0,1] that we denote by TVi,..., Wk.
It follows from A.I that, for each 1 ̂  (, < k, there exists a homeomorphism

\i-l i~\Hi : W(, —> T2 x , - , which is a C1 diffeomorphism when restricted
I K K J
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to H ^ ^ x [^—^-^))» such that {H^ is given by

X^a^dx — X^a^dy + /^"^cb = 0

[ £-1 £~\
for some if, € {0,1} and a continuous function \t: , , —^ R thatA; A;J

[ £ — 1 £\is (71 in ———, - ). We denote by H the homeomorphism of Mp
K K j

whose restriction to W^ is H^ 1 < i < fc. Let <^> : Mjp —» Mj? be

the translation (a;,2/,2Q —> [x,y,z + -, ). Then ^H^ is a foliation
v / ^ 1

transversal to H^T and whose compact leaves are given by z = , - —, ,
1 ^ t ^ k. Take J : Mp -> Mp of class C^, C° near to JEf, and

( \i— 1 <\ \
whose restriction to each ff~1 T2 x — , — » , ) ) is C'1 near to H^

1 ^ i ̂  fc. Then '̂1 := J*^" and ^i = ^J^F are transversal analytic
foliations. Hence ^ := J*(Gi) is transversal to F.

3.2. Assume that the open leaves of T are cylinders. Then, the
leaves of T\ D Gi are circles. By making a change of coordinates of the
form (x,y,z) —> {A{x,y),z}\ for some A e SL(2,Z), if necessary, we
can assume that a = e\. Consider the vector field E\ on T2 x [0,1]
given by £'i(p) = ei, Vp € T2 x [0,1]. Since F(ei) = ei, this vector
can be projected onto Mp- Let X\ be the vector field on Mp tangent
to T\ D Q\ and whose projection on the direction of E\ is unitary. It is
clear that the orbits of X\ are closed with period 1. Therefore the same
holds for the vector field X := J*(Xi). Let s be an X-invariant analytic
metric on Mp- It can be obtained by averaging any analytic metric with
respect to the flow of X. Take Y to be the vector field tangent to T
5-unitary and s-orthogonal to X. Y is then an analytic vector field which
commutes with X.

3.3. Suppose now that the open leaves of F are planes. By T.I, in
the introduction, F = id and Mp = T3. Let T be the foliation by tori
of T3 given by dx = 0 and U = J*(T). It is clear that T and Q
are transversal to Ji. The vector field X tangent to F H Q defined in
3.1 can also be defined here, although its orbits are not closed any more.
Let To be a fixed leaf of U and R: To -> To be the return map of X.
Let K be a compact leaf of F and L a compact leaf of Q such that
in the region V between K and L all leaves of T are open. Denote
by U(K) a small neighborhood of K. By [5], G\U{K) can ^e written
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as IP(C?nX), where 11 : U(K) —> K is some C^ projection. Hence
by C.I, there exists an analytic diffeomorphism A sending .FH Q\U{K)
to the linear foliation denned by a^dx — a^dy = 0. Therefore, R\Tonu{K)
is analytically conjugated to a rotation and thus can be embedded in an
analytic iS^-action. The same fact is true near L. We can extend this
action in an unique way to To D V preserving the foliations T and Q.
Proceeding in the same way with the other regions we conclude that there
is an analytic fi^-action, ^, such that R embeds in it. Take now an
analytic Riemannian metric m\ on To and consider the Riemannian
metric m obtained by averaging m\ with respect to ^

m = / ^mi dt.
Jsi

It is clear that m is analytic and -R-invariant. Take Z the vector
field on TQ tangent to F D To and m-unitary. Next, take Y tangent to
H H y, invariant by X and such that Y\TQ = Z. Y is then an analytic
vector field on T3 that commutes with X.

4. The continuation map.

This section is dedicated to prove Theorem 1.4. Let <1> be a C°°
Reaction tangent to F € G°°(T2 x [0,1]). Assume that (T2 x [0,1],^)
is a simple tube with principal direction a and n components of type 0.
Fix a = (01,02) i=- (0,0) in a.

4.1 Let <I>o be one of the Reactions, tangent to .F, defined
in 2.4 and XQ and YQ its canonical infinitesimal generators. Recall that
^o|r2x{o} = o^i9/9x + a^9/9y.

Define the C°° function V : T2 x [0,1] -^ R2 by

Di^(0,p).y(p)=Xo(p),

and for each p e T2 x [0,1] let

U(p)= lim 1 ( V(X^p))dt
T-+OO 1 JQ

where X^ is the flow defined by XQ. If a\m = c^n, with m and
n integers without common factors, then, by 2.4.2, the orbits of X^ are
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closed with period To = — = —. Thereforea\ 02

U{p)=- [To V(X^p))dt
^o Jo

is a function of class C°°. If ai and 02 are Li. over Q, then by 2.4.3,
there exists a C1 diffeomorphism H of T2 x [0,1] conjugating XQ
with the vector field a^Q/Qx + a^Q/Qy. Write ff(p) = (a;(p), y(p), z(p)).
Then, by BirkhofTs theorem

U(p) = / V(H-\q))d^q),
JT2xiz(p}}/T2x{z(p)}

where p, is the Lebesgue measure of T2 x {z{p)}. Hence E7 is of class
C1.

Let TV be the closure of a connected component of the complement
of the union of the compact leaves of F. Fix y € W. Let L(y) denote
the leaf of F containing y and ^>y : R2 —^ L(y), the covering map
^y{v) =^>(v,y). For any a € R2, denote by Cf(a), t € M, the lifting of
the Xo-orbit of ^y(a) with initial point Co (a) = a. We have then

(4.1) / y(X^(a)))dt=Cr(a)-a, VT e R.
Jo

4.2. Assume that ai and 02 are l.d. over Q, as in 2.4.2. Then

UW = - [To VWy))dt = -Gro(O)
-i-o Jo lo

which implies that ^y(ToU(y)) = ^y(CToW) = y and hence ToL^)
belongs to the isotropy group I{y) of ^ at the point y. Now, Z(i/)
is constant along L(y) and since L(y) accumulates on 9W, it follows
that ToU(y) eI(9W). Finally, since U{y) is continuous and I(9W) is
discrete, one concludes that ToU(y) is constant in W.

4.3. Assume now that ai and 0:2 are l.i. over Q. For z € I/(2/),
write z = ^y(a) for some a€ R2. One has, by (4.1),

U(z) - U{y) = ̂  ̂  (Gr(a) - a - Cr(0)).
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Let 6 = inf{|Di^)|; z; e K2, H = 1}. Then

[Gr(a)-a-CT(0)|< J ̂ (^(f^)), VT e R

where d is the metric on the leaf L(y). Take now a linear combination
ZQ ofXo and YQ such that Z^(y) = z. Then Z^(X^y))=X^(z),
VT e R, and hence

d(X^{z)^X^y))^\\Z^

where ||Zo||oo = sup{|ZoQ/)|; y € IV}. These facts together show that
U(z)=U(y). Since each leaf of F inside IV is dense in TV, it follows
that (7(2/) is constant in W.

4.4. It is now easy to conclude that U is constant in the simple
tube T2 x [0,1]. In fact, by 4.2 and 4.3, U is constant in each component
Wa of the complement of the compact leaves of F, UWa is an open and
dense subset of the simple tube and U is of class C1.

If yo e T2 x {0}, then Di^(0, yo)V{yo) = XoQ/o). Similarly,
if y l ^ T 2 x { l } , 2^(0,2/1) VQ/i) =XoQ/i). Since VQ/o) = t/Q/o) =
^(2/i) = ^(2/i), and XoQ/o) and Xo(y^) are defined by a^Q/Qx-}-a^Q/9y,
one concludes from the definition of A$ that

A$ (01,02) = (01,02).

This proves 1.4.1.

If two compact leaves To and Ti are sufficiently near to each other,
then the continuation map associated to them is near the identity, and
hence preserves orientation. This observation reduces the proof of 1.4.2 to
the proof of the following :

LEMMA 4.5. — Assume that the compact orbits of <I> are just T2 x {0}
and T2 x {1}. Then A^ preserves orientation if and only if the underlying
foliation T of ^ is of type 1.

Take (3 = (A,/?2) with det(a,/3) > 0 and choose A € GL(2,R) .
such that Aa = a and (-l^-MetA > 0. By 2.1 there exists
^ C A°°(r2 x [0,1],^) such that its canonical frame of infinitesimal
generators ZQ = {Xo.Yo} satisfies : Xo(0) = a^Q/Qx + a^Q/Qy,
Yo(0) = f3,9/9x + ^Q/Qy, Xo(l) = AXo(O), and Vo(l) = AYo(O). Of
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course A^ = A. Assume w.l.o.g., that <1> acts by translations on T2 x {0}
and T2 x {1}, and let Z = {X, V} be its frame of infinitesimal generators
determined by the initial condition X(0) = Xo(0) and V(0) = Vo(0).
Since ^ and <^ are both tangent to F one can write X = 0X0 + ?0,
V = cXo + dVo? where a, &, c and d are smooth functions on T2 x [0,1],
which restrict to constants aj.b^Cj and dj on T2 x {j},j = 0,1,
with ao = l,&o == 0,co = 0,do = 1- We know that ad - be ^ 0 at
every point of T2 x [0,1]. Since aodo - boco = 1 > 0 we conclude that

aidi - &iCi > 0. It is clear that A$ = Ai o A, where Ai = 1 ^ .[_ Ci ai J
Therefore sgn(detA^) = sgn(detA). Since (-l^'MetA > 0 we obtain
(—^"MetA^ > 0, which proves the lemma.

5. Proof of the characterization theorems.

In this section we prove Theorems 1.2, 1.4, and 1.5. Each one of them
refers to a foliation T e G^Mp), with r = oo or r = (j. To start the
proofs we cut Mp along a compact leaf L obtaining a C^-foliation of
T^IO,!], tangent to the boundary, that we keep calling F. A convenient
choice of L will help. We recall a statement, already used in section 2,
that permits to paste actions whose underlying foliations are restrictions
of F to contiguous tubes.

5.1. Given F € G°°(T2 x [0,1]) with T2 x {&} as a compact leaf,
let <I>i be a C°° action defined on T2 x [a,b], tangent to T, and $2
a C°° action defined on T2 x [b,c], tangent to F, 0 ^ a < b < c ̂  1.
Assume that in a neighborhood of T2 x {b} the infinitesimal generators
of ^i and ^>2 are the liftings to F of a pair of constant vector fields on
T2 x {&}. Then, the action $ on T2 x [a,c], that restricts to ^i, and
to ^2 is also C°°.

5.2. Proof of Theorem 1.2.— Since the union of the compact leaves of
F has non-empty interior, we take two compact leaves To and T\ such
that the submanifold of T2 x [0,1] bounded by them has only compact
leaves. We can assume w.l.o.g. that To = T2 x {a}, Ti = T2 x {1}, for
some 0 ^ a < 1, and also that each leaf of F in the tube T2 x [a, 1] is
of the form T2 x {z}, ze[a,l}. Define an action <I>i on T2 x [0,a] by
2.3 and denote its continuation map by B. On T2 x [a, I], define ^2 by

d^{x,y,z}v= A(z)v
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where v € M2, ( x , y , z ) e T2 x [a, I], and A : [a, 1] —^ G£(2;R) is a
C'°°-function with A(^) == B, for 2? near a, and A(z) = Fof?"1, for z
near 1. By 5.1 the action $ on r^jO,!] whose restriction to T ' ^ x ^ ^ a ]
is ^i and to T2 x [a, 1] is $2, is C°°. Besides, A^ = FoB~1 oB = F,
hence <I> can be projected to M^ and this completes the proof for r == oo.

When r = a;, all leaves are compact and it is simple to show that
F is C^ conjugated to the foliation T2x{z}, ^e[0,l] . Define the C^
action <]> on T2 x [0,1] by

d^(x^y^z}v = A(z)v

\/(x,y,z) e r2 x [0,1], v € R2, where A : [0,1] -^ GL(2;R) is C^,
A(0) = J and A(l) = F. By conjugating back one obtains the desired
C^ action.

Assume now that F 6 G^(Mp) and that the union of the compact
leaves is a nowhere dense set. Decompose Mp = U ^3 m^0 maximal

j€A

simple tubes, as explained in the introduction. For j € A, denote by a3

the principal direction of Sj and by nj the number of components of
type 0 contained in Sj. If ^> is a smooth Reaction with underlying
foliation ^r, we will assume w.l.o.g., that the infinitesimal generators of $
on T2 x {0} and T2 x {1} are constant. Under this assumption, as was
explained in the introduction, the continuation map A^ coincides with
F.

5.3. Proof of Theorem 1.5. — We keep in mind that since F preserves
orientation, and F is transversally orientable, then the total number of
components of type 0 is even.

5.3.1. Suppose that A = {1}, or in other words that (T2 x [0,1],^)
is a simple tube with principal direction a1. If $ is a smooth Reaction
with underlying foliation F then, by 4.1, A$(a) = a, Va € a1, and
recall that F = A^>. Now assume that F(a) = a, Va G a1. Since n
is even and det(F) > 0, we can apply Lemma 2.5 to -F and obtain a
smooth Reaction <I>, tangent to F^ and such that A$ = F.

5.3.2. Suppose that A = {1,2} and let a G a1 and {3 € a2

with det(o!,/3) > 0. If A and B are the continuation maps of
<I>[^ and ^\s^ then B o A = A^> = F. It follows from 4.1 that
det^a),^/?)^-!)712 > 0 and that B{a} = F(a) and B(/3) = /3.
We conclude that det^o;),/?^--!)712 > 0.
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Now assume that det(F(Q/),/?)(-l)n2 > 0. Since ^1+^2 is even and
detF > 0, we can apply Lemma 2.6 to F and obtain a smooth Reaction
<I>, tangent to T^ and such that A$ = F. Therefore, <I> projects to an
action on Mp-

5.3.3. Suppose that card(A) ^ 3. Cut Mp through a compact
leaf L which belongs to the boundary of a maximal simple tube 5, with
principal direction a, and such that A, with the induced linear order,
has a first element that we denote by 1. S becomes S\. If A has a
last element denote it by 3 and let 7 be the principal direction of 5s.
It is clear that 53 is not contiguous to S'i and that F{a) 7^ 7. If A
has not a last element we can choose an element, and denote it by 3, such
that 83 is not contiguous to 5i, its principal direction 7 ̂  F(a), and
Ws = U Sj does not contain components of type 0. Next, choose an

3<j
element in A and denote it by 2, with 1 < 2 < 3, such that a 7^ /?,
where f3 is the principal direction of 62, and that W\ = (J Sj does

1<J<2
not contain components of type 0. Finally let W^ = (J Sj. Observe

2<j<3

that none of the S^s is empty but any of the WyS, j = 1,2,3, could be.
In any case we have a ̂  f3 and F(a) ̂  7.

Let U^ 1 ̂  (. ^ m be the components of type 0 contained in W'z
and 6^ the principal direction in Uf.. The total number of this components
is even and equal to n\ + HI + u^ + m. We will distinguish two cases :

I. 7 7^ j9. In this case the diagram

a f3 61 ^ 7

5i Wi S2 Ul ' " Um S3 W3

W2

summarize the situation.

II. 7 = /?. In this case W^ ^ 0 and we can choose a maximal simple
tube S C W'2 with principal direction e 7^ /? such that either S is to



1108 J.L. ARRAUT, M. CRAIZER

the right of Umi and therefore do not contain components of type 0, or
S D Um and then e = ̂

OL ft
yn

ft

Sl Wi S2 Ul Ur, S3 Ws

W'2

We now proceed to prove case I. Decompose W^ as we did with
T2 x [0,1] in 2.3. We can assume w.l.o.g., that each component of the
boundary of each tube that received a name is a product T2 x {pt}. Since
there are no components of type 0 in Vp 0 < j ^ m, define, as in 2.2,
an action on each Vj tangent to T\y^ and with continuation map I. Do
the same thing on Ws. Next choose a € a , /?€/3, 767 and 6^ e ̂ ,
1 ^ t < m, such that det(a,/3) > 0, det(/3,7) > 0, det(^,/3) > 0 if
ff-^ft, and 6^=0 if 61 = 0.

The idea is to construct, using 2.5, smooth actions on the tubes L^,
1 ^ £ ^ m, and 5's, with pre-assigned continuation maps Da and
(7, respectively, chosen in such a way that S\ U W\ U S^ and the map
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(C o Dm o ...J9i)~1 o F satisfy the hypothesis of Lemma 2.6. Define
Da by D^) = ^ and D^{3) = -f3 if ^ ^ j8 or J^(a) = -a
if S£ = P. If Z) = D^ o ... o Di, it is clear that (--l^detD > 0
and D(l3) = ±(3. Apply Lemma 2.5 to the pair (F^^Di) to obtain
an action tangent to T\u^ and continuation map DI. The fact that
R2\(7U F(a)) has four connected components allows one to define a map
C with 0(7) = 7 and such that, for any parity value of n^ and 713, one
has both (-l^detC > 0 and (-^de^Fa.C'oD/?) > 0. Again by 2.5
there is an action tangent to 7\s3 and continuation map C. Consider
now the map (C o D)~1 o F. From (-^-^det^det^) > 0 and
(-l^de^Fa, C o Df3) one obtains (-l^det^C o D)-1 o Fa, f3) > 0.
We also have (-^^-^det^C o D)~1 o F) > 0. Therefore we can apply
lemma 2.6 to the pair {7\s^\jw^s^,(C o D)~1 o F) to obtain an action
whose continuation map is (CoD)~1 oF. Using 5.1 we paste together the
actions defined above and obtain a C°° action ^ on T^IO,!], tangent
to F and with continuation map F. ^> can of course be projected to
MF.

The proof of case II is completely similar. We will just say how
to choose the pre-assigned continuation maps on the tube W^ where the
change is necessary. If S with principal direction e is to the right of Um,
define D^ 1 ̂  £ ^ m, exactly as in case I. Next, choose e G e, such that
det(£,/3) > 0 and define a linear map E by E(e) = e, E(/3) ^ F(a)U/3
and det£' > 0. Define C as in case I and use C o E o D instead of
C oD. If S D Um define Da l ^ ^ m - 1 as above and Dm by
Dm(6m)=6m and Dm(f3) i F(a)Ul3 with deiDm < 0. This completes
the proof of 5.3.3.
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5.4. Proof of Theorem 1.6. — The sufficiency part was done in section
3. The necessity part follows from 4.1.

6. Appendices.

A. Foliations of T2 x [0,1] whose only compact leaves are
T2 x {0} and T2 x {1}.

As we mentioned in the introduction, T.4, every smooth foliation on
T2 x [0,1], tangent to the boundary and with no compact leaves in the
interior, is topologically equivalent to a foliation defined by the kernel of
the 1-form

Xa^dx — \a\dy + fJl~^dz.

Now, we enunciate a sharper result, which says that the equivalence
can have some differentiability. We shall use the notation s(x,y) =
Cr,2/ )x[0 , l ] .

THEOREM A.I. — Let T be a C°° foliation of T2 x [0,1], tangent
to the boundary, with no compact leaves in the interior, with principal
direction a and type i e {0,1}. Then, fixing a € a there exists
a continuous function X : [0,1] —^ R, and a homeomorphism H of
T2 x [0,1], isotopic to the identity, conjugating F with the foliation
F(\ a, i). Moreover

A.I.I. There exists neighborhoods UQ of T2 x {0} and E/i of
T2 x {1} such that H preserves each set s(x, y) D UQ and s{x^y) H U\,
V(rc, y) € T2, and is equal to the identity map when restricted to the sets
T^W, T2^^}, 5(0,0)HE/o and 5(0,0)n£/i.

A. 1.2. A is C00 in (0,1), C1 at 0 and ifthe open leaves of T are
planes it is also C1 at 1. Correspondingly, H is a C°° diffeomorphism
of T2 x (0,1), C1 at T2 x {0} and, if the open leaves of F are planes,
H is a C1 diffeomorphism of T2 x [0,1].

To prove A.I we need some preliminaries.

THEOREM A.2 ([12], [13], [14]). — Let f : [a, b) -^ [a,c) be a
diffeomorphism having a as its unique fixed point. There exists a unique
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C1 vector field ^ on [a, b) such that ^ = /. Moreover ^ is C°° in
M.

THEOREM A.3 ([5],[6]). — Jf g : [a, b) —^ [a^d) is another diffeomor-
phism having a as its unique fixed point and such that g o f = fog, then
there exists T € R such that g = ^T.

LEMMA A.4. — Let 77 = /3(x)9/9x be any vector field defined on
(a, 6) such that rj1 = /. Then lim f3(x) = 0.

x—>a

Proof. — Assume, w.l.o.g., that f{x) < x, Vrr € (a,&). Fix
XQ € (a, b). By Lemma 2.5 of [12] there exists a constant A > 0 such that

(/"m<A
Wiy) "

Va;,y €[/(a;o),a;o] and V n ^ N . Since
/•a;o
/ (/"/(aOAr = r(xo) - ̂ (xo)r0

lf(xo)Jf(xo)

converges to 0 as n —v oo, we conclude that

limCrnaO^O
x—>a

^x G [f(xo),xo]. From this and the equation ^(/"(a;)) = (/^'(.r)/?^) it
is easy to conclude that lim (3(x) = 0.

x—>a

LEMMA A.5. — Let rj be any vector field on (a, b) such that rj8 = ̂ s

and r^ = ^T for some pair of rationally independent real numbers S and
T. Then $ = rj.

Proof. — The set {t 6 R;^* = $*} is a closed subgroup of R
containing S and T. Hence it is equal to R.

We begin now the proof of A.I. Assume w.l.o.g, that 02 ^ 0.
Take e > 0 small and write SQ = {(0,0,^); 0 ^ z < 2e} and
5i = {(0,0,2;); 1 - 2e < z ^ 1}. Denote by \j : 71-1 (T2 x {j}) x Sj -> Sj,
j = 0,1, the holonomy maps of T2 x {j}. Since 02 7^ O, ^o(^i) has 0 as its
unique fixed point. By A.2, there exists a C1 vector field $o = \o(z)9/9z^
C°° out of 0, such that ^o(ei) = $0"^ and ̂  A'3^ Xo^) = $al for
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some a\ C M. It is now easy to show that there exists a neighborhood UQ
of T2 x {0} and a C1 diffeomorphism HQ : UQ —^ Ho(Uo) conjugating
y\Uo ^th ^ne foliation denned by

\Q{z}(a^dx — a\dy) + dz = 0.

The torus To = H^^T2 x {0}) is transversal to ^ and we can
construct, in a similar way, a transversal torus 7i near T2 x {1}.

Let A = 5'1 x {0} x [0,1]. It is clear that A is transversal to ^ in
a neighborhood of the boundary and if we choose e small enough it will
also be transversal to To and Ti.

In Theorem 1.2 of [10] it is proved that if the open leaves of F are
planes then A is isotopic to an anulus Ao such that Ao is transverse
to T and A = Ao in a neighborhood of 9A. The same proof, given
there, works when the open leaves of T are cylinders if we assume that the
generators of 71-1 (A) and of 71-1 (Cylinder) do not define the same element
in 7Ti(T2 x [0,1]), but this is precisely the case here because 03 7^ O.
Therefore, w.l.o.g., we can assume that A itself is transversal to F.

Let Co = ToD A and Ci==r inA. The foliation .FnA induces the
holonomy maps Po : ^oVO} —^ Co, Pi : 5i\{l} —^ C\ and P : CQ —>• C\.
The fact that Po o ̂ o(^i) = PO implies that the vector field Co = (Po)*$o
is well defined on Co, and also that ^a2 = id. One can check that ^
is exactly the Poincare map of F n TQ with respect to the transversal
circle CQ. Notice, that these observations imply that F Ft TQ is a C°°
linearizable foliation of TQ.

Let Ci = P*(Co). It is clear that ^a2 = id and that C?1 is the
Poincare map of .FriTi with respect to the transversal circle Ci. Hence
the vector field $1 := Pi*(Ci) satisfies ^a2 = Xi(ei) and ^^Xi^).
Writing ^i = \-i{z)9/9z, we can conclude from A.4 that lim \i(z) = 0,
and therefore ^i can be extended continuosly to 1. If the open leaves of
T are planes, we can use Lemma A. 5 to conclude that $1 is equal to the
vector field given by A. 2, and hence is C1 at z = 1.

It is now easy to show that there exists a neighborhood U\ of T2 x {1}
and a homeomorphism H\ : U\ —^ H\{U\) conjugating F\u^ and the
foliation given by the equation

\^z)(a^dx - a^dy) + (-l)1-1^ = 0.
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Moreover, H\ is C°° out of T2 x {1} and, if the open leaves of
T are planes, it is C1 at T2 x {1}.

Let A : [0,1] —> R be any function extending Ao and Ai such that A
is C°° in (0,1) and \(z) == 0 4=^ z = 0 or z = 1. Denote ^) the time
required for the flow of \(z)9/9z to go from z = e to ^ = 1 — 6 : . Define
now ZQ = H^(9/9x-a2\o9/9z) and Zi = H!(9/9x-{-l)l-ia2\l9/9z).
Adapting the proof of lemma 3 of [3], we can show that there exists a C°°
vector field Z defined in IV, the region between TQ and 7i, tangent to
F such that Z = ZQ in WnUo, Z = Zi in Tyn(7i and Z^)(ro)=ri.

Let H = Ho in E/o, H = H], in ?7i and extend ft to TV as
follows : for p € W p= Z\q) with ^ e (To, -^h) := ^W^)) where

YQ = Q/Qx — a^\(z)p,{z)9/9z. One can easily verify that this definition
does not depend on q € UQ and that H coincides with Ho at UQ H W
and with H\ at £/i D W. This completes the proof of A.I.

B. Simple tubes whose open leaves are planes.

THEOREM B.I.—Let (T2 x [0,1],^7) be a simple tube with principal
direction a of irrational slope and without components of type 0. Fixing
(0,0) T^ (ai, 02) € a, there exists a (71 function A : [0,1] —»• R and a (71

diffeomorphism H of T2 x [0,1], isotopic to the identity, conjugating T
with the foliation given by

(6.1) Xa^dx — \a\dy + dz = 0

moreover :

B.I.I. There exists neighborhoods UQ ofr^O} and (7i ofr^l}
such that ^f preserves each segment s{x,y) H UQ and s(x^y} H C/i for
all (a;,2/) 6 T2, and is equal to the identity when restricted to T2 x {0},
T^^}, s(0,0)n(7o ands(0,0)n(7i.

Any foliation F e Gr(^2 x [0,1]) without components of type
0 is conjugated to the foliation obtained by the suspension of a pair of
commuting diffeomorphisms of [0,1]. Hence, the proof of B.I can be
reduced to the proof of a theorem on diffeomorphisms of the interval.

Let / : [a,&] —> [a,&] be a C°° diffeomorphism and denote by P
the set of fixed points of /. Assume that a, b 6 P and that int(P) = 0.
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Decompose [a,b]\P into its connected components Z-y = (a/y,fcy), 7 € F,
where F is countable set. Denote by (^(/l^) the centralizer of /|j^.

THEOREM B.2. — Suppose that C°°(f\i^) is not isomorphic to Z,
\/7 € r. Then there exists a (71 vector field ^ = \(z)9/9z on [a, b] such
that ^ = f.

We now show how B.I follows from B.2. Assume w.l.o.g., that T is
transversal to each segment s{x,y)^ (x,y) € T2. Next, observe that any
foliation given by (b.l) is also transversal to each segment s(x, y) and its
holonomy with respect to s(0,0) = [0,1]

X^i^M^DifiIO,!]

satisfies ^(ei) = ̂ -^ and ^(es)^01, where $ = \(z)9/9z. Therefore,
in order to prove B.I it is enough to show the existence of a C1 function
A : [0,1] -^ R such that / = x^(ei) = ^-a2 and g = Xy(e^ = ̂ S
where $ = \(z)9/9z.

Let P be the set of fixed points of /. Since the open leaves of
F are planes and the union of the compact leaves is a rare set it is clear
that int(P) = 0. Decompose [0,1]\P into its connected components Z-y,
7 € r, with r a countable set. Since a has irrational slope it follows
that C°°(f\i^ ^ Z; V7 € r. We can therefore apply B.2 to find a C1

vector field $ = \{z)9/9z on [0,1] such that / = ^-a2. By A.3 g = ^T

for some T € R. Since (T, 02)6 a then necessarily T=ai . This shows
that g = ^al and completes the proof of B.I.

The proof of B.2 is based in the following lemma :

LEMMA B.3. — Let f : [a,&] —^ [a, 6] be a diffeomorphism whose
fixed points are a and b. Suppose that C°°{f) is not isomorphic to Z.
Then there exists a C1 vector field ^ = \(z)9/9z such that f = $1.
Moreover,

(6.2) 1^)1^(0)1+^(6 -a)2

V/2; € [a, 6], where p = , and C is a constant which only depends
J W ~ 1

on the norm of log(/') in the ^-topology.

Proof. — Let $ be a C1 vector field defined in a neighborhood of
a such that ^ = /, see A.2. Extend it to [a, b) using iterations of /.
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By the same argument, there exists a C1 vector field r] on (a, b] such
that rj1 = f. Let g € C°°(/). By A.3, g = ^T = r^ for some T e M.
By hypothesis there exists some g € C°°(f) that yields an irrational T,
and by A.5, $ = 77. The estimate (b.2) is based on the estimate

(b.3) |A(0|^G2pA(^-a|

Vrr € [a,&], proved in [14], 3.12. Here A(^) = |/(^) - z\ and 62 is a
constant depending only on the norm of log(/') in the C^-topology.

From f^ = $ one obtains X(f(z)) = f\z)\(z}, and derivating
it, we obtain \\f(z))f(z) = ff{z)X(z) + f'(z}\'{z). Writing <f>{z) =
(log(/'))'(z), this last equality becomes

A /(/(^)-V(^)=-A(^).^).

Now, adding this expression along the orbit of z we obtain

A'CTO) - X\z) = -^Wz)W(z)).
j=0

Therefore, IV^^-A^I^IHISIA^^))!, and hence, by
j=o

(b.3)

|V(r^)) - A'(z)| ^ Cp\b - a\ ̂  A(.TO)
j=o

where (7 depends only on the norm of log(/') in the C^-topology. Taking
limits with i —> oo, we conclude that

|V(a)-A'(z)|^Gp(6-a)2

which proves (b.2).

Proof of B.2. — For each 7 € F, denote by X^9/9z the vector field
on 1^ given by B.3. Define A : [a, b] -^ R by \(z) = 0 if z € P and
A(^) = A^(^) if 2^ e 1^. It is clear that $ == \(z)9/9z satisfies ^ = /,
hence it remains to be proved that A is a C^-function. If z € [a,b]\P
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it is clear that A is C1 at z. If z is an isolated point of P, then
Xf_(z) = log/'.(z) = log/^_(^) = A'j.(^), where — and + as indices denote
left and right lateral derivatives, respectively. Hence, A is C'1 at such a
point.

For any z € P let P-(z) = [a,z}HP and P^{z) = [z,&]nP. Take
now z to be an accumulation point of P. We assume, w.l.o.g., that z
is an accumulation point of P+. Then clearly f'{z} = 1. We shall now
calculate \'(z). If y €(-? ,&) is not in P, then ^/ e Zy = (a.y,fcy), for
some 7 G r. By the Mean Value theorem and (b.2),

W\ ^ sup,ejjA^)|Q/ - ̂ ) < [|A+(^)| + Cp(^ - a^Q/ - z\
hence

^•^ ^ llogAa,)] + C^ - a,)2.
y — z

When y tends to Zy a^ and fcy tend also to 2; and p tends
to 1. Therefore A^(z) =0. If 2? is also an accumulation point of P-,
then the same argument shows that \L{z) = 0. If not, then there exists
70 e r such that Zyo = (a-yo,^)- Hence A'_(^) = \ogf_(z) = 0. This shows
that A'(z) = 0. Take now a sequence {zn} converging z. Assume for
the moment that Zn > z, Vn. If Zn € P, then A'(^n) =0, as we have
shown above. If Zn ^ P, then Zn € J^, for some 7n G F. By (b.2),

|A'(^)| ^ |log/'(a^)| + Cpn(b^ - a^)2.

Now, when n tends to oo, a^ and &^ tend to z and pn tends
to 1. Therefore \'{zn) converges to 0. The case Zn < z, Vn, is treated
in an analogous way. We have then proved that A is C1 on [a, &], which
completes the proof of B.2.

C. Analytic foliations near a compact leaf.

In this appendix we prove a conjugation theorem for analytic folia-
tions in the neighborhood of a compact leaf.

THEOREM C.I. — Let T € G^(Mp) be a foliation with a finite
number of compact leaves, principal direction a, and whose open leaves
are planes. If K is a compact leaf, then there exists a neighborhood
Uo(K) of K and an analytic diffeomorphism H : U{K) —^ T2 x (—€:,£),
conjugating y\u{K) with the foliation given by

(c.l) Xa^dx — \a\dy + dz = 0
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on T2 x (-£,£•), where A : (-e,e) —»• R is analytic. Moreover, if
II : (/(AT) -^ K is some C^ projection, H sends the fibers of this
projection to the sets s(x,y) D U(K), (x,y) € T2.

To prove C.I we need the following lemma :

LEMMA C,2. — Let f be a C^ diffeomorphism of R such that
/(O) = 0. If the centralizer C^^f) is not isomorphic to Z, then / is
the time 1 of an analytic flow.

Proof.—Take f e Diff^(R). By A.2, / is the time 1 of a C°°
flow (f)1''. Our task is to show that, for each t, 0* is in fact analytic. We
know that G = {t € R; (^ is analytic} is an additive subgroup of R that,
by hypothesis, is not isomorphic to Z. Hence g is dense in R. For any
s e R, take then a sequence {tn} C G converging to s. Then {<^} is
converging to (f>s in the C'°-topology. Since each <^ is analytic, so is
(f>s. This proves C.2.

Proof of C.I. — Let \ : TT^K) x s(0,0) -^ s(0,0) be the holonomy
map. By hypothesis, the open leaves of F are planes and hence the
centralizer of ^(ei) is not isomorphic to Z. Therefore, by C.2,
X^i) = $-0:25 for some analytic vector field $ == \{z}9/Qz. By A.3,
X^) = ^al • With this information at hand, we can complete the proof as
we did in appendix A.

BIBLIOGRAPHY

[1] J.L. ARRAUT and M. CRAIZER, Stability of blocks of compact orbits of an
action of R2 on M3. Hamiltonian Systems and Celestial Mechanics., Edited
by E.A. Lacomba and J. Libre, World Scientific (1993).

[2] J.L. ARRAUT and N.M. dos SANTOS, Different iable conjugation of actions of
RP, Bol. Soc. Bras. Mat., vol.19, n.l (1988), 1-19.

[3] G. CHATELET and H. ROSENBERG, Un theoreme de conjugaison des feuil-
letages, Ann. Inst. Fourier, Grenoble, 21-3 (1971), 95-106.

[4] G. CHATELET, H. ROSENBERG and D. WEIL, A classification of the topolog-
ical types of Reactions on closed orientable 3-manifolds, Publ. Math. IHES,
43 (1973), 261-272.

[5] E. GHYS, T. TSUBOI, Differentiabilite des conjugaisons entre systemes dy-
namiques de dimension 1, Ann. Inst. Fourier, Grenoble, 38-1(1988), 215-244.

[6] N. KOPPEL, Commuting dineomorphisms. Global Analysis, Proc. of Symp. in
Pure Math., AMS, XIV (1970).



1118 J.L. ARRAUT, M. CRAIZER

[7] E.L. LIMA, Commuting Vector Fields on 53, Annals of Math., 81(1965),
70-81.

[8] R. MOUSSU, R. ROUSSARIE, Relations de conjugaison et de cobordisme entre
certains feuilletages, Pub. Math. IHES, 43 (1973), 143-168.

[9] H. ROSENBERG, R. ROUSSARIE and D. WEIL, A classification of closed
orientable manifolds of rank two, Ann. of Math., 91 (1970), 449-464.

[10] H. ROSENBERG and R. ROUSSARIE, Topological equivalence of Reeb folia-
tions, Topology, vol. 9 (1970), 231-242.

[11] N.C. SALDANHA, Stability of compact actions of -R71 of codimension one, to
appear in Comm. Math. Helvet.

[12] P. SERGERAERT, Feuilletages et dineomorphismes infiniment tangents a
Pidentite, Inventiones Math., 39 (1977), 253-275.

[13] G. SZEKERES, Regular iteration of real and complex functions, Acta Math.,
100 (1958), 163-195.

[14] J.-C. YOCCOZ, Thesis.

[15] M. CRAIZER, Homogenization of codimension 1 actions of near a compact
orbit, R" Ann. Inst. Fourier, Grenoble, 44-5 (1994), 1435-1448.

Manuscrit recu Ie 22 juin 1993,
revise Ie 7 decembre 1994,
accepte Ie 20 fevrier 1995.

J.L. ARRAUT,
ICMSC - USP
Matematica
Caixa Postal 668
13560-970 Sao Carlos SP (Bresil)
&

M. CRAIZER,
PUC - RIO
Matematica
Marques de Sao Vicente 225
22453-900 Rio de Janeiro RJ (Bresil).


