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FIXED POINTS FOR REDUCTIVE
GROUP ACTIONS
ON ACYCLIC VARIETIES

by Martin FANKHAUSER (V)

1. Introduction.

The Fixed Point Problem. The base field will be the field of complex
numbers C throughout the paper. Let G be a reductive algebraic group
acting algebraically on affine n-space A™. The Fixed Point Problem asks
whether every such action has fixed points, see [Kr89b]. In this paper,
we consider the following, more general problem : Let G be a reductive
group, and X a variety with an algebraic G-action. Then X is called a
G-variety. The variety X has the structure of a complex analytic space
in a canonical way. The corresponding strong topology will be used to
consider the singular cohomology ring H*(X; A), where A will always
denote either the integers Z, the rationals Q or the field Z, with p elements.
If H*(X;A) = A, i.e., if X has the A-cohomology of a point, then X is
called A-acyclic. Now the problem can be put this way : If X is a smooth
affine and A-acyclic G-variety, what can be said about the set of fixed
points X€ ? In particular, is XC # @?

The following results are well known.

Smith Theory, see [Br], Chapter III :
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(1) If G is a torus and X is A-acyclic, then X is A-acyclic.
(2) If G is a finite p-group and X is Zy-acyclic, then X€ is Z,-acyclic.

Petrie-Randall [PR], p.210, see also Verdier [Ve| : Let G be a finite group
having a normal series P C H C G, where P is a p-group, G/ H is a g-group
(p, g prime) and H/P is a cyclic group. If X is Z,-acyclic, then the Euler
characteristic of the fixed point set is x(X¢) = 1(mod q), and x(X%) =1
if G/H is trivial.

Luna-Kraft-Schwarz [KS|, p.4 : If X is A-acyclic and dim X /G = 1,
then X is either a point, or X¢ = A,

Here X //G denotes the algebraic quotient for the action of G on X,
i.e., the affine variety corresponding the C-algebra of invariant functions on
X (see [Kr84], I1.3.2). Note that in all these cases X¢ is not empty, and
in the situation of Smith Theory as well as in the Situation of Luna-Kraft-
Schwarz, X© is even connected. We will use Smith Theory and Petrie-
Randall as the cornerstones for fixed point theorems on semi-simple group
actions.

Our first result shows that the dimension of the quotient X /G
behaves reasonably if G is semisimple. Note that the hypothesis is satisfied
if X is A-acyclic (by Smith Theory), and that for X = A™, the result follows
from the factoriality of X.

TuEOREM A. — Let G be a semi-simple group, and X a smooth
affine G-variety with non-empty and connected fixed point set X7, T C G a
maximal torus. Then the generic fiber of the quotient map x : X — X /G
contains a dense orbit.

There is an extensive literature on differentiable actions of compact
transformation groups on acyclic manifolds. One of the results is, that in
order to get fixed points, one has to impose some kind of smallness condition
on the action, e.g. by limiting the number of orbit types (see [HS82]) or
restricting the dimension of the orbit space (see [HS86]). This was the
motivation to study the analogous problem in the algebraic setting. We
prove the following two theorems :

TueEoREM B. — Let G be a simple group of rank n, and X a
smooth affine and Zs-acyclic G-variety. If G has no fixed points, then
dim X /G > n — logy n.

This result can be strengthened considerably, see the table on page 4.
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TueoreEM C. — Let G be a connected reductive group, and X a
smooth affine and Z-acyclic G-variety.

(1) If dim X /G < 2, then X€ is Z-acyclic.
(2) Ifdim X /G =3, then X€ is not empty.

The problem of constructing fixed point free actions for reductive
groups on A™ or even on acyclic varieties is completely open. Note however
that if G is not reductive, then there are affine actions of G on some A™
without fixed points, cf. [KP], p.479.

This paper grew out of the author’s thesis [Fa], written under the
direction of Hanspeter Kraft. I thank Hanspeter Kraft and Gerald Schwarz
for their constant support and encouragement, Friedrich Knop, Peter
Littelmann and Eldar Straume for their help.

Conventions and notation. For the rest of this paper, a variety is always
tacitly assumed to be affine and smooth. If G is an algebraic group, we write
GO for its identity component and we use the german letter g to denote
its Lie algebra. If T is a torus, we denote by X'(T') its character group.
Let G be connected reductive and T' C G is a maximal torus. We denote
R(G) ¢ X(T) the roots of G, and for a € R(G) we have the associated
reflection s, on X' (T) ®z R. There is a linear form (a,?) : X(T) — Z such
that sq(A) = A — (@, e for every A € X(T"). We call a subset II C X(T)
a-saturated if A — ia € II for every A € II and any integer ¢ between 0 and
(e, A). Tt is well-known that the weight system of a G-module is a-saturated
for any root a. We always assume chosen a fundamental Weyl chamber
C(G) C X(T) ®zR. Note that it makes sense to talk about Weyl chambers
even if G is not semi-simple, e.g. if G is a torus, then C(G) = X(G) ®z R.
For the simple groups, their roots and their weights we use the notation
of Bourbaki [Bo]. For w € X(T) a dominant weight, we let V,, denote the
irreducible G-module with highest weight w. If we want to emphasize the
group which is acting, then we write V,,(G) instead. 6 will always denote
the one-dimensional trivial representation. The direct sum of m copies of
a representation V' will be denoted by mV.

Smoothness of fixed point sets. The following proposition (see [Fal,
p.9) is a corollary of the Slice Theorem [Lu]. We will use it to reduce some
problems to considering actions on the fixed point set of subgroups.

ProprosITION. — Let G be a reductive group, and X a smooth affine

G-variety. Then X* is smooth for any (not necessarily reductive) subgroup
HcCG.
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Remark. — Bass [Ba] was the first to construct an action of the
unipotent group (C,+) on C3 which is not triangular : the action has a
singular fixed point set. The corollary implies that an action of (C,+) with
singular fixed point set cannot be extended to an action of a reductive
group containing (C, +).

2. Leitfaden.

We describe the main steps in the proof of Theorems B and C, under
the assumption that Theorem A is already proved.

Let G be a connected reductive group with a maximal torus T.
Let X be a G-variety such that X7 is non-empty and connected. The
following definition, due to Wu-Yi Hsiang (cf. [Hs]), generalizes the well-
known definition of the weight system of a G-module. Choose z € X7, and
put

¥(X) = the isomorphism type of the T-module T, X.

Since by hypothesis X7 is connected, the T-isomorphism type of every
tangential representation T, X,z € X7 is the same (cf. [Kr89a], p.112/113),
and so £(X) does not depend upon the choice of z € X7. We call £(X)
the weight system of the action, since we can think of it as a set of weights
of T with multiplicities. We denote by ¥'(X) the set (with multiplicities)
of non-zero weights in X(X).

Remark. — If X is a G-module, then its weight system 3(X) de-
termines the isomorphism type of the representation completely. However,
Schwarz’ counterexample [Sch] to the Linearization Problem shows that
there are families of non-isomorphic actions on A™ which have the same
weight system.

Denote W (G) = W the Weyl group of G. There is a canonical action
of W on the character group X' (T'). Using the action of W on the connected
set XT induced by the action of the normalizer Norg(T') on X7, one proves
(cf. [Hs], p.37) :

ProposiTiON 2.1. — The weight system ¥(X) is stable under the
Weyl group W.



FIXED POINTS FOR REDUCTIVE GROUP ACTIONS 1253

From now on let X be an A-acyclic G-variety. Then X7 is non-
empty and connected by Smith Theory. Thus ¥(X) is defined, and if G
is semisimple, the hypothesis of Theorem A is satisfied.

The next theorem is a direct translation of a result of Wu-Yi Hsiang
(cf. [HHT70], p.207) to the algebraic setting.

THEOREM 2.2. — If X(X)NR(G) = 2, then X¢ = XT. In particular,
X6 is A-acyclic, and dim X € is the multiplicity of the zero weight in £(X).

Proof. — Choose z € X7T. Then T,(Gz) = g/g: C ToX as G-
modules. Restricting to the T-action on T, X we get that R(G) — R(G%) C
¥(X), hence by hypothesis R(G) = R(G2). This implies that G = G = G
and XT = X€. The rest follows from Smith Theory and Luna’s Slice
Theorem. O

Combining Proposition 2.1 and Theorem 2.2 one sees that X(X)
contains at least one W-orbit of roots if X€ is not A-acyclic, e.g. if the
action has no fixed points.

For technical reasons, which will become apparent during the proof
of Theorem C, we have to strengthen slightly the statement of Theorem B.
Let £ € X be on a closed G-orbit. We will use the notation N, for the
largest G9-submodule in the slice N, without fixed lines, i.e., we decompose

N, = N% @ N,. We denote

d(X) := max{dim N, J/G° | z € XT}.

ProrosiTioN 2.3. — Let G be a semi-simple group, and X an A-
acyclic G-variety. Then dim X /G > d(X) > dim ¥'(X) — dim G.

Proof. — Fix x € XT. By the Slice Theorem it follows that
dim X /G = dim N, /G, = dim N, /G% > dim N, /G2,

thus dim X /G > d(X). The second inequality follows from dim N, —
dim GY > dim ¥'(X)—dim G, and by Theorem A we have that dim N, /G% >
dim N, — dim G2. O

Let now G be a simple group, and denote n its rank. To simplify our
discussion, we assume that G is simply laced. Since W acts transitively on
R(G), our discussion shows that if X is not A-acyclic, then R(G) C X'(X).
On the other hand, if dim(X'(X)—R(G)) > 2n, then dim X /G > d(X) > n.
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Thus in order to prove Theorem B we only have to consider actions with :
(a) R(G) c ¥'(X), and (b) dim(X'(X) — R(G)) < 2n.

Let X be a Zg-acyclic G-variety, such that ¥(X) satisfies conditions
(a) and (b). We will determine a reductive subgroup G’ C G with T C &',
such that X¢ # @ and dim N, J/G® > n —logyn for x € X', This yields

Theorem B.

Of course, this strategy needs some modifications if G is not simply-
laced. More precisely, in §5-9 we show the results in the following table :

type If XC is then d(X) is 2(X)
Ay not Zy-acyclic >2 d(X) =2 2(X) =%5(Vau,)
A, empty =5
A,, n=2,3 | not Zy-acyclic >n d(X)=n< Y (X)=R(A,)
A,,n=23 empty > 16,33
A,,n>3 | not Zs-acyclic | >n —logyn
Cpn, n=3,4 | not Zy-acyclic >n—1 dX)=n-1X(X)=
Z(sz) or E(sz) © E(le)
Cn,n=3,4 empty > 21,44
Cp,n>4 not Zg-acyclic | > n —logyn
B,, n<4 not Zs-acyclic >2n—1 dX)<2n&
(X)) = ¥(Vaw,)
Dy empty >44
B,,D, not Zs-acyclic =>n
E¢ not Zs-acyclic =5
E,,n="7,8 | not Zy-acyclic =n
Fy not Zsy-acyclic > 2 d(X)=2«< X(X)=%(V,,)
F4 empty >44
Gy not Zs-acyclic > 12 ¥(X) contains at least
3 W-orbits of cardinality 6

Finally, the proof of Theorem C relies on an induction on the
number of simple factors of a connected reductive group, using Theorem B.
However, there are some small groups which need special care, and an

additional acyclicity hypothesis.
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3. Good quotients for semi-simple groups.

We start with a connected reductive group G acting on a variety X.
Moreover, we fix a maximal torus T' C G.

PROPOSITION 3.1. — Assume that the fixed point set X is non-empty
and connected.

(1) There is a reductive subgroup H C G containing T such that G, = H
for all z in an open dense subset of XT. In particular, XT = XH.

(2) The roots of H® are R(H®) = R(G) — (X'(X) N R(G)). In particular,
R(H®) is W(G)-invariant and ¥'(N,) N R(H®) = @.

(3) The normalizer L := Norg(H®) acts on XT, and L contains Norg(T).

(4) The representation of H® on the tangent space Ty X is independent
of z € XT and extends to a representation of L.

Proof. — (1) This is a consequence of the Slice Theorem. All orbits
Gz for € X7T are closed. Since X7 is irreducible we can assume that
they belong all to the same Luna stratum. This implies that in the slice
representation N, (z € XT) the stabilizers in G, of all points y € NI are
conjugate and in particular conjugate to the stabilizer of 0 € N, which is
G,.

(2) On one hand, for any z € X7, g/g, & T.(Gz) C T.X, and
therefore (R(G) — R(G2)) C ¥/(X). This implies R(G) — (R(G)N¥/(X)) C
R(GY). On the other hand, assume that there is an a € R(H?) N ¥'(X).
Then the slice N, contains an irreducible G2-submodule V such that
a € X(V). Since (V) is a-saturated, we have that a —a =0 € (V), i.e.,
VT + {0}. The stabilizer H, of any vector v € VT — {0} does not contain
HPO. This is a contradiction to (1), hence R(H°) N ¥'(X) = 2.

(3) It is clear that L and also Norg(T) both act on X7. For any
z € XT and g € Norg(T) we have Gy, = gG2g™*, and the claim follows
from (1).

(4) Tt is well-known that the representation of H® on the tangent
space T, X is independent of z € XT (cf. [Kr89a), p.112/113). By (2) and
Proposition 2.1, £(N;) = £(X) — (¥'(X) N R(Q)) is W(G)-invariant (as a
set with multiplicities). Now the claim follows from the next lemma.

LeEmMaA 3.2. — Let H C G a be a connected reductive subgroup con-
taining T, and such that R(H) is a union of W(G)-orbits. A representation
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p: H — GL(V) extends to a representation of L := Norg(H) if and only if
(V) is W(QG)-invariant.

Proof. — Given a reductive group G and a reductive subgroup H
containing a maximal torus T of G it is well-known that H has finite
index in its normalizer L := Norg(H). More precisely, L/H is canonically
isomorphic to W(L)/W (H), the quotient of the corresponding Weyl groups.
In our situation, L contains Norg(T') hence L/H = W (G)/W (H).

Given the fundamental Weyl chamber C(G), one has the following
n
partial order on X(T') : A <¢g p is equivalent to u — A = Y n;a;, where

=1
n; € N and the o; are fundamental roots. For H C G a maximal rank
subgroup, we may assume that C(H) D C(G). Then A <g p implies A <g p.

Choose a maximal weight p with respect to <g in L(V). Write
W(G) ' unC(H) = {ulv' o 7#(1}7 S0

d
Vu(@)lu = P Vi (H) & P VaH),
i=1

AEA

where for each weight in A € A, there is an ¢ such that A <y u;, and
A ¢ W(G)u. Here we use the fact that there is a unique highest weight
for an irreducible G-module, hence every weight in W(G) - p occurs with

d
multiplicity one in X(V,(G)). Then V' := '@1 V., (H) is an irreducible L-

module, and 3(V') is W(G)-invariant. By W(G)-invariance of £(V), Vg
contains an H-submodule isomorphic to V’. This proves the lemma. O

ProposiTioN 3.3. — Let L be a reductive group and H C L a normal
subgroup containing a maximal torus T of L. Assume that there is a
subgroup N C L normalizing T such that X(T)N = {0}. Then for every
representation V of L the quotient m:V — V J/H is good (i.e., the generic
fiber contains a dense orbit).

Proof. — Since invariant rational functions separate generic orbits we
have to show that the field of invariant rational functions C(V)¥ is the field

of fractions of the invariant ring C[V]¥. Let r = P e C(V)# and assume
q
that p and ¢ have no common divisors. Then both are eigenfunctions with

respect to a character x of H : p(gv) = x(g) - p(v) for all v € V, and
similarly for g. Now choose representatives n; = 1,ng,...,nm,m of N/T in
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N. Then the function

m
p() = [[ p(niv)
i=1
is an eigenfunction with character ¥ := ), n;x. Clearly, X is invariant
under N and so ¥ = 0 by assumption, i.e., p is an invariant function. Thus
v p(v
r(v) = 29 _ p(v)
q(v)  q(v) - p(ngv) - p(nmv)
is a quotient of two invariant regular functions. O

Now we are ready to prove the main result of this chapter.

THEOREM A. — Let G be a semi-simple group acting on a smooth
affine variety X. Assume that the fixed point set XT of a maximal torus
T of G is non-empty and connected. Then the quotient mx: X — X //G is
good.

Proof. — Let V := N, be the slice representation of H := G, in
a generic point  of X7. By the Slice Theorem it suffices to prove that
the quotient my:V — V/H is good, or equivalently, that the quotient
m:V — V/JJH® is good. The representation of H® on V extends to a
representation of L := Norg(H®) by Proposition 3.1 (4) and L contains
the normalizer N of the maximal torus T in G by Proposition 3.1 (3). It
is well-known that X (T)N = {0} for any semi-simple group. Thus, we can
apply Proposition 3.3 above and the claim follows. O

Remark. — The assumption that X7 is connected is essential for the
theorem as shown by the following example. Assume that G is semi-simple
and a € X(T) — {0}. Let T act on C™ (m > 1) by scalar multiplication
via a. Then the associated bundle

X:=GgxTcm

is a smooth G-variety of dimension dim G + m — dim T without invariants.
The generic orbit has dimension dimG + 1 — dim T, and X7 consists of
|W| points.

4. Rank one groups.

We look at SO3s-actions on a Zs-acyclic variety X. The condition that
X503 is empty will force some specific slice representations to occur, for
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various subgroups (see Oliver [Ol]). This implies that the weight system
cannot be to small.

The list of reductive subgroups — up to conjugacy — of SOz is well-
known : A maximal torus T, its normalizer N, the cyclic subgroup C, C T
of order n, the dihedral group D,, C N of order 2n, the icosahedral group
T = As, the octahedral group O = Sy, and the tetrahedral group 7 = A,.
Note that N, 7 and O are maximal proper subgroups of SO3. Furthermore,
XN = (XT)W is Zy-acyclic because W = N/T = Z, and Smith Theory,
and X© # @ due to the normal series © = S4 D A4 D D, and Petrie-
Randall.

Denote by w a generator of X(T), i.e., w = 2wi(A1) € R(A;) =
R(SOs3). Let m; be the multiplicity of iw in 3(X). Then

(4.1) B(X) = mof & P mi(iw & —iw),

i>1

due to the W-invariance of the weight system. Denote M, := ) my; for
i>1
s> 1.
LEMMA 4.1 (see [HHT74], pp.233/34). — We have codim xr XN = M; —
2Mo,, ie., dim XN = mo—M;+2Mj;, and dim XP?* = my—M;+2My+ My,
s e N—{0}.

Proof. — Choose £ € XN. Then the N-module T, X is a direct sum

Ty & mgh ® myo @ @mim

i>1

of irreducible N-modules. Here o denotes the one-dimensional non-trivial
N-module via the projection N — N/T = Z,, and p; the two-dimensional
irreducible N-module with p;|T = iw @& —iw. Note that mg + mg = mg,
and m{ = codimyrXN. We claim that m{j = M; — 2M>. Then the
lemma follows from the fact that XP2° is Zj-acyclic, hence dim XP2* =
dim(T, X)P=*.

To prove that my = My —2M> we consider the action of D,. There are
four irreducible representations of this group, each of dimension one. Let
€o denote the trivial representation, €; the non-trivial one with kernel C,,
and €9, €3 the remaining two. Then of course 8|p, = €o, o|p, = €1, pi|lD, =
goPe; for i even, and p;|p, = e2Pes for ¢ odd. Moreover D2 C O is normal
and the elements of Dy —{e} are all O-conjugate. Thus the multiplicities in
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the Dy-representation T, X satisfy mult(e;) = mult(e2) = mult(e3). Since
mult(e;) = mg + M, and mult(e3) = M; — Ms, the claim follows. O

LeMMA 4.2 (compare also [HH74], pp.233/34).
(1) If My = My, then X539 = XV s Zy-acyclic, and My = 0.
(2) If My = 0, then X593 = X© +# &, and My = ms.

Proof. — (1) Because My = My, we have that dim XP2? = dim X+,
hence XP2 = XP1 gince XP+ C XP2 and XP2 is irreducible. This holds
for all of the three subgroups of @ which are conjugate to Dy4. Since they
generate O, we have X© = XP2 Since N and O are maximal closed
proper subgroups of SOs, it follows that X© N XV = XS093  But here
X© = XP2 O XN hence X593 = X/ The tangential representation in a
fixed point z of SOj is

(4.2) I.X = @(mi —Mit1)Viw ® (mo — mq)0,
i>0
hence m; > m;41. In particular, if Mo = My, then m; =0 for ¢ > 1.

(2) Because My = 0 we find that XP+ = XV. Hence X50s =
XO9N XN = X©. By (4.2) it follows that m; = 0 for i > 4, so My = my. O

The following proposition should be compared to Theorem 2.1 in
(HS86].

ProrposiTiON 4.3. — Let X be a Zy-acyclic SOg-variety.

(1) codimyr(XN) = M; — 2M, > 0, and m; > 1 if the action is not
trivial.

(2) If My = 0 then X503 = XN is Zy-acyclic.

(3) If mgy; # 0 for only one i > 1, then in fact my # 0 and X502 = X© #
@. If in addition my = mg, then X593 = XV js Z,-acyclic.

(4) If X is also Zs-acyclic and M3 = 0, then X502 = X7 # &; in fact,
its Euler characteristic is x(X592) = 1.

Proof. — (1) By Lemma 4.1, codimxr (XV) = M; —2M,. If m; =0,
then SOj3 has fixed points on X by Theorem 2.2, and X(X) = mgf by
" equation (4.2). Hence the action is trivial.

(2) It is obvious that My = 0 implies My = My, and Lemma 4.2(1)
implies the claim.
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(3) If ¢ is even, then My = My = 0 by Lemma 4.2(1), a contradiction
to mg; # 0. Hence 4 is odd and My = 0, so X593 = X© and my = M, by
Lemma 4.2(2). For z € X5©s the character of the O-representation on T, X
can be computed from the weight system (see [Ol], p.232). In particular, if
mgy = mg it follows that dim(7;X)® = dim(7T,X)", and the irreducibility
of XV implies that XN = X©.

(4) Let v be a 3-cycle in the tetrahedral group 7 = A4, and
T' c SOz a torus containing 7. Because X is Zgs-acyclic, so is X7, and
dim X7 = mg + 2M3 = mg = dim X7, so XT' = X7. For any z € X7,
T’ C G, hence G, = SO3 and X593 = X7 . On the other hand, A4>Do>(1)
is a normal series for the tetrahedral group, and by Petrie-Randall it follows
that x(X7) = 1. O

CoOROLLARY 4.4. — Let G be a simple group of rank 1, and X a
Zs-acyclic G-variety.

(1) If X© is not Zs-acyclic, then d(X) > 2. Moreover, d(X) = 2 implies
that ¥(X) = Z(Viw, )-

(2) If X¢ = @, then d(X) > 5, and in particular dim X /G > 5.

Proof. — The center C is either trivial or C = Zj, so X€ is Z,-
acyclic. Hence the action of G/C = SOz on X© satisfies the hypothesis,
and X% = (X¢)%9s, Moreover, d(X) > d(X¢), so we may assume that
G = SO3. If X593 = &, then M, > 2 by Proposition 4.3(3), and M; >
2Mj; > 4 by Proposition 4.3(1). Therefore d(X) > dim ¥'(X) — dim SO3 =
2M; — 3 > 5 by Proposition 2.3. To prove (1), assume that X€ is not
Zs-acyclic and d(X) < 2, hence dim X/(X) < 5. We have that My > 0 by
Proposition 4.3(2), hence m; = mgo = 1 by Proposition 4.3(1) and (3) and
m; = 0 for ¢ > 2. It follows that T, X = V,,, for z € X 503 and we are
done. O

5. Rank 1 subgroups and saturatedness.

Throughout this chapter, we let G be a connected reductive group
with a fixed maximal torus T. For o € R(G) define T, := ker(a) C T.
Its identity component T is a corank 1 torus, and the centralizer G, =
Cc(T?) is connected, cf. [Hu], p.140. Of course, G, is a reductive group
of semisimple rank 1, with center T,, and G, := Ge /To is isomorphic






