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FIXED POINTS FOR REDUCTIVE
GROUP ACTIONS

ON ACYCLIC VARIETIES

by Martin FANKHAUSER ^

1. Introduction.

The Fixed Point Problem. The base field will be the field of complex
numbers C throughout the paper. Let G be a reductive algebraic group
acting algebraically on affine n-space A71. The Fixed Point Problem asks
whether every such action has fixed points, see [Kr89b]. In this paper,
we consider the following, more general problem : Let G be a reductive
group, and X a variety with an algebraic G-action. Then X is called a
G-variety. The variety X has the structure of a complex analytic space
in a canonical way. The corresponding strong topology will be used to
consider the singular cohomology ring Jf*(X;A), where A will always
denote either the integers Z, the rationals Q or the field Zp with p elements.
If jEf*(X;A) = A, i.e., if X has the A-cohomology of a point, then X is
called A-acyclic. Now the problem can be put this way : If X is a smooth
affine and A-acyclic G-variety, what can be said about the set of fixed
points X° ? In particular, is X° -^ 0 ?

The following results are well known.

Smith Theory, see [Br], Chapter III :
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(1) If G is a torus and X is A-acyclic, then X° is A-acyclic.

(2) If G' is a finite p-group and X is Zp-acyclic, then X° is Zp-acyclic.

Petrie-Randall [PR], p.210, see also Verdier [Ve] : Let G be a finite group
having a normal series P C H C G, where P is a p-group, G / H is a g-group
(p, q prime) and H / P is a cyclic group. If X is Zp-acyclic, then the Euler
characteristic of the fixed point set is x^X0) = l(mod g), and x(XG) = 1
if G/H is trivial.

Luna-Kraft-Schwarz [KS], p.4 : If X is A-acyclic and dim X//G = 1,
then X° is either a point, or X° ^ A.

Here X / / G denotes the algebraic quotient for the action of G on X,
i.e., the affine variety corresponding the C-algebra of invariant functions on
X (see [Kr84], II.3.2). Note that in all these cases X° is not empty, and
in the situation of Smith Theory as well as in the Situation of Luna-Kraft-
Schwarz, X° is even connected. We will use Smith Theory and Petrie-
Randall as the cornerstones for fixed point theorems on semi-simple group
actions.

Our first result shows that the dimension of the quotient X//G
behaves reasonably if G is semisimple. Note that the hypothesis is satisfied
\iX is A-acyclic (by Smith Theory), and that for X = A71, the result follows
from the factoriality of X.

THEOREM A. — Let G be a semi-simple group, and X a smooth
affine G-variety with non-empty and connected fixed point set A^, T C G a
maximal torus. Then the generic fiber of the quotient map TTX '' X —> X//G
contains a dense orbit.

There is an extensive literature on differentiable actions of compact
transformation groups on acyclic manifolds. One of the results is, that in
order to get fixed points, one has to impose some kind ofsmallness condition
on the action, e.g. by limiting the number of orbit types (see [HS82]) or
restricting the dimension of the orbit space (see [HS86]). This was the
motivation to study the analogous problem in the algebraic setting. We
prove the following two theorems :

THEOREM B. — Let G be a simple group of rank n, and X a
smooth affine and ^-acyclic G-variety. If G has no fixed points, then
dim X//G > n— log^ n.

This result can be strengthened considerably, see the table on page 4.
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THEOREM C. — Let G be a connected reductive group, and X a
smooth aEne and ^-acyclic G-variety.

(1) JfdimX//G ^ 2, then X° is ^-acyclic.

(2) IfdimX//G = 3, then X° is not empty.

The problem of constructing fixed point free actions for reductive
groups on A71 or even on acyclic varieties is completely open. Note however
that if G is not reductive, then there are anine actions of G on some A71

without fixed points, cf. [KP], p.479.

This paper grew out of the author's thesis [Fa], written under the
direction of Hanspeter Kraft. I thank Hanspeter Kraft and Gerald Schwarz
for their constant support and encouragement, Friedrich Knop, Peter
Littelmann and Eldar Straume for their help.

Conventions and notation. For the rest of this paper, a variety is always
tacitly assumed to be affine and smooth. If G is an algebraic group, we write
G° for its identity component and we use the german letter g to denote
its Lie algebra. If T is a torus, we denote by X(T) its character group.
Let G be connected reductive and T C G is a maximal torus. We denote
R(G) C X(T) the roots of G, and for a G R(G) we have the associated
reflection s^ on X(T) (g)^ M. There is a linear form (a, ?} : X{T) —^ Z such
that 5^(A) = A - (a, A)a for every A e X(T). We call a subset II C X(T)
a-saturated if A — ia € II for every A G II and any integer i between 0 and
(a, A). It is well-known that the weight system of a G-module is a-saturated
for any root a. We always assume chosen a fundamental Weyl chamber
C(G) C X(T) (g)^ R. Note that it makes sense to talk about Weyl chambers
even if G is not semi-simple, e.g. if G is a torus, then C(G) == ^(G) <g)^ R.
For the simple groups, their roots and their weights we use the notation
of Bourbaki [Bo]. For uj € X{T) a dominant weight, we let V^ denote the
irreducible G-module with highest weight uj. If we want to emphasize the
group which is acting, then we write V^{G) instead. 6 will always denote
the one-dimensional trivial representation. The direct sum of m copies of
a representation V will be denoted by mV.

Smoothness of fixed point sets. The following proposition (see [Fa],
p.9) is a corollary of the Slice Theorem [Lu]. We will use it to reduce some
problems to considering actions on the fixed point set of subgroups.

PROPOSITION. — Let G be a reductive group, and X a smooth afHne
G-variety. Then X11 is smooth for any (not necessarily reductive) subgroup
H CG.
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Remark. — Bass [Ba] was the first to construct an action of the
unipotent group (C, +) on C3 which is not triangular : the action has a
singular fixed point set. The corollary implies that an action of (C, +) with
singular fixed point set cannot be extended to an action of a reductive
group containing (C,+).

2. Leitfaden.

We describe the main steps in the proof of Theorems B and C, under
the assumption that Theorem A is already proved.

Let G be a connected reductive group with a maximal torus T.
Let X be a G-variety such that X71 is non-empty and connected. The
following definition, due to Wu-Yi Hsiang (cf. [Hs]), generalizes the well-
known definition of the weight system of a G-module. Choose x e X'11, and
put

S(X) = the isomorphism type of the T-module T^X.

Since by hypothesis X7' is connected, the T-isomorphism type of every
tangential representation T^X, x ^ X71 is the same (cf. [Kr89a], p.112/113),
and so E(X) does not depend upon the choice of x e X71. We call S(X)
the weight system of the action, since we can think of it as a set of weights
of T with multiplicities. We denote by S'(X) the set (with multiplicities)
of non-zero weights in S(X).

Remark. — If X is a G-module, then its weight system S(X) de-
termines the isomorphism type of the representation completely. However,
Schwarz5 counterexample [Sch] to the Linearization Problem shows that
there are families of non-isomorphic actions on A" which have the same
weight system.

Denote W(G) = W the Weyl group of G. There is a canonical action
of W on the character group X{T). Using the action of W on the connected
set X7' induced by the action of the normalizer Nor^r) on X71, one proves
(cf. [Hs], p.37) :

PROPOSITION 2.1. — The weight system S(X) is stable under the
Weyl group W.
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From now on let X be an A-acyclic G-variety. Then X71 is non-
empty and connected by Smith Theory. Thus S(X) is defined, and if G
is semisimple, the hypothesis of Theorem A is satisfied.

The next theorem is a direct translation of a result of Wu-Yi Hsiang
(cf. [HH70], p.207) to the algebraic setting.

THEOREM 2.2. — JfS(X)n.R(G) = 0, then X° = X71. In particular,
X0 is A-acyclic, and dim X° is the multiplicity of the zero weight in S(X).

Proof. — Choose x 6 XT'. Then T^Gx) ^ Q/Qo, C T^X as G^-
modules. Restricting to the T-action on T^X we get that R(G) — R{G°^) C
S(X), hence by hypothesis R(G) = R(G°,). This implies that G°, = G° = G
and X'11 = X°. The rest follows from Smith Theory and Luna's Slice
Theorem. D

Combining Proposition 2.1 and Theorem 2.2 one sees that S(X)
contains at least one IV-orbit of roots if X° is not A-acyclic, e.g. if the
action has no fixed points.

For technical reasons, which will become apparent during the proof
of Theorem C, we have to strengthen slightly the statement of Theorem B.
Let x e X be on a closed G-orbit. We will use the notation N^ for the
largest G^-submodule in the slice N^ without fixed lines, i.e., we decompose
Nx = N^ C Nx. We denote

d(X) := max{dim^//GS | x € X71}.

PROPOSITION 2.3. — Let G be a semi-simple group, and X an A-
acyclic G-variety. Then dimX//G ^ d(X) ̂  dimS'(X) - dimG.

Proof. — Fix x € XT. By the Slice Theorem it follows that

dimX//G = dimA^//G^ = dim^//G^ ^ dimN^//G0^

thus dimXy/G ^ d(X). The second inequality follows from dimA^c —
dim G°, ̂  dim I/(X)-dim G, and by Theorem A we have that dim N^//G°, ̂
dim N^-dimG0,. D

Let now G be a simple group, and denote n its rank. To simplify our
discussion, we assume that G is simply laced. Since W acts transitively on
R(G), our discussion shows that ifX0 is not A-acyclic, then R{G) C ̂ (X).
On the other hand, ifdim(S'(X)-^(G)) ^ 2n, then dimX//G ^ d(X) ̂  n.
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Thus in order to prove Theorem B we only have to consider actions with :
(a) R(G) C S'(X), and (b) dim(^(X) - R(G)) < 2n.

Let X be a Z2-acyclic G- variety, such that S(X) satisfies conditions
(a) and (b). We will determine a reductive subgroup G' C. G with T C G' ^
such that X01 + 0 and dimN^//G°, ̂  n - \og^ n for x e X°\ This yields
Theorem B.

Of course, this strategy needs some modifications if G is not simply-
laced. More precisely, in §5-9 we show the results in the following table :

type
Ai
Ai

An, n = 2,3
An, n = 2,3
An, n > 3

Cn, n= 3,4

Cn, n= 3,4
Cn, n > 4
Bn, n ̂  4

D4

Bn.D,

EG

En, n=7,8
F4

F4

G2

If X° is
not Za-acyclic

empty
not Z2-acyclic

empty
not Z2-acyclic
not Z2-acyclic

empty
not Z2-acyclic
not Z2-acyclic

empty
not Z2-acyclic
not Z2-acyclic
not Z2-acyclic
not Z2-acyclic

empty
not Z2-acyclic

then d(X) is
^ 2
^5
^ n

^ 16,33
> n — log2 n

^ n- 1

^21,44
> n — log2 n

^ 2n- 1

>44
^ n
^5
^ n
^ 2
^44
^12

E(X)
d(X)=2^E(X)=S(y2o, i )

d(X) = n <^ E'(X) = J?(An)

d(X) = n - 1 <^ E(X) =
E(K,JorS(K,J®E(y^)

d(X) < 2n <^
^(^S^J

d(X)=2^S(X)=S(K,J

S(X) contains at least
3 IV-orbits of cardinality 6

Finally, the proof of Theorem C relies on an induction on the
number of simple factors of a connected reductive group, using Theorem B.
However, there are some small groups which need special care, and an
additional acyclicity hypothesis.
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3. Good quotients for semi-simple groups.

We start with a connected reductive group G acting on a variety X.
Moreover, we fix a maximal torus T C G.

PROPOSITION 3.1. — Assume that the fixed point set X7' is non-empty
and connected.

(1) There is a reductive subgroup H C G containing T such that Gj; = H
for all x in an open dense subset of X7'. In particular, X71 = X11.

(2) The roots of H° are R(H°) = R(G) - (S'(X) U R(G)). In particular,
R(H°) is W(G)-invariant and E'(A^) H R(H°) = 0.

(3) The normalizer L := NorG'(^°) acts on X71, and L contains Norc(T).

(4) The representation of H° on the tangent space T^X is independent
ofxe X71 and extends to a representation of L.

Proof. — (1) This is a consequence of the Slice Theorem. All orbits
Gx for x € XT are closed. Since XT is irreducible we can assume that
they belong all to the same Luna stratum. This implies that in the slice
representation N3; (x 6 X7') the stabilizers in Gx of all points y C N^ are
conjugate and in particular conjugate to the stabilizer of 0 G N^ which is
G..

(2) On one hand, for any x ^ XT, Q/Q^ ^ T^Gx) C T^X, and
therefore (R(G) -R{G°,)) C S'pC). This implies R{G) - {R(G) F^'(X)) C
R(G°,). On the other hand, assume that there is an a € R(H°) H S'(X).
Then the slice N^ contains an irreducible G^-submodule V such that
a 6 S(V). Since S(V) is a-saturated, we have that a — a = 0 € S(V), i.e.,
V^^ 7^ {0}. The stabilizer Hy of any vector v € V7^ — {0} does not contain
H°. This is a contradiction to (1), hence R(H°) H S'(X) = 0.

(3) It is clear that L and also Nor^T) both act on X71. For any
x € X7' and g € Norc^T) we have G^ = gG°^g~1^ and the claim follows
from (1).

(4) It is well-known that the representation of H° on the tangent
space T^X is independent of x e X71 (cf. [Kr89a], p.112/113). By (2) and
Proposition 2.1, S(A^) = S(X) - (S'(X) H R(G)) is W (GQ-invariant (as a
set with multiplicities). Now the claim follows from the next lemma.

LEMMA 3.2. — Let H C G a be a connected reductive subgroup con-
taining T, and such that R(H) is a union of W{ G) -orbits. A representation
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p: H —^ GL(V) extends to a representation ofL :== Norc(^) if and only if
S(V) is W(G)-invariant.

Proof. — Given a reductive group G and a reductive subgroup H
containing a maximal torus T of G it is well-known that H has finite
index in its normalizer L := NOTG(H). More precisely, L / H is canonically
isomorphic to W(L)/W(H), the quotient of the corresponding Weyl groups.
In our situation, L contains NorG;(r) hence L / H ^ W(G)/W(H).

Given the fundamental Weyl chamber C(G), one has the following
n

partial order on X(T) : X <c ^ is equivalent to fi - \ = ^ n^, where
i=l

HI G N and the o^ are fundamental roots. For H c G a maximal rank
subgroup, we may assume that C(H) D C(G). Then A <n ^ implies A <c AA.

Choose a maximal weight p, with respect to <G in S(V). Write
w(G).^nc(^)={/zi,...,^},so

W)|̂  0^^)0(3^),
1=1 AGA

where for each weight in A e A, there is an i such that A <H /^, and
A ^ W(G)fJL. Here we use the fact that there is a unique highest weight
for an irreducible G-module, hence every weight in W(G) ' ^ occurs with

multiplicity one in S(l^(G)). Then V := © V^(H) is an irreducible L-
module, and E(V) is W(G) -invariant. By TV(G)-invariance of S(V), V\n
contains an ff-submodule isomorphic to V. This proves the lemma. D

PROPOSITION 3.3. — Let L be a reductive group and H C L a normal
subgroup containing a maximal torus T of L. Assume that there is a
subgroup N C L normalizing T such that ^(T)^ = {0}. Then for every
representation V of L the quotient TT: V —^ V / / H is good (i.e., the generic
fiber contains a dense orbit).

Proof. — Since invariant rational functions separate generic orbits we
have to show that the field of invariant rational functions C(V)11 is the field
of fractions of the invariant ring C[V]^. Let r = - € C(V)11 and assume

q
that p and q have no common divisors. Then both are eigenfunctions with
respect to a character \ of H : p(gv) = \(g) • p{v) for all v € V, and
similarly for q. Now choose representatives n\ = \,n^...,Um of N / T in
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N. Then the function
m

p(v) := Jjp(n^)
%=i

is an eigenfunction with character \ := ^rii\. Clearly, \ is invariant
under N and so \ = 0 by assumption, i.e., p is an invariant function. Thus

r(v) = p(v! = _____P^_____
q{v) q(v) ' p(ri2v) ' ' ' p(rirnv)

is a quotient of two invariant regular functions. D

Now we are ready to prove the main result of this chapter.

THEOREM A. — Let G be a semi-simple group acting on a smooth
affine variety X. Assume that the fixed point set X71 of a maximal torus
TofG is non-empty and connected. Then the quotient TTX'-X —^ X / / G is
good.

Proof. — Let V := Nx be the slice representation of H := Gx in
a generic point x oi XT. By the Slice Theorem it suffices to prove that
the quotient TTV'-V —^ V / / H is good, or equivalently, that the quotient
TT:V —> V / / H 0 is good. The representation of H° on V extends to a
representation of L := Norc^0) by Proposition 3.1 (4) and L contains
the normalizer N of the maximal torus T in G by Proposition 3.1 (3). It
is well-known that ^(T)^ == {0} for any semi-simple group. Thus, we can
apply Proposition 3.3 above and the claim follows. D

Remark. — The assumption that X71 is connected is essential for the
theorem as shown by the following example. Assume that G is semi-simple
and a e ^(T) - {0}. Let T act on C^ (m > 1) by scalar multiplication
via a. Then the associated bundle

X'^G^C^

is a smooth G-variety of dimension dim G + m — dim T without invariants.
The generic orbit has dimension dim G + 1 - dim T, and XT consists of
\W\ points.

4. Rank one groups.

We look at SOs-actions on a Zs-acyclic variety X. The condition that
Xs03 is empty will force some specific slice representations to occur, for
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various subgroups (see Oliver [01]). This implies that the weight system
cannot be to small.

The list of reductive subgroups - up to conjugacy - of 80s is well-
known : A maximal torus T, its normalizer N , the cyclic subgroup Cn C T
of order n, the dihedral group Vn C N of order 2n, the icosahedral group
Z ̂  ^5, the octahedral group 0 ̂  <?4, and the tetrahedral group T ^ Ai.
Note that N , I and 0 are maximal proper subgroups of SOs. Furthermore,
XN = (X^ is Z2-acyclic because W = N/T ^ ̂  and Smith Theory,
and X° -^ 0 due to the normal series 0 = <?4 D Ai D ^2 and Petrie-
Randall.

Denote by a; a generator of ^(T), i.e., a; = 2a;i(Ai) e ^(Ai) =
^(SOs). Let mi be the multiplicity of iuj in S(X). Then

(4.1) E(X) = mo(9 ® ̂  m,(za; ® -^),
01

due to the IV-invariance of the weight system. Denote Ms := ^ nisi for
Oi

s ̂  1.

LEMMA 4.1 (see [HH74], pp.233/34). — WeAavecodim^TX^ = Mi-
2M2, i.e., dimX^ = mo-Mi+2M2, and dim X^28 = mo-Mi+2M2+M2^,
5 C N - { 0 } .

Proof. — Choose x e X1^. Then the TV-module T^X is a direct sum

T^ ^ m^O C mo'a C ̂  m,p,
Oi

of irreducible Ay-modules. Here a denotes the one-dimensional non-trivial
Ay-module via the projection N —^ N/T ^ Z2, and pi the two-dimensional
irreducible TV-module with pi\r = iuj 0 -%o;. Note that m^ + mo' = mo,
and mo' = codim^rX^. We claim that m'Q = Mi - 2M2. Then the
lemma follows from the fact that X^23 is Z2-acyclic, hence dimX^23 =
dim(r^X)^.

To prove that m'o = Mi -2M2 we consider the action ofT^- There are
four irreducible representations of this group, each of dimension one. Let
EQ denote the trivial representation, £1 the non-trivial one with kernel €2,
and £25^3 the remaining two. Then of course 6\^ == eo, a\^ = £1, pi\^ =
£o^£i for i even, and pi\^ = £"2 0^3 for i odd. Moreover V^ C 0 is normal
and the elements of ^2 - {e} are all 0-conjugate. Thus the multiplicities in
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the Pa-representation T^X satisfy mult(£i) = mult^) = mult^s). Since
mult(^i) = m'Q + Ma and mult^) = Mi — Ma, the claim follows. D

LEMMA 4.2 (compare also [HH74], pp.233/34).

(1) JfM2 = Mi, then Xs03 = XN is ^-acyclic, and M^ = 0.

(2) JfMi = 0, then Xs03 = X ° ̂  0, and M^ = m^.

Proof. — (1) Because M^ = M^ we have that dimX^2 = dimX^4,
hence X^2 = X^4 since X^4 C X^2 and X^2 is irreducible. This holds
for all of the three subgroups of 0 which are conjugate to Z>4. Since they
generate 0, we have X° = X^2. Since N and 0 are maximal closed
proper subgroups of SOs, it follows that X° H X^ = Xs03. But here
X° = X^2 D X^, hence Xs03 = X^. The tangential representation in a
fixed point x of SOs is

(4.2) T^X ^ Q)(mi - m,+i)y^ C (mo - mi)(9,
i>0

hence mi ^ yn^+i. In particular, if M^ = M^ then ?7ii = 0 for i > 1.

(2) Because Mi = 0 we find that X^4 = X^. Hence Xs03 =
X° H X1^ == X°. By (4.2) it follows that m, = 0 for i ̂  4, so M^ = m^ D

The following proposition should be compared to Theorem 2.1 in
[HS86].

PROPOSITION 4.3. — Let X be a. ̂ -acyclic SO^-variety.

(1) codim^T^X^) = Mi — 2M2 ^ 0, and m\ ^ 1 if the action is not
trivial.

(2) JfM2=0 then Xs03 = X^ is Z2-acychc.

(3) Ifm^i -^ 0 for only one i ̂  1, then in fact m^ ̂  0 and Xs03 = X ° ̂
0. If in addition m^ = ms, then Xs03 = X^ is Z2-acych'c.

(4) IfX is also Zs-acychc and Ms = 0, then Xs03 = XT ^ 0; in fact,
its Euler characteristic is ^(X803) = 1.

Proof. — (1) By Lemma 4.1, codim^X^) = Mi - 2M2. If mi = 0,
then SOs has fixed points on X by Theorem 2.2, and E(X) = mQ0 by
equation (4.2). Hence the action is trivial.

(2) It is obvious that Mz = 0 implies Ma = M4, and Lemma 4.2(1)
implies the claim.
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(3) If i is even, then M^ = M^ = 0 by Lemma 4.2(1), a contradiction
to m-2i -^ 0. Hence z is odd and M^ == 0, so Xs03 = X° and 7712 = Ms by
Lemma 4.2(2). For x € Xs03 the character of the 0-representation on T^X
can be computed from the weight system (see [01], p.232). In particular, if
m2 = 7723 it follows that dim(T^X)0 = dim^X)^, and the irreducibility
of X^ implies that XN = X°.

(4) Let 7 be a 3-cycle in the tetrahedral group T ^ Ai, and
T ' c SOg a torus containing 7. Because X is Zs-acyclic, so is X7, and
dimX^ = TTio + 2Ms = TUQ = dimX^, so X7" = X^. For any x € X7',
T' c G^, hence Ga; = SOs and Xs03 = Xr. On the other hand, A^V^W
is a normal series for the tetrahedral group, and by Petrie-Randall it follows
that ^(X^ =1. D

COROLLARY 4.4. — Let G be a simple group of rank 1, and X a
^-acyclic G-variety.

(1) IfX° is not Z2-acydic, then d(X) ̂  2. Moreover, d(X) = 2 implies
thatS(X)=S(y4oJ.

(2) IfX0 = 0, then d{X) ̂  5, and in particular dimX//G ^ 5.

Proof. — The center C is either trivial or C ^ Z2, so X° is Z2-
acyclic. Hence the action of G/C ^ SOs on X° satisfies the hypothesis,
and X° = (XC)S03. Moreover, d(X) ^ d(X0), so we may assume that
G = SOs. If Xs03 = 0, then M^ ^ 2 by Proposition 4.3(3), and Mi ^
2M2 ^ 4 by Proposition 4.3(1). Therefore d(X) ^ dimS'(X) - dimSOs =
2Mi - 3 ^ 5 by Proposition 2.3. To prove (1), assume that X° is not
Z2-acyclic and d(X) ^ 2, hence dimS'(X) ^ 5. We have that M^ > 0 by
Proposition 4.3(2), hence 7711 = 7712 = 1 by Proposition 4.3(1) and (3) and
771, = 0 for i > 2. It follows that T^X ̂  V^ for x € Xs03, and we are
done. Q

5. Rank 1 subgroups and saturatedness.

Throughout this chapter, we let G be a connected reductive group
with a fixed maximal torus T. For a e R(G) define Ta := ker(a) C T.
Its identity component T^ is a corank 1 torus, and the centralizer Ga =
Cc(T^) is connected, cf. [Hu], p.140. Of course, Ga is a reductive group
of semisimple rank 1, with center T^, and Ga := G^/Ta is isomorphic
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to SOs. The normalizer Na := Nor^CF) is contained in N := NorG?(T)
by definition, and it is clear that Na = Na/Ta is just Nor^ (T), where
f := r/TQ is a maximal torus in Go. Therefore Wa := Na/T is the Weyl
group of Gai and since Wo. = Na/T C N/T = W, it is the subgroup of W
generated by the reflection corresponding to the root a.

Let X be a Za-acyclic G- variety. Then X^ := X70 is Za-acyclic, since
Ta/T^ ^ Zs or trivial. Xa has an induced action of Go, ^ SOs. Note
that the weight system is S(X^) = S(^) Fl Za, as a subset of S(X) with
multiplicities : For x € X^, T^X^ = T^X^) = (T^X)7- by the Slice
Theorem.

PROPOSITION 5.1. — Let X be a ̂ -acyclic G-variety and a € R{G). If
S'(X) FiNa contains no more than three (not necessarily distinct) weights,
or there is no i ^ 2 with 2ia € S(X), <Aen S(X) is a-saturated as a set
without multiplicities.

Proof. — Consider the action of Ga on Xa. Under both assumptions
we are either in case (2) or (3) of Proposition 4.3, hence the action of Ga
on Xa has fixed points. Choose x € XGa = X^. Then S(T^X) = E(X)
is a-saturated. D

For the rest of this chapter we assume that G is a simple group. Let
X be an A-acyclic G-variety, A = Z, Zp or Q. We extend the notation
introduced in §4. If G is non-simply laced, we have R(G) = Ri(G) © Rs(G)
where Ri(G) are the long and Rs{G) are the short roots. If G is simply
laced we consider all the roots as long roots. For a G Ri{G), respectively
a € -Rs(G), and i € N the multiplicity of ia in S(X) is independent of the
choice of a and will be denoted by m^, respectively by n^ :

S(X) == mo0 C (3)m, (Cae^) ® Q^ (^OeRs^) ® r.
1^1 %^i

where F denotes those weights which are not integral multiples of roots.
The multiplicities rii are - by our convention - always zero for a simply
laced group G. We put Ms := ^rrisi, Ns := ^risi. Note that dimX =

i^l i^l

mo + Mi dim(Ri(G)) + A^i dim(^(G)) + dimF.

The following proposition shows that if S(X) contains a long root,
then it contains all roots.

PROPOSITION 5.2. — Let X be an A-acyclic variety, G a simple group
of type Bn, Cn, F^ or G^ acting on X. Ifn^ = 0, then m\ = 0.


