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SLOPES OF MODULAR FORMS AND CONGRUENCES

by Douglas L. ULMER

Our aim in this paper is to prove congruences between on the one
hand certain eigenforms of level pN and weight greater than 2 and on the
other hand twists of eigenforms of level pN and weight 2. One knows a
priori that such congruences exist; the novelty here is that we determine
the character of the form of weight 2 and the twist in terms of the slope
of the higher weight form, i.e., in terms of the valuation of its eigenvalue
for Up. Curiously, we also find a relation between the leading terms of the
p-adic expansions of the eigenvalues for U, of the two forms. This allows us
to determine the restriction to the decomposition group at p of the Galois
representation modulo p attached to the higher weight form.

1. Slopes and congruences.

Fix a prime number p, embeddings Q — C and Q — —Qp, and
let v be the induced valuation of Q, normalized so that v(p) = 1. We
denote by p the corresponding maximal ideal of 06’ the ring of algebraic
integers, and we identify 06/ p with F,, an algebraic closure of the field of
p elements. Let x : (Z/pZ)* — Q; be the Teichmiiller character; using the
embeddings we identify it with a complex valued character also denoted .
Let N be a positive integer relatively prime to p. Any Dirichlet character
¥ : (Z/pNZ)* — C* can be written uniquely as x% with & a character
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modulo N and 0 < a < p—1. If ¢ and § are two Dirichlet characters, we
write € = § (mod p) if e(n) = 6(n) (mod p) for all integers n.

Let M, (Io(pN), x%) and Sy, (Io(pN),x*e) be the complex vector
spaces of modular forms and cusp forms of weight w and character x*e for
To(pN). Acting on these spaces we have Hecke operators Ty for £} pN, U,
for £|pN, (d), for d € (Z/pZ)*, and (d)n for d € (Z/NZ)*. An eigenform
f =Y anq" will be called normalized if a; = 1.

Suppose that f is an eigenform for the U, operator, so U,f = af.
Then « is an algebraic integer and we define the slope of f to be the rational
number v(a). It is known that if @ # 0 or f lies in the subspace of forms
which are “old at p” (i.e., come from level N), then the slope of f lies in
the interval [0,w—1]; on the other hand, if a = 0 and f is new at p, then
the slope of f is (w—2)/2.

We define two Eisenstein series, E( _3 of welght p—1 and level N and

Eéli)_z of weight 2, level pN, and character x 2, as follows:

E}()Ni_C(Q )Hl o 2)+Z< Z dp—2>qn

f'N n>1 d|n

(N,d)=1
L _1aX_2 - — n
B = Uobx) 5 ) = 2(@)@)+Z< > x 2(d)d>q
{N n21 (Ndl|17)l=1

Here the products extend over all primes ¢ dividing N. Both of these
Eisenstein series are normalized eigenforms; they play a special role because
of their connection with EI()l_)1 and Eé}))(_z, which are Eisenstein series whose
constant terms are not integral at p.

THEOREM 1.1. — Let p be an odd prime number, N a positive
integer relatively prime to p, k a positive integer, and a an integer with
0<a<p-1.

a) Let ¢ be an integer satisfying1 < i < k,i < a,and k+1—i < p—1—a

and set
b=atk—2, c= (‘”k;’l_’) / (‘;)

Suppose f = Y an,q™ is a normalized eigenform in Siy2(To(pN), x%e) of
slope i. Then either there exists a normalized eigenform g = > b,q"
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So(To(pN), x®*26) of slope 1 such that
e =6 (mod p)
(1.2) an =n'"1b, (mod p) for all n'> 1
p~'ap = cp~'b, (mod p);

or there exists a normalized eigenform h = Y c,q™ in Ma(To(pN), x%6) of
slope 0 such that

e =6 (mod p)
(1.3) an =n'c, (mod ) for all n > 1
p ‘a, = ccp (mod p).

We can assume h # E(N) , and if b4+2 = 0 (modp—1) (resp. b =
(mod p—1)) then we can assume g (resp. h) is old at p. Conversely, 1f

= Y b,q™ is a normalized eigenform in S(Ly(pN),x**26) of slope 1
Wh1ch is old at p if b+2 = 0 (mod p—1) (resp. h = ;cnq is a normalized
eigenform in Mo(To(pN), x°6) of slope 0 with h # E 2,x—2 Which is old at p
if b =0 (modp—1)) then there exists a normalized e1genform f=>ang"
in Sg+2(To(pN), x%) of slope i such that the congruences 1.2 (resp. 1.3)
hold.

b) Let ¢ be an integer 0 < i < k and suppose that either: i+1 < a
and k+1—i < p—1-a; ori = 0 and p—1—a > k; ori = k and a > k.
Let b = a+k—2i. Suppose that f = Y a,q" is a normalized eigenform in
Sk+2(To(pN), x%€) whose slope lies in the open interval (i,i+1). Then there
exists a normalized eigenform h = Y, c,q" in So(To(pN), x*6) whose slope
lies in (0,1) such that

e =6 (mod p)

(1.4) Ry
an = n'cy, (mod p) for all n > 1.

If b = 0 (modp—1) we can assume h is old at p. Conversely, for every
normalized eigenform h in Sy(To(pN), x%6) whose slope lies in (0,1) and
which is old at p if b = 0 (modp—1), there exists a normalized eigenform
f in Sgi2(To(pN), x%e) whose slope lies in the open interval (i,i+1) such
that the congruences 1.4 hold.

Remarks.

1) According to a recent result of Diamond which improves a lemma
of Carayol (cf. [Di], Lemma 2.2), we can frequently choose the Dirichlet
character § arbitrarily among those with § = ¢ (mod gp). This is the case,



4 DOUGLAS L. ULMER

for example, when p > 3 and the Galois representation modulo p attached
to f is irreducible.

2) In part b), it is natural to ask whether we can take the slope of f
to be precisely i plus the slope of g.

As an example, let us verify the theorem directly for p =3, N < 4.In
case b), the hypotheses force k = a =1 and ¢ = 0 or 7 = 1. Computation
with Pari reveals that there are no forms with N < 4 of the relevant
slopes. In case a), the hypotheses force k = a = i = 1. Again there are no
relevant forms if N < 4; for N = 4, there is a unique normalized eigenform
in S3(IH(12), x) and it has slope 1. Indeed, define a Hecke character ¢ of
Q(v/—3) with conductor (2) by setting ¢(()) = a? where « is a generator
of (o) congruent to 1 modulo 2. Then by a theorem of Shimura, the g-

expansion
F=>ad"= Y, (@)

(€03
is a normalized eigenform of weight 3, level 12, and character x = (——3)
Visibly ag = —3 and a = 0 if £ is a prime = —1 (mod 3) (so f is a form
“with complex multiplication by Q(+/—3)”). It is an easy exercise to check
that ag = 2 (mod 3) if ¢ is a prime = 1 (mod 3).

On the other hand, there are two normalized eigenforms in M2 (I (12))
which have slope 0 and are old at 3 and neither is a cusp form. One of the
forms is Eé?(_z and the other is

FeS b= 3 ( 5 d)q".

n>1 din
(2,n)=1 (8,d)=1

We have by = 2 (mod 3) if £ is a prime = 1 (mod 3), b, = 0 if ¢ is a prime
= —1 (mod3), and b3 = 1. Since the constant ¢ = 2, we see that the
congruences 1.3 do indeed hold. This checks that the theorem is correct for

p=3and N <4.

Before giving some consequences of the theorem, we sketch how it is
proven in the general case. There are three key points to the proof: First of
all, there is a pair M = ()? ,IT), where X is a smooth complete variety over
F, and II is a projector in Z,[Aut X] (i.e., M is a motive), such that the
crystalline cohomology of M is a Hecke module with the same eigenvalue
packages as Sk42(Io(pN), x%¢). This is of course a standard idea by now
(cf. [D] and [Sc]), but an important point here is that the coefficients of II
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lie in Z,, not just Q,, so it makes sense to apply II to certain characteristic
p vector spaces, such as coherent cohomology groups of X.

Secondly, for “good” slopes ¢, namely those figuring in Theorem 1.1,
there is a canonical direct factor of the integral crystalline cohomology
of M on which Frobenius acts with slope ¢. This direct factor contains
a canonical Zp-lattice and the reduction of this lattice modulo p can
be identified with the cohomology of M with coeflicients in a sheaf of
logarithmic differentials. For good ranges of slope (4,i+1), there is a similar
connection between a direct factor of the integral crystalline cohomology
of M and the cohomology of M with coefficients in a sheaf of exact
differentials. The logarithmic and exact cohomology groups thus capture
Hecke eigenvalues modulo p, and the point then is that they are relatively
calculable. (The relation between crystalline cohomology and logarithmic
or exact cohomology follows from general results of Illusie and Raynaud
(cf. [I]), the crucial input being the finiteness of the logarithmic groups.
We remark that this finiteness definitely fails for slopes not satisfying
the inequalities in Theorem 1.1, so these strange inequalities are crucial
hypotheses.)

Thirdly, there is a remarkable connection between logarithmic or
exact cohomology groups for the M related to weight k+2 and the M
related to weight 2. Roughly speaking, the logarithmic group for weight
k+2 and slope 7 is isomorphic to an extension of the logarithmic group for
weight 2 and slope 0 by the logarithmic group for weight 2 and slope 1.
(This is why there are two possible types of forms of weight 2 to which
a form of weight k+2 is related.) For the exact groups, the situation is
simpler: the group for weight k42 and slopes in (¢,i+1) is isomorphic to
the group for weight 2 and slopes (0,1). For both logarithmic and exact
groups, the isomorphisms just mentioned introduce a twist in the Hecke
action. The factors n’~!, n?, and the funny constant ¢ in Theorem 1.1 are
a manifestation of this twist and much of the work in the paper is related
to keeping track of it.

Here is the plan of the rest of the paper: It will be convenient to
use the language of Hecke algebras, so in Section 2 we briefly review the
connection between Hecke algebras attached to cusp forms and to various
cohomology groups, such as the crystalline cohomology of M. In Section 4
we relate T, the Hecke algebra attached to the crystalline cohomology
of M, to Hecke algebras Tz and Texact attached to the logarithmic and
exact cohomology groups of M and we introduce other Hecke algebras
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associated to the Eisenstein series appearing in Theorem 1.1. In Section 5
we relate the T1o; and Texact algebras for weight k+2 to their analogues for
weight 2. Keeping track of the twist in the Hecke action here requires some
information on how Hecke operators act on sections of various line bundles
on the Igusa curve; this information is recorded in Section 3. Finally, in
Section 6 we assemble the pieces into a proof of Theorem 1.1.

In the rest of this section we outline some corollaries of Theorem 1.1. If
g = bng™ is a (formal) g-expansion, we write ¥g for the “twisted” series
g = Y. nb,qg™. With this notation, part of the congruences congruence
1.2 (resp. 1.3 and 1.4) could be written f = 9°~1g (mod ) (resp. f =
¥*h (mod g)). Let us say that two normalized eigenforms f and g are
congruent after a twist if there exists an integer ¢ so that f = 9*g (mod p).
Well-known results of Serre, Tate, and others (cf. [Ri] for a survey) say that
every normalized eigenform f of weight w > 2 and level p*N (e > 0) is
congruent after a twist to a normalized eigenform of weight 2 and level pN.
Theorem 1.1 determines, under suitable hypotheses, the correct twisting
integer t and the character of the form of weight 2.

On the other hand, every normalized eigenform of weight 2 and level
pN is congruent to a form of level N and weight w with 2 < w < p+1; we
can take w < p if the form has a non-trivial power of x in its character,
or is old at p. This gives a reformulation of the theorem in terms of level
N forms. In the corollary below, we say that an eigenform of level N is
ordinary if its eigenvalue for T}, is a unit at p. (This differs slightly from
Hida’s usage in that he always takes ordinary forms to have level divisible
by p.)

COROLLARY 1.5.

a) Hypotheses as in 1.1a). Suppose that f = > a,q" is a normalized
eigenform in Sk12(To(pN), x%) of slope i. Then either there exists an
ordinary normalized eigenform g =) bpq"™ in Sp_1-4(Io(N),6) such that

e =6 (mod p)
(1.6) f=0vtk+1=tg (mod p)
p~a, = e(p)cby " (modp);
or there exists an ordinary normalized eigenform h = Y c,q" in
My y2(To(N),8) such that
€ =6 (mod p)
(1.7) f =9h (mod p)

p~a, = ccp, (mod p).
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We can assume h # E(ﬁ Conversely, if g € Sp_1-3(To(N),6) (resp.
h € Mpy2(Io(N),6) with h # EI(,IE ) Is an ordinary normalized eigenform
then there exists a normalized eigenform f in Sky2(Io(pN), x*¢) of slope i
such that the congruences 1.6 (resp. 1.7) hold.

b) Hypotheses as in 1.1b). Suppose that f is a normalized eigenform
in Sk42(To(pN), x*e) whose slope lies in the open interval (i,i+1). Then
there exist non-ordinary normalized eigenforms g € Sp41-(To(N),6) and
h e Sb+2(F0(N),5) such that

e =6 (mod p)
(1.8) f=9°*"tg (mod p)
= 9'h (mod p).

Conversely, if g € Spy1-s(Io(N),6) or h € Spi2(Io(N),6), is a non-
ordinary normalized eigenform, then there exists a normalized eigenform
f in Sk12(To(pN), x%€) whose slope lies in the open interval (i,i+1) such
that the congruences 1.8 hold. O

Let us say that an eigenform is of type (k,a,%) if it has weight k+2,
level pN, character x*¢ for some € modulo N, and slope . Suppose p > 3.
Hida has shown that if f is a normalized eigenform of type (k,a,0) with
k > 0, then there exists a normalized eigenform form of type (k+1,a—1,0)
congruent to f modulo p. Using the w-operator, one can show that if f is
a normalized eigenform of type (k,a,k+1) with k > 0, then there exists a
normalized eigenform of type (k+1,a+1, k+2) congruent to ¢ f modulo g.
The following result generalizes both of these statements to certain forms
of intermediate slope.

COROLLARY 1.9. — Suppose p is odd and let k be a non-negative
integer.

a) If i and a are integers with 1 < i < k,2 < a < p-2,i < a—1,
and k+1—i < p—1—a and if f is a normalized eigenform of type (k,a,1),
then there exists a normalized eigenform g of type (k+1,a—1,i) with
f =g (mod p).

b) If i and a are integers with 1 < i < k, 1 < a < p-3,i < a,
and k+2—1i < p—1—a and if f is a normalized eigenform of type (k,a,1),
then there exists a normalized eigenform g of type (k+1,a+1,i+1) with
9f = g (mod p). O

Remark. — It would be interesting to have a statement which
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integrated this corollary with the conjectures of Gouvéa and Mazur.

If f is a normalized eigenform, write p; for the mod p Galois repre-
sentation

ps : Gal(Q/Q) — GLo(F,)

attached to f. Deligne, Serre, and Fontaine have obtained detailed infor-
mation on the representation p; attached to an eigenform of weight 2 and
level pN (cf. [G], 12.1 and [E], 2.6 for proofs). Theorem 1.1 allows us to
translate this into information about py for f of higher weight.

We use x also to denote also the character of Gal(Q/Q) giving its
action on the p-th roots of unity. Let D,, C Gal(Q/Q) be the decomposition
group at p, I C Dy the inertia group, and I}y C I, the wild inertia group.
By local class field theory, the tame inertia group I,,/I;’ is isomorphic to
lim F .. By definition, an Fp-valued character of I, has level n if it factors

through F;fn; the fundamental characters of level n are the ones induced by
the n embeddings of Fy» in F,. For any = € F,, let A(z) be the unramified
character of D, which sends the Frobenius to z.

COROLLARY 1.10. — Let p be an odd prime number, N a positive
integer relatively prime to p, k a positive integer, € a Dirichlet character
modulo N, and a an integer with 0 < a < p—1. Suppose that f €
Sk+2(To(pN), x*¢) is a normalized eigenform and let py be the mod p Galois
representation attached to f.

a) Suppose f has slope i where i is an integer satisfying 1 < i < k,
i < a, and k+1—i < p—1—a. Write the eigenvalue of U, on f as p‘u and

- (/)

~ ¢1 %
Plep = ( 0 ¢
where {¢1, p2} = {x*Mc ™ u), xaT*H1=I\(e(p)cu)}.

b) Suppose that the slope of f lies in the open interval (i,i+1) where
1 is an integer 0 < i < k and either: i+1 < a and k+1—i < p—1—a;ori =0
and a > k; ori =k and p—1—a > k. Then plep is irreducible and

wa+k+1—z’wli 0
pf‘Ip = < 0 d)id)la+k+l—i>

where ¥ and 1’ are the two fundamental characters of level 2. O

Then
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Remarks.

1) In case a), we can take ¢; = x*A(clu) when f satisfies the
congruences 1.2 or 1.6 and we can take ¢; = x*t*t1~ie)(cu™?!) when
f satisfies the congruences 1.3 or 1.7. Since the hypotheses rule out
i = a+k+1—i (modp—1), if both 1.6 and 1.7 hold then * = 0. According
to a conjecture of Serre (proven by Gross [G]), the converse is true as well:
if ¥ = 0 then there exist forms satisfying both sets of congruences. In this
case, the two forms appearing on the right hand sides of 1.6 and 1.7 are
called “companions.”

2) The theorem shows that the Galois representations attached to
certain forms are twists of ordinary representations if and only if the
forms have integral slope. It would be interesting to know whether such
a statement holds in general. It is true in all examples I know, but the
recipe in Corollary 1.10 for the two characters on the diagonal of pg|p,
does not hold in general. For example, there is a unique cusp form f of
weight 7, character (?), and slope 3 on Ih(7). It turns out that the powers

of x appearing on the diagonal in the restriction of the mod 7 representation
ps are x? and x°, rather than x3 and x* as would be predicted by a naive
generalization of the theorem.

2. Hecke algebras.

In this section we will relate the action of Hecke operators on modular
forms to their action on the crystalline cohomology of a certain Chow
motive. As the arguments are for the most part standard, we will be quite
terse.

Let L be a number field with a fixed embedding L — Q — C and
let Or be its ring of integers; we will abusively write p for the prime of Op,
induced by the prime p of Og fixed in Section 1. Let T be the polynomial
ring over O, generated by symbols T, for each prime number ¢ and (d)
for d € Z. If H is a module for T, we write T(H) for the algebra of
endomorphisms of H generated by T, (i.e., for the image of T — End(H)).

Let My42(I'1(N)) and Sk4+2(I'1(N)) be the complex vector spaces of
modular forms and cusp forms on I';(N). For any prime p dividing N,
let Syy2(T'1(NV))P~°! be the space of cusp forms which are old at p, i.e.,
come from level N/p via the two standard degeneracy maps. Also, define
Sk42(C1(N))P~ "% as the orthogonal complement of Sgio(I'y(N))P~0ld
under the Petersson inner product. We let the Hecke algebra T act on all
these spaces in the standard way (via the “upper star” operators T}, Uy,
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and (d)}, rather than by the “lower star” operators Ty., Up, and (d)n«,
cf. [MW], 2.5). If ¢ is a character of (Z/NZ)*, let Sk+2(T'1(N))(¢) be the
subspace of Sg42(I'1(IN)) where the (d) act via ¢. Finally, for sets P; and
P, of prime numbers dividing NV and a set = of characters of (Z/NZ)*,
define

Sk+2 (P](N))Pl— old,P; — new (E) — m SP— old m Gp— new n ( Z S(¢))
peEP PEP; PEE
where we have written S for Sg2(I'1(V)). All these constructions have an
obvious analog for My2(I'1(N)).

We use [DR] and [KM] as general references for moduli of elliptic
curves. Fix an integer N > 5 and consider the moduli problem [I'; (N)] on
(Ell/Q). Let X;7(NN) be the corresponding complete modular curve over Q
and X1(N) = X;(N) x SpecQ. Under the hypothesis on N, X;(N) is a
fine moduli space and there is a universal curve £ —— X;(N). We define
w= F*Q}e £/X where Qreg ¢, isthe sheaf of “regular” differentials, i.e., the
relative duahzmg sheaf (cf. [S], Ch. 4, §3 as well as [DR], 1.2 for a summary
of the relevant duality theory). Fix an arbitrary prime number g, let Qq
be the algebraic closure of the g-adic numbers, and choose an embedding
Q— Gq. Then we have a sheaf F, = Sym* le*ﬁq for the étale topology
on X;(N) and a cohomology group H} (X1(N),F). (For N < 5 we can
define cohomology groups by introducing extra level structure and taking
invariants.) These groups are modules for the Hecke algebra (where again
we use the “upper star” operators). For sets P; and P, of prime numbers
dividing N and a set E of characters of (Z/NZ)*, we define

Hélt (71 (N), ]_-k)Pl —old,P,— neW(E)

in obvious analogy with the definition for modular forms. (For the new
subspaces, we take the orthogonal complement with respect to the cup
product.)

All the key ingredients in the proof of the following result appear
in [D]. For more details on the problems arising from Hecke operators for
primes dividing the level, see [U1], §7.

PROPOSITION 2.1. — Let N >1 and k > 0 be integers and L C Q
a number field. Fix sets P, and P, of prime numbers dividing N and a set
= of characters of (Z/NZ)* with values in L. Then there. exists a unique
isomorphism of T-algebras

T(Sk2(L1 (V)P ObF2=0e%(2)) X T(Hg, (X1 (N), Fi) 1~ 102 mew ().
O
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We want to compare these Hecke algebras with ones defined via the
cohomology of Igusa curves. Fix an integer N > 5, a prime pf/ N, and
integers k,n > 0 and recall that the [Ig(p™)] moduli problem on (Ell/F,)
assigns to E/S the set of P € E(®")(S) which are generators of the
kernel of the iterated Verschiebung V™ : E??") — E ([KM], 12.3.1). Let
I =1Ig,(p"N) be the complete modular curve over the field of p elements
F, parameterizing generalized elliptic curves together [Ig(p™)]- and I'; (IV)-
structures; also let I = I x SpecF,. (If n = 0, then I is the reduction of
X1(N) modulo p.) We have a universal generalized elliptic curve & —— T
and an invertible sheaf w = ™. Qg 1 ., = (R'm.0g)~" on I. Letting g be
a prime distinct from p, we have the étale sheaf Fr = Sym” Rlﬂ'*aq on
I and a cohomology group H}, (I, Fy). (Again we can define cohomology
groups for small N by introducing auxiliary level structure and passing to
invariants.)

The group Hgt(f, Fi) is a module for the Hecke algebra; however,
the relation with the Hecke action in characteristic zero is slightly subtle,
so we want to be precise about which Hecke operators we are using.
For a prime ¢} p™N, let I, be curve parameterizing generalized elliptic
curves E with [Ig(p™)]-, T'1(N)-, and Ip(¢)-structures. There are two
maps 71,72 : Ig — I (forget the subgroup of order ¢ and divide by it,
respectively) and a universal isogeny ® : 7€ — w3&. We then define
Ty = m.®*13 on the cohomology group. For primes ¢|N we have a similar
construction with a suitable I,: write N = ¢¢ N’ with £ f N’ and let I; be the
curve parameterizing generalized elliptic curves with Igusa p™-structures,
[[1(N')]-structures, and [[p(¢¢*1); e, 0]-structures (cf. [KM], 7.9.4 for this
moduli problem). The (d)» and (d)} operators are defined in the expected
way: if z is a point of I representing (E, P,Q) where P € E has order N
and Q € E®") has order p", then (d)pnx represents (E, P,dQ) and (d)nz
represents (E,dP, Q). There is no obvious definition of a U, operator on
H} (I, F), but we do have F*, induced by the geometric Frobenius on the
universal curve, and we define V* as p**1F*~1. We make H} (I, Fi) into
a T-module by letting T, act by T, if £f pN, by U} if £|N, and by (p)\ V*
if £ = p, and by letting (d) act by (d);.ny = (d)p=(d)} if (d,pN) =1 and
by 0 if (d,pN) # 1.

PRrROPOSITION 2.2. — Fixintegers N > 1,n > 0 and k > 0, a prime
p/ N, and a number field L C Q.

a) Let Z be a set of characters of (Z/p"NZ)* of conductor divisible
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by p™ with values in L. Then there is a unique isomorphism of O -algebras

¢ : T(Hg,(X1(p"N), F2)(B)) — T(Ha (I, Fi)(2))

such that
o(Ty) = )Ty (Efp"N)
o(UF) = () U;  (4N)
o(Uy) = @NV” (ifn>1)
¢(T;) =T, (if n=0)

¢({d)pnn) =(d7)n(d)yy (d € (Z/p"NZ)X).

b) Let E be a set of characters of (Z/NZ)* with values in L. Then
for any n > 1, there is a unique surjection of T-algebras

¢ : T(Hg(X1(pN), F)P~ *4(8)) — T(Ha(I, F1)(E)).

The kernel of ¢ is nilpotent.

Remarks.

1) In part b), we view elements of Z as characters of (Z/p"NZ)* via
the obvious projection to (Z/NZ)*. Also, we really do mean X;(pN), not
X1(p™N). The dependence on n is via 1.

2) One could impose old and new conditions at primes dividing N.

Proof. — Assume first that we are in case a) and that n > 1. In this
case, we established in [U1] an isomorphism

Hg, (X1(p"N), Fi)(E) = Hy, (1, 1) (E) © Hey(Ex, Fi)(E)

where Ez is a certain “exotic” variant of the Igusa curve ([KM], 12.10).
We also checked that the action of Uy on the left corresponds to that
of (p)yV* @ F* on the right. Similar arguments show that T}, Uy, and
(d)%nn on the left correspond to ((~1)2.T; ® Ty, ((~1);.Uf @ Uy, and
(d=1)3n (d)§ @ (d)N respectively on the right. On the other hand, there is
an “exotic” isomorphism between I and Ex which shows that restriction
induces an isomorphism

T((HL (T, Fi) ® Hy(Bx, Fr))(E)) = T(HL (T, Fi)(E)).

This completes the proof of a) in the case n > 1. The case n = 0 is similar,
but rather simpler: there is a model of X;(N) with good reduction at p,
the reduction is isomorphic to I, and because of the way we have defined
the action of the Hecke operators, the proof is essentially trivial.
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Now consider case b). Here we have an isomorphism
He(X1(pN), Fi)P~°4(E) = (He (T, i) ® Hey(Ex, Fi))(B).

Arguing as in part a), we see that the actions of T, U;, and (d)} on

H}.(X1(pN), F)P~ °1d( ) 1ntertwme the actions of T, © T, Uy @ Uy, and
(d) @ (d)y on (HL(I, Fi) ® HL(Ez,F%))(E). On the other hand, using
[U1], 8.4, one finds that U, acts as

A

on (HL (I, Fx) ® HL (Ez, F))(Z). In particular, pI‘OJGCthIl onto the factor
HL(I,F%)(B) mduces a surjection

T(He(X1(pN), Fi)P~ *4(E)) — T(Hg (I, Fi)(E)).

The kernel is the principal ideal generated by P(U,) where P is the minimal
polynomial of (p)} V* acting on H} (I, Fx)(E). But by [U1], the eigenvalues
of (p)yV* are the same as those of Uy on HL(X1(pN), Fr)P~°4(E), so
P(Uy) is nilpotent, as desired. This completes the proof of part b). O

In §2 of [U2], we defined a smooth projective variety X as a certain
desingularization of the k-fold fiber product of £ — I (obtained by blowing
up products of double points over the cusps), and we defined an idempotent
IT in the group ring Q[Aut, X]. This construction is a slight variation of
that of Scholl in [Sc], but it has the important feature that although we are
dealing with modular curves with p in the level, all coefficients appearing
in IT are integral at p if k¥ < p. We think of the pair M = ()A(;, II) as a Chow
motive and we write Hgt(M) for ITHE™ (X x SpecF,, Q,) and Heis(M)
for IIH, frfsl(X x SpecF,/W(F,)) ®w,) Cp- (Here C,, is the completion
of Qp with respect to the p-adic absolute value.) As usual, for small N
we can define groups Hey (M) and Heyis(M) by introducing auxiliary level
structure and passing to invariants.

We define in the usual fashion operators T, (£f p"N), U; (¢|N),
and (d);.y (d € (Z/p"NZ)*) acting on He¢ (M) and Heris(M). There
is no obvious definition of a Uj operator if n > 0, but we do have the
Frobenius endomorphism F'. More precisely, let F' be the absolute Frobenius
endomorphism of X and o the absolute Frobenius of Fp. We also write F
and o for the endomorphisms F' x id and id xo of X x Spec E,; clearly
® = F x o is the absolute Frobenius of X x Spec F,. Then F induces (linear)
automorphisms F* of Hélt(T, Fi), Het (M), and Heps(M). (For crystalline
cohomology, one usually considers the semi-linear endomorphism induced
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by ®.) We define V* as p**'F*~! and make Hg (M) and Hes(M) into
T-modules as follows: let Ty act as T, if £f p"N, as U; if ¢|N, and as
(p)NyV™ if £ =pand n > 0, and let (d) act as (d);.y if (d,p"N) =1 and
as 0 if (d,p"N) # 1.

For a commutative ring R, let R™ be the quotient of R by its
nilradical, i.e., by its ideal of nilpotent elements.

PROPOSITION 2.3. — Fix integers N > 1, n > 0 and k > 0, a
prime p| N, and a number field L C Q. Let = be any set of characters of
(Z/p"NZ)* whose values lie in L.

a) There is a unique isomorphism of T-algebras T(H} (I, F)(E)) =
T(Het(M)(E)).

b) There is a unique isomorphism of T-algebras T(H¢,(M)(Z))red =
T (Heris(M)(2))".

Remark. — Again the proposition also holds with old or new
restrictions at primes dividing N.

Proof.
a) We proved in [U2], 2.1a that there is a canonical isomorphism
H (1, Fi) = Hee(M).

Reviewing the proof, it is immediate that all the maps appearing there
commute with the actions of the Hecke operators, so we obtain part a).

b) This follows from a theorem of Katz and Messing. Indeed,
the kernel of the structure map T — T(He(M)(E))™ (resp. T —
T(Heris(M)(E))™?) is the set of elements of T which induce a nilpotent
endomorphism of Hg (M)(E) (resp. Hepis(M)(ZE)). But by [KMe], Thm. 2
(as completed by [GiMe]), these two sets are equal. (To be completely pre-
cise, the theorem of Katz and Messing was proved only for Z coefficients,
but the same proof works with coefficients in the integers of a number
field.) O

We recall that T(Sk+2(I'1(IV))) and its variants are finite and flat over
Z (this follows from [Sh], 3.48) and thus have Krull dimension 1. If f is
an eigenform, then the kernel of the homomorphism T(Sk+2(T'1(N))) — Q
which sends a Hecke operator to its eigenvalue is a minimal prime and each
minimal prime corresponds to a Gal(L/L)-orbit of normalized eigenforms
(where the Galois group acts on g-expansion coefficients). In particular, if
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the number field L fixed in the definition of T is sufficiently large (e.g., if
it contains the eigenvalues of all Hecke operators on Si42(I'1(N))) then for
every minimal prime P of T(Sk+2(I'1(IN))), one has T(Sk4+2(T'1(N)))/P =
Oy, and there exists a unique normalized eigenform f in Sk42(I'1 (INV)) whose
eigenvalue for each Hecke operator is equal to the image of that operator
in Or. Maximal primes m containing g give rise to systems of eigenvalues
mod p: for any minimal prime P containing m with associated form f, the
eigenvalues of f are congruent mod p to the images of the corresponding
Hecke operators in T(Sk+2(T'1(N)))/m = O /p.

We say that a minimal prime of T(Hs(M)) has slope X if the
valuation of the image of (p)3,V* (if n > 0) or of T; (if n = 0) in
O is k+1—X. (We use this funny convention to agree with crystalline
terminology: if n > 0, an element of His(M) which is in the kernel of an
ideal of slope A will have eigenvalue for Frobenius of valuation \.)

Now take n = 1. Henceforth we assume that the number field L is
sufficiently large in the sense that it contains the eigenvalues of all Hecke
operators acting on Sky2(I;(pN)) for all k less than some fixed integer
(which in the applications will be p). For 0 < a < p—1, let E, be the set
of characters of (Z/pNZ)* = (Z/pZ)* x (Z/NZ)* whose restriction to
(Z/pZ)* is x* where x is the Teichmiiller character.

COROLLARY 2.4. — Fix integers N > 1 and k > 0, a prime p} N,
and a number field L C 6 which is sufficiently large in the sense above.
For 0 < a < p—1 there is a bijection between normalized eigenforms
f=>"anq" in Sk4+2(T'1(pN))(E,) of slope A which are old at p if a = 0 and
minimal primes P of T(His(M)(E_,)) of slope k+1—A\. If f has character
X% then f corresponds to P if and only if

T; =x(0)~%a; (modP) (¢]pN)
U; =x(£)%ar (modP) (¢N)
V* =e"1(p)a, (modP)
(diy =x(d)%(d) (modP) (d € (Z/pNZ)¥).
]

Remark. — There is a variation of the I'y(N) moduli problem
(called T', (V) in a recent preprint of Diamond and Im) which in many ways
is more natural here. Briefly, while a I'; (IV)-structure is an embedding of
group schemes Z/NZ — E, a I',(N)-structure is an embedding puy — E.
The I',(N) problem is well-suited to comparisons in mixed characteristic. In
particular, if we replaced I'; (V) with I',,(N) throughout this section, then
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the isomorphism ¢ in Proposition 2.2 would be a T-algebra homomorphism
(i.e., T; = Ty, Uy — Uy, etc.). Moreover, modular forms of slope A would
correspond to ideals of slope A in Corollary 2.4. We have not taken this
route since the vast majority of the literature (in particular [U1]-[U3]) uses
the I'; (V) moduli problem.

3. Hecke operators on 1.

Fix an odd prime p and positive integers n and N with pf/ N and
N > 5. In this section we will investigate the action of Hecke operators
on sections of various sheaves on I, the Igusa curve of level p" N. These
results will be needed to determine, in Section 5, the equivariance for the
Hecke action of certain isomorphisms of cohomology groups related to the
crystalline cohomology of M.

First of all, if s is a rational function or 1-form on I we define T} (s)
(¢)f p"N) and U;(s) (¢|N) as mi.m3(s) where m; and mp are the maps
I; — I mentioned in Section 2. For d € (Z/p"NZ)*, we define (d);nx(s)
as the usual pull-back of functions or forms. If s is a section of w*, we
define T and U} as before, namely as 71, ®*73(s). (This definition requires
some comment if k < 0. Since w™* is by definition Hom(w*, ©), we define
®* : myw™* — miw™* as the linear transpose of ®*~! : wjw* — mwk.) If
F is any invertible sheaf on I and F is any perfect Fp-algebra, we have a p-

linear automorphism o (defined as in Section 2) of the cohomology groups
Hi(I x SpecF, F).

We have a canonical regular section w. of w on I, which can be defined
as follows: let K = F,(I) be the function field of I. The generic fiber of
the universal curve & — I is an elliptic curve E over K, equipped with a
canonical Igusa structure of level p™; since F is ordinary, this amounts to
an isomorphism of finite group schemes

Z/p"Z = Ker(V": E®") - E)
whose dual is an isomorphism
Ker(F: E — E®)) =5 .

There is a unique invariant 1-form on E whose restriction to Ker F is
the pull-back of dt/t, where t is the standard coordinate on G,,. This 1-
form induces a global rational section of W*Q%eg’ /1 and this section is by
definition w,. From the definition, one sees that w?~! is the Hasse invariant,
viewed as a global section of wP~!. One can check that w, is a generating
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section of w away from the supersingular points and vanishes to order p™~!
at each supersingular point.

ProprosiTION 3.1. — Let s be a rational function, a rational
differential, or a rational section of w*, k € Z, on I x SpecF where F
is a perfect field of characteristic p. Then we have

Tf (swe) = LT3 (s)we (¢ p"N)
Ui (swe) = LU} (s)we (£1N)
o(swe) = o(s)we
(d)pnn(swe) =d(d)nn(s)we (d € (Z/p"NZ)X).

Proof. — Considering the definition of w,, one finds that ®*73(w.) =
¢r}(we) The first two formulas follow from this. The third formula is
equivalent to (d)7.y(we) = dw., which also follows from the definition
of w.. The last formula follows easily from the fact that w,. is defined on I
itself, i.e., over F,. O

There is a canonical differential 1-form on I defined as follows: again
consider the generic fiber E/K of the universal curve over I. We claim that
E,, the kernel of p on E, determines canonically an extension of Z/pZ by
tp in the category of finite flat group schemes over K. Indeed, we have

0— Ep—E, =5 E®P -0
(where Ep and ng ) are the kernels of Frobenius F' : E — E® and
Verschiebung V : E(® — E respectively). The Igusa structure on E
identifies E%,? ) with Z /pZ and Cartier duality then identifies Er with pp.
Let ¢ € K* /K*P = Ext}(Z/pZ, j1,) be the class of this extension and form
dq/q. This is a rational differential on I which one can check is regular and
non-vanishing away from the cusps and supersingular points; its divisor
is p»~18—C where S is the divisor of supersingular points and C is the
divisor of cusps. Define operators 6 on rational functions and © on rational
differentials by the formulas
df T
o= da/q’ o) d(dq/q)'
PropoOSITION 3.2. —  For rational functions f and rational differ-

entials 7 on I x SpecF, where F is a perfect field of characteristic p, we
have

T;0f =¢7'0T, f T;0r =¢710T;r
Uyof =¢710U; f U;0r =(710U;r
off =0of 0OT =0B0T

(d)pan0f =d720(d) 2y f (d)2anOT =d720(d)%. NT.
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Proof. — To prove the first two lines, note that the group schemes
71 Ep and 73 E,, over F,(X,) sit in a commutative diagram with exact rows
0 — wp — wfE, — Z/pZ — 0
2] o] 1]
0 — pp — mE, — Z/pZ — 0.
This shows that the extension class of 75 E,, is £ times that of 7} E,, (cf. [S],

Ch. VII, §1). It follows that 73(dg/q) = ¢n}(dgq/q) and the result follows
easily from this.

For the last line, we argue similarly: there is a commutative diagram
with exact rows
0 — pp — E, — Z/pZ — 0
dl  (dpn | '
0 — pp — (dpnEp — Z/pZ — 0
which shows that (d)*. y(dg/q) = d*(dg/q) and the claimed formulas follow
easily.
The penultimate line follows from the fact that dg/q is defined over F,,.
O

The proof of the proposition also yields the following, which we record
for later use.

COROLLARY 3.3. — The differential dq/q is an eigenvector for all
the Hecke operators. We have

(12 T7 (dg/q) = 1+ )dg/q, (€ 1)U (dg/q) = dq/q,
and
(d)3nn(dg/q) = d* dg/q. o

We recall that the projector IT of Section 2 can be applied to certain
sheaves on I, since the automorphisms involved cover the identity of I.
In particular, we showed in [U3], 4.1 that l'[f,,Qi“;{_.+1 ~ O} ® w* and
IIR* f*(’))? =~ wk We need to know the Hecke equivariance of these
isomorphisms.

PROPOSITION 3.4. —  The isomorphism II f*Q’;{l ~ Ol @ wk is
equivariant for the Hecke operators T, Uy, (d);n ~» and for o. Under the
isomorphism IIR* f,O = w™*, the operators Ty (resp. Uf, (d)%ny, o) on
IIR* f,O% correspond to €T} (resp. £5U;, (d)yny, o) on w™*.
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Proof. — Since the sheaves in question are locally free, it suffices to
check the claims away from the cusps. There, the isomorphism IIf, Q’;?‘H =~

0} ® w* is the composition of three isomorphisms: IT f*Q'j“{:"1 ~ 0l
IT f*QI)EE/I coming from the relative differential sequence; the Kiinneth
isomorphism Q} ® I f*Q’)EE/I > 0 ® (f0 / I)®k; and the definition of w
(away from the cusps) as f,Q} /- Bach of these isomorphisms is clearly

equivariant for the Hecke action and since they are defined over F,, they
commute with o as well.

The second isomorphism is not equivariant because it involves Serre
duality. Namely, away from the cusps, it is the composition of the Kiinneth
isomorphism ITRFf,05 = (R! f.0¢)®" (which is equivariant) with the
isomorphism (R! f. (’)g)‘g’k = w~* induced by Serre duality. Suppose for the
moment that £ = 1. In the definition T = 7,®*73, the isomorphism
o miwl ! is the linear transpose of the inverse of the
isomorphism ®* : 3w = w3 f,Q il fS2% J1 = MW Thus for sections
n of R'f,Og and s of f*Q}:/I, we have

(®*n,s) = (n, ®*s) = (n,£(2*)"'s)

where (-, ) is the Serre duality pairing. On the other hand, the transpose
of 7} (resp. m1«) for both linear and Serre duality is mo. (resp. w}). Thus
we find a commutative diagram

R'f,.0¢ — w™!=Hom(w,Or)
Ty | Lery

R'f,0¢ — w™!=Hom(w,Oy)
which is the claim when k£ = 1; taking tensor powers yields the claim for a
general k. A similar proof works for U;. On the other hand, the transpose
of (d)n y for both linear and Serre duality is (d=1)%n N, SO the isomorphism
R!'f,0¢ = w™! is equivariant for the actions of this operator. Finally, since
this isomorphism is defined over F,, it too commutes with o. O

— Tjw”

4. Some mod p Hecke algebras.

As before, we fix an odd prime p and integers N > 5, k, and a with
pf/N,0<k<p,and 0 < a < p—1. (From now on, n will be 1.) We also fix
a number field L C Q large enough to contain the eigenvalues of all Hecke
operators on Sy, (I'1(pN)) for 2 < w < p+1. If H is a T-module, we write
H(x*) for the submodule where the operators (d) act via x%¢ where ¢ is any
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character modulo N. In the notation of Section 2, H(x*) = H(Z,). Recall
the motive M = ()Z' ,IT) of Section 2 attached to the data (p,n = 1, N, k, a).
To ease notation, we write Tcyis (or Teris(k, a) when we want to emphasize
the values of k and a) for T(Hcyis(M)(x*)). In this section we will relate
certain parts of the spectrum of Tyis/pTeris to Hecke algebras arising from
the cohomology of logarithmic or exact differentials on M.

For an integer ¢ with 0 < 7 < k+1 we dgﬁne a Hecke algebra
Tiog = Tiog(k, a,1) as follows: on the étale site of X, we have the sheaves

Qfog of logarithmic differential i-forms. These sheaves are locally generated
dj df; )
additively by sections —}f—l ARERWN ﬁ where f; € (’);. (When ¢ = 0, O,

1 ]
is by convention the constant étale sheaf Z/pZ.) Consider the cohomology
group
Hiog = ITHEGH (X x SpecF,, Qo) (X*)-

This is an Fp-vector space (not necessarily finite-dimensional) which carries
an action of the Hecke operators T;, U/, and (d) pN>» acting as in Section 2.
It also carries an Fp-linear automorphism o defined in analogy with the o
acting as in Section 2. Define an action of T on Hjez ® E, by letting T}
act as T; if £f pN, as Uy if £|N, and as (p)yo if £ = p; and by letting
(d) act as (d);y if (d,pN) = 1 or as 0 if (d,pN) # 1. The base ring Or,
acts via its quotient Op/p C F,. We define Tz as T(Hiog ® ), i.e., as
the image of the homomorphism T — End(Hog ® Fp). The following result
says that under suitable hypotheses, T)oe captures the slope i part of Ty,
modulo p.

THEOREM 4.1. — Let p be an odd prime number, N, k, a, and i
integers withpf N, N >5,0< k <p,0<a<p-1,and 0 <i < k+1.
Suppose either i = 0; or i = k+1; or a # 0 and i satisfies 1 < a and
k+1—i < p—1—a. Then there is a unique homomorphism of O -algebras
¢ : Terig — Thog such that

o(I7) =17 (¢4 pN)
oUp =U;  (@N)
o(p)NV*) =P p)yo
o({(d)pn) = (dpn (d € (Z/pNZ)>).

For every minimal prime P C T,is of slope i, there exists a unique maximal
prime m C T\, such that
d)_l(m) = P+pTeris

*2) (p)yV* = pFt1 %y (mod P) = (p)iyo = u (mod m).



SLOPES AND CONGRUENCES 21

Conversely, given a maximal ideal m of T\.g, there exists a minimal prime
P of T of slope i such that 4.2 holds.

Proof. — Consider the integral crystalline cohomology group
H=O Hfr-:-sl (X X Fp/W(Fp)) ®W(F ) OCP)(X )-

It is torsion-free ([U2], 5.6) and so is a lattice in Heis(x*) = H ® Q on
which Teris acts. Let Hy;) be its slope i subspace H N (H ® Q)

We showed in [U3], 2.4 that, under the hypotheses, Hiog is finite
and so by general results of Illusie and Raynaud (cf. [U3], §2) the slope ¢
subspace is a direct factor of H, viewed as F-crystal. The Hecke algebra
Tcis preserves this factor, since the Hecke operators commute with F™.
Moreover, on this factor we have a canonical Z,-structure

= C Hy = ®z, Oc, = Hy
and a canonical isomorphism
HY =P /pH‘p*:”i = Hiog.
(Here as in Section 2,®is the semi-linear endomorphism induced by the
absolute Frobenius of X xSpecF,,.) This implies that Hy;)/pH;) & Hiog®F,
and this isomorphism is compatible with all the Hecke operators; note
that on H®"=P", T, acts by (p)§V* = (p)iop*t1~%. This establishes the

existence of a homomorphism T — Tiog as in the statement of the
theorem.

The existence of such a homomorphism gives a relation among ideals
in Ters and Tieg, but we have to do more to obtain the implication in 4.2.
(In Tog, a ring of characteristic p, pF*+1=t is usually zero.) We will use the
following well-known lemma whose proof we recall for the convenience of
the reader.

LEMMA 4.3. — Let F be a field, A an F-algebra, and V an A-
module which is finite dimensional as an F-vector space. If P C A is a
prime in the support of V', then

V[Pl ={v € V]av =0 for all a € P} #0.

Proof. — Since P is in the support of V', we have Ann(V') C P and
we can replace A with A/ Ann(V'). Thus A C Endg (V) and A is Artinian.
If Py,...,P, are the primes of A, with P = Py, then V is the direct sum
of its localizations Vp,. Moreover, by Nakayama’s lemma PVp is properly
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contained in Vp; since V is finite dimensional, P™Vp = 0 for large enough
m. If myg is the minimal such m, then

0£P™ W CVpCV
and P™~1Vp is killed by P. ]

Now let P be a minimal prime of Ts of slope i. Since Teyis/P = Of,
P stays prime in Tcris ®0, Cp and we can apply the lemma with F = C,,
A =Teis®0, Cp, and V = Heyis. An element of V[P] is just an eigenvector
for all the Hecke operators, and scaling suitably, we can take it to be a
primitive vector v € H; since P has slope i, v € H[;. Thus v projects in
Hiog ®F, to a non-zero eigenvector for all the Hecke operators. If m denotes
the kernel of the homomorphism from Tieg to Fp which sends an operator
to its eigenvalue on v, then m is the desired maximal ideal.

Conversely, let m C T, be a maximal ideal. Arguing as in a lemma of
Deligne and Serre, we will produce an eigenvector v € H ;) whose eigenvalue
for each ¢t € T is congruent to the residue of ¢ modulo m. First, let T;
be the subalgebra of End(H|;) generated by the completion Op, o, Teris,
and the operator 0. As Ty; is finite and torsion free over O, it is free

over Or, ,. Also, we have a surjection T; 2, Tiog- The ideal ¥~!(m) is
maximal and using “going down”, we can find a prime P’ of T};) contained
in ~}(m) with P’ N O, = 0; since the eigenvalues of all t € Tcys lie
in Op, we even have T|; /P = O,. Now using the lemma as above
gives an eigenvector v € Hy; as desired. The kernel of the homomorphism
Teis — O which sends an operator to its eigenvalue on v is then a minimal
prime of T with the desired properties. O

Our next task is to relate the action of Hecke operators on Eisenstein
series to mod p cohomology. While it is probably possible to do this
by arguing as in Theorem 4.1 (after proving analogues of the results
of Tllusie and Raynaud in the context of logarithmic schemes (“log-log
cohomology”?)), that would take us too far afield so we will use an ad
hoc method.

Consider the F,-vector space
_ HO(I’Ql(CI))
~ HO(I,Q1)
where C; denotes the reduced divisor of cusps of I. The Hecke operators

T;,U;, and (d);‘7 ~ act on this vector space. Moreover, the differential dg/q
introduced in Section 3 defines a non-zero element of V' and, by Corollary
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3.3, dg/q is an eigenvector for all the Hecke operators. On V ® F,, we have a
p~!-linear action of the Cartier operator C and a p-linear operator o. Since
dq/q is logarithmic and defined over F,, it is also fixed by C and 0. We

define v
= (@) = (§272) ")
and
Diog = Diog(a) = (D(a) ®Fp)c=1-

Note that D and Diog are two (possibly distinct) F,-structures on D ® F,,.
We let T act on D(a) ® F, by letting T} act as T if £/ pN, as U} if £|N,
and as oC if £ = p; (d) acts as (d);y if (d,pN) = 1 and as 0 if (d,pN) # 1.
We then define Tcysps = Teusps(a) as T(D(a) @ Fp).

Now consider the space £2(I';1 (pN)) of Eisenstein series of weight 2 on
I'1(pN), together with its action of the Ty, Uy, U, and (d); . The subspace
&(T1(pN))(o) spanned by eigenforms for U, with eigenvalues which are

units at p contains the Eisenstein series E( ) _, of Section 1. Let

W =W(a) = { (52(F1(pN))[0]/CE2X D) ifa#0

E2(T1(pN) iy if a = 0.

We define a Hecke algebra Tgis = Tris(a) as T(W) where T acts in the
obvious way.

PROPOSITION 4.4. —  There is a unique surjection of Or-algebras
¢ : Tris — Tcusps such that

o(T7) = (& 1) ¢ (fp"N)
¢(Ue) ehur - @n)
¢(Up) =oC (¢=p)
¢((d)yy) =(d7N)p(d)y (d € (Z/p"NZ)¥).

The map ¢ induces an isomorphism (Tgis/ p)red o (Tcusps)red

Proof. — This is just a Hecke algebra-theoretic version of the well-
known fact that Eisenstein series are determined uniquely by their values
at the cusps. The key points in the proof are: i) Eisenstein series of
weight 2 correspond via the Kodaira-Spencer isomorphism to differentials
on X;(pN) with poles only at the cusps; ii) the differentials corresponding
to Eisenstein series of slope 0 have poles only at cusps whose ramification
index is prime to p; and iii) these cusps reduce to the Igusa curve component
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of a model of X;(pN) over Z,[(p]. In the interest of brevity, we leave the
details to the reader. O

COROLLARY 4.5. — For every prime m C Tgysps(a), there exists

a Dirichlet character ¢ modulo N and a normalized FEisenstein series
E =3 an,q" in &(To(pN), x %) such that

T; =4{""a; (modm) (£f pN)

Uf ={"ay (modm) (¢|N)

oC = ap (modm)

(d);ny =x"“(d) (modm) (d € (Z/pNZ)>).

Moreover, we can assume E # Eg;?_z and if a = 0, we can assume E is

old at p. Conversely, given such an FEisenstein series, there exists a prime
m C Teysps(a) such that these congruences hold. O

To finish the section, we will relate certain primes of T,.s of non-
integral slope to mod p cohomology. Recall the higher exact differentials on
a variety X of characteristic p: let B and Z% be the sheaves of exact and
closed differential i-forms on X. Then B} y is just B and the B x C Z
are defined inductively by the exact sequences

0— By = Bix —Bi_yx—0
where C is the Cartier operator. We have inclusions Bi_l, x B;’ x and
each B, x is a locally free sheaf of OF -modules.

As usual, the Hecke operators Ty, Uy, and (d); act on the cohomol-
ogy groups H7 (M, fo,)?) =THI(X, sz,ff)' Now consider the cohomology
group

Hexoct = 11}_11 Hk+1—i(M’ Bi-.—kl*)(xa)
where the inverse limit is taken with respect to the maps C and (x*) is with
respect to the action of the (d);. We define an endomorphism V* by setting
V*(¢n)n>0 = (dn)n>0 where d, is the image of c,—; under the natural map

Hk:+1—i(M Bi+1 ~) —>Hk+1—i(M B'L+l)
> Tn-1,X ’ n,X )

We define a T action on Heyact ®Fp by letting Ty act as Ty if £/ pN, as
Uy if £|N, and as (p)y V* if £ = p; (d)pn acts as (d);y if (d,pN) =1 or as
0 if (d,pN) # 1; the base ring Of, acts via its quotient Or/p C F,. Define
Texact = Texact(k,a,%) a8 T(Hexact ® E,). This Hecke algebra captures
information modulo p on the part of crystalline cohomology with slopes in
the interval (z,i+1).
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PROPOSITION 4.6. — Let p be an odd prime number, N, k, a, and
i integers withp/ N, N > 5 0<k<p,0<a<p-1,and0<i < k.
Suppose either that i+1 < a and k+1—i < p—1—a; or that i = k and
a > k; or that i = 0, a > 0 and k < p—1—a. Then there is a unique
homomorphism of Of-algebras ¢ : Tcrs — Texacy Such that

o(Ty) =17 (£f pN)
6(U7) =U; (elN)
P(D)NV*) = )NV
o({d)pn) = {d)pn (d € (Z/pNZ)>).

This map identifies Spec Texact With the set of closed points of Spec T s
lying over p and containing a minimal prime whose slope lies in the interval
(4,i+1).

Proof. — Let H be the integral crystalline cohomology group ap-
pearing in the proof of Theorem 4.1. We proved in [U3], 2.7 that under
the hypotheses, the subspace H; ;11) = (H ® Q)(i,i+1) N H with slopes in
(4,1+1) is a direct factor of H as F-crystal. This direct factor is preserved
by the Hecke operators and we have an isomorphism

Hiry & HH UM, BWOLEH () ®w,) Oc,.-
We also have
HE=H(M, BWQE) (x*)/F = H* (M, W) (x*)/F = Hexact

and all these isomorphisms are compatible with the Hecke operators. (The
F in the last displayed equation is not our F™*, but rather a semi-linear
operator defined in the deRham-Witt theory. We have p'F = ®* on
H (i,iﬂ).) This establishes the existence of a homomorphism T s — Texact
and the image of the corresponding map of spectra certainly lies in the
set of closed points lying over p with slope in (7,i+1). To see that all
such arise, we need to use the fact that F' is topologically nilpotent on
HFH1-4(M, BWQg'l)(X“), so that any operator nilpotent modulo F is also
nilpotent modulo p. a

5. Relations between weight k+2 and weight 2.

In this section we will relate the mod p Hecke algebras studied in
the last section for different weights and slopes. This is the key ingredient
giving congruences between modular forms of various weights and slopes.
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THEOREM 5.1. — Suppose that 0 < k < p—1,0< a < p—1, and i
satisfies 1 <i <k, i <a, and k+1—i < p—1—a. Let

=77/ 0)

and put b = a+k—2i. Then there exists a unique homomorphism of (O, / p)-
algebras ¢ : Tiog(k,a,i) — Tiog(0,b4+2,1) @ Teusps (b+2) @ Tiog (0, b, 0) such
that

o(T7) = (67'T7,67'T;, 0T7) (¢/pN)

8(UF) = (607,607, 60]) (V)
¢(0) = (co,coC, co)
Bldhp) = (@0 dys, d* ()3, d*Md)3y)  (d € (Z/pNZ)¥).

The kernel of ¢ is contained in the nilradical of Tiog(k, a,%) and the com-
position of ¢ with projection to any one of the three factors is surjective.

COROLLARY 5.2. — The map of topological spaces underlying
Spec(Tiog (0, b+2,1) & Teusps(b+2) @ Tiog(0,b,0)) — Spec Tiog(k, a, )

is surjective and its restriction to each of the closed subschemes
Spec Tog (0, 542, 1), Spec Teusps (b+2), and Spec Tiog(0, b, 0) is injective. O

Proof of 5.1. — The proof will use the detailed information on Hyg
worked out in [U3] and the results on Hecke operators on I in Section 3.

Let
<a+k+1—i) (a)
= . , C2= 1.
) i

so that ¢ = ¢;/cy. According to Theorem 2.4a) of [U3], there is a three
step filtration of H,g whose graded pieces are isomorphic to H, 2SI ®
Fp, Q1,.) (X"12), Diog(b+2), and HY, (IQF,, Q7 )(x®). The filtration on Hig
is preserved by the Hecke operators, but the action on the graded pieces is
not the usual one. In order to make this precise, we will have to recall some
of the proof of 2.4a) from [U3]. Let f : X — I be the projection. Using the
Leray spectral sequence, one finds that

Hiog = H(I ® B, IIR*1 78 1,00 ) (x%).

Let 7 : I — X;(N)/F, be the natural map; this is a Galois cover with group
(Z/pZ)* and we can define (m JIRF1~¢£,Qf )(x*). In [U3], §8 we defined
a sheaf F(x®) (which is a subsheaf of 7, of the constant sheaf of rational
functions on I) and an isomorphism

(MR () = F(x).
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This isomorphism introduces a twist in the Hecke action, which we will
now make explicit.

First of all, the sheaf sequence
[ 7 i
0— Qlog, 5{- Z Q

induces an inclusion ITRF1—¢ f*Q: % S IIRk+1-% f*Z;;E of sheaves on I.
og

)

In [U3], §7 we defined subsheaves D; C TIR* f«O% and Ciyq C f,,Q’}ig‘1
and homomorphisms D; — IIRk+1-? f*Zj? and Cj;; — IIRkF+1-¢ f*Z;iZ.
These homomorphisms are defined by chasing through cohomology exact
sequences and are Hecke equivariant. Using the isomorphisms IIR* f,©O 5 =
w™* and f*Q’;?+1 =~ Ol ®w*, for suitable functions f and g on I the section
(fw:k, dgwk) of w=" @ Q! ® w* gives rise to a section s of HR’“““if*Z%;
we gave necessary and sufficient conditions in [U3], §8 for a pair of
functions (f,g) to give rise to a section of IIR*+1~%f, Q’ tog, " In view of

Proposition 3.4, we have that the action of (¢*T},T;) on (fw.*,dguwk)
corresponds to the action of T, on s. Similarly, the action of (¢¥U},U;)
(resp. ((d)3n» (d)n), (0,0)) on (fw; ¥, dgwE) corresponds to the action of
Uy (resp. (d);y, o) on s.

The isomorphism ITRF+1—¢ f*Qfog )},(X“) — F(x?) alluded to above
sends a section s corresponding to (fw; ¥, dgwk) to the rational function h
defined as

1 . 1
h = aoz(f) ( ) ap—l (k— z)

Using Propositions 3.1 and 3.2, we see that the action of T, (resp. Uy,
(d)3, (d), o) on m, IRk~ f*Q’ log, 7(x?) corresponds to the action of oty

(resp. U}, d*~ b(d) (d), o) on F(xP).

In the last part of the proof of 2.4a) of [U3], we have a short exact
sequence

0— (HO(I ® F,, Q! (Cr))
F,x—1dq/q

)(xb+2)clc_”=° —~ H(I®F,, F)(x’) -

H (I B, 0)(x")" "= =0

where x satisfies zP~1 = c;/c;. The maps are as follows: given a section
h of F(x®), there exist rational functions h, in the local ring at each
supersingular point « which are well-defined up to regular functions, and
are such that h—cyhy+coh? is regular at . The map to H'(I,O) sends h
to the répartition of O; with h, at the supersingular point x and zeroes
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elsewhere. This map is evidently equivariant for the Hecke operators. The
kernel turns out to be the set of global sections h of F(x?) which can be
written globally in the form h = ¢; H—cp HP and such a section is mapped

to the 1-form H%q which lies in HO(I,Q(Cy))(x*+2)¢1€~%2=0 and is well-
defined up to the addition of an F, multiple of z~'dg/q. Using Proposition
3.2, we have that the action of T} (resp. U}, (d)3, (d)}, o) on HO(I, F)(x?)
corresponds to the action of £~'T; (resp. £7U;, d=2(d)%, (d)}, o) on
HO(1,Q'(Cr)(x"*?).

Finally, multiplication by = defines isomorphisms
(HO(I ® E,, ot (CI)))(Xb+2)clc—cz=0 ~ (HO(I ® E,, Q! (CI)))(Xb+2)C=1
Fpz~ldg/q Fpdq/q
H'(I®F, 0)(x")* = " =H (I8 F, 0)x")"
r:VHl (I ® FP’ Q?og)(xb)

H(I 9 F,, 2}(C)))
4 (
Fpdg/q -
Diog(b+2) by H(I ® Fp, Q},.)(x**?). These isomorphisms are equivariant
for all the Hecke operators except o on the left hand side corresponds to

co on the “log” groups.

)(X"“)C=1 is in an obvious way an extension of

Combining all of the above, we have an action of Tiog(k,a,?) on the
group
Hg (1, Qog) (x"+?) @ Diog(b+2) @ Hi (1, Qog) (x°)

log
such that
T; & (07T, 07T, 0T (¢fpN)
Uy & (éi‘lU;,Zi_lU;,ﬁU;) (¢|N)

o < (co,coC,co)

(dpy @ 2d)yy, d* P2 d)py d**(d)y)  (d € (Z/PNZ)X).
This proves the existence of the homomorphism in the theorem and its
uniqueness is obvious. It is also clear that this homomorphism has a
nilpotent kernel and that its composition with the projection to each of
the factors is surjective. Thus the proof of the theorem is complete. ad

The next result gives a relation between the algebras Texact attached
to different weights and characters.

THEOREM 5.3. — Let k, a, and i be integers with 0 < k < p,
0<a<p-1l,and 0 < i < k, and let b = a+k—2i. Suppose either that
i+1 < a and k+1—t < p—1—a; or that i = k and a > k; or that i = 0 and
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p—1—a > k. Then there exists a unique isomorphism of (O}, /p)-algebras
@ : Texact(k,a,1) — Texact(0,b,0) such that
o(T7) = B’:Te* (¢/ pN)
o(U;) =24U; (4|N)
o((pNV™) = {PNV”
o({d)yn) =d**d);y (d € (Z/pNZ)X).

Proof. — Using [U3], 9.2 we have, for all n, isomorphisms
HE (M, B’“)( “) = HY(I, By 1)(X")
compatible with the Cartier operators These isomorphisms are also com-
patible with the maps induced by the inclusions B,’ltl < Bi*1 and thus
with the V* operators . So to prove the theorem, we need only examine
their equivariance with respect to the operators T, U, and (d); N

To that end, let us recall how these isomorphisms were defined. In
fact, we defined isomorphisms

(rIIR £.B¥1) ()  (m. B} )(X")
where m : I — X;(N)/p, is the projection. Given a section s €
(W*HRk‘if*B:LXi)(x“), we have n sections sy, ..., s, of
(. TR £, 250 (x%),

namely the images of s under the maps

Rk zf Bz+1 cr HRk zf BH—J — TIR*- zf ZH—]
As in the proof of 5 1 attached to each s] we have a palr of sections
(fjws*, dg;wk) of w™* and O} ® w* whose images in IIRF~ £, Z*F' under
the d— and C-construction maps sum to s;. Using 3.4, we have that the
action of T; (resp. Uy, (d);n) on s intertwines the action of (¢¥T},T;)
(resp. (U7, U}), (g (d)s)) on (fywz®, dgsuwk). Now set

s = 0053, doy) = 071 (1) + 0 Egrrriq,)

= () ()

Then the image of s in B}, ; is the 1-form

and

n— d
Y (ATl R L)) )qq
Using Propositions 3.1 and 3.2, we see that the action of T, (resp. Uy,
(d)yn) on s intertwines the action of ¢T; (resp. €Uy, d*~*(d);y) on 7.
This is exactly the needed equivariance. O
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6. Proof of Theorem 1.1.

Suppose for the moment that N > 5. We prove part a) first: let

k, a, and ¢ be integers satisfying the hypotheses of the theorem and
let f = > ang™ be a normalized eigenform in Si42(I';1(pN)) of slope i
with character x%. Set b = a+k—2i, a’ = p—1—a, i’ = k+1—i, and
b = a’+k—2i': By Corollary 2.4 and Theorem 4.1, we have a maximal
ideal m C Tiog = Tiog(k, a’,4’) such that Tiog/m = O /p and

Ty =¢%a, (modm) (£f pN)

U; =(“a; (modm)  (¢N)

{p)xo =ptap, (modm)
(dry =x"e(d) (modm) (d € (Z/pNZ)>).

Now using Theorem 5.1, we get a maximal ideal m’ in one of the three rings
Tiog(0,0'+2,1), Teusps(b'+2), or Tiog(0,b’,0) such that certain congruences
are satisfied. Assume for definiteness that m’ is in the first ring; the other
two are entirely analogous. Then we have

® =0%""qp (modm’)  (£fpN)

U; =¢¢~"ap (modm’)  (¢N)
(p)No =c'p~"ap (mod m')
(diy =x"*?%(d) (modm’) (d € (Z/pNZ)).
Using Theorem 4.1 and Corollary 2.4 again (“in reverse”) we find a cusp
form g = 3 cnq" of weight 2, level pN, and character x”6 for some
6§ = € (mod p). It has slope 0, it is old at p if b = 0, and the displayed
congruences imply that
ap = flicp (modp) forall£+#p
pta, = cc, (modp)
e(d) =6(d) (modp) foralldeZ.

If the ideal m'’ lies in one of the other two rings Tgis(b'+2) or Tiog(0,b’,0)
we proceed analogously, using 4.5 in place of 4.1 and 2.5 in the Eisenstein
case.

This proves that given f of weight k42 and slope ¢ we get the desired
g of weight 2. Conversely, given a normalized eigenform g of weight 2 as in
part a), we reverse the above argument and find a form f of weight k+2
satisfying the desired congruences. This proves case a) of the theorem. Case
b) is entirely similar, using 2.5, 4.6, and 5.3 in place of 2.5, 4.1, and 5.1.

Finally, it remains to treat the cases N < 4. When p = 3 we checked
the truth of the theorem in Section 1 by exhibiting congruent forms. If
p > 3 we use a standard invariants argument: choose an auxiliary integer
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N’ such that N’ > 2, (N,N’) = 1, and p does not divide the order of
H = GLy(Z/N'Z). We have a variety X based on the modular curve for
simultaneous I';(pN) and I'(N’) level structures (by our assumptions on
N’, these are fine moduli spaces) and a projector II € Q[G’] where G’ =
HxG and G = (uk x(Z/NZx(Z/N'Z)?) x Sk. The crystalline cohomology
of ()? ,I1) is related to modular forms in Sk2(I'1 (pN)) by an analogue of 2.5
and the arguments involving results of [U3] go through mutatis mutandis.
In the end, we find congruences between forms f = ) ang™ of level pN
and weight k42 and forms g of level pN and weight 2.

Note, however, that because we use full level N’ structure, we do not
have Hecke operators Ty for primes ¢|N’ and so a priori we do not have
congruences between the Fourier coefficients indexed by primes ¢|N’. But
the coefficients for these £ are determined by the other coefficients, via the
associated Galois representation modulo p. In the case where 1.2 holds for
(n,N') =1 with g = Y b,¢™ we have

be = Tr(pg(Fre)) = Tr(ps ® x' 7*(Fr)) = apl*~* (mod p)

for each prime ¢|N’ and in the case where 1.3 holds for (n,N’) = 1 with
h =3 cnq™ we have

ce = Tr(pn(Fre)) = Tr(ps ® X *(Fre)) = agf™" (mod p)

for each prime ¢|N’. Thus we obtain the desired congruences for all
coefficients.

This completes the proof of Theorem 1.1 in all cases. |
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