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THE FULL PERIODICITY KERNEL OF THE TREFOIL

by C. LESEDUARTE and J. LLIBRE (*)

1. Introduction and main results.

Let E be a topological space. We shall study some properties of the
set of periods for a class of continuous maps from E into itself. We need
some notation.

The set of natural numbers, real numbers and complex numbers will
be denoted by N, R and C respectively. For a map / : E —^ E we use the
symbol /n to denote / o / o . . . o / ( n e N times), /° or «id » denotes the
identity map of E. Then, for a point x € E we define the orbit of x, denoted
by Orbf(x), as the set {^{x) : n = 0,1,2,...}. We say a- is a fixed point
of / if f(x) = x. We say re is a periodic point off of period A; C N (or simply
a k-point) if /^(rr) = x and f^x) -^ x for 1 < i < k. In this case we say
the orbit of a; is a periodic orbit of period k (or simply a k-orbit). Note that
if a; is a Appoint, then Orby(rr) has exactly k elements, each of which is a
Appoint. We denote by Per(/) the set of periods of all periodic points of /.

A connected finite regular graph (or just a graph for short) is a pair
consisting of a connected Hausdorff space E and a finite subspace V, whose
elements are called vertices, such that the following conditions hold:

(1) E \ V is the disjoint union of a finite number of open subsets
61,. . . , efc, called edges. Each ei is homeomorphic to an open interval of the
real line.

(2) The boundary, Cl(e^) \ e^, of the edge ei consists of two distinct
vertices, and the pair (Cl(e,),e,) is homeomorphic to the pair ([0,1],(0,1)).

If v and e are the number of vertices and edges respectively of £1, then
the Euler characteristic of E, is -^(E) = v - e. A vertex which belongs to

(*) The authors have been partially supported by a DGYCIT Grant n° PB 93-0860.
Key words: Periods - Full periodicity - Kernel.
Math. classification: 54H20.
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the boundary of at least three different edges is called a branching point
of E. A vertex which belongs to a unique edge is called an endpoint.

An E map is a continuous self-map of E having fixed all branching
points of E.

We say an E map / has full periodicity if Per(/) = N. The set K C N
is the full periodicity kernel of E if it satisfies the following two conditions:

(1) If / is an E map and K C Per(/), then Per(/) = N.

(2) If 5 C N is a set such that for every E map /, S C Per(/) implies
Per(/) = N, then K C S.

Note that, for a given E, if there is a full periodicity kernel, then it is
unique.

From now on the topological space E will denote one of the following
spaces:

^ ^ { z ^ C ' . z 1 e [0,1]}, z = 2 , 3 , . . . , 6 .
0= { z ^ C : \z+i\ =1},

01 =0u{zel2 :Re z^O},
02 = O U l 2 ,

Os == 0 U {z € 14 : Im z > 0},
04 = O U l 4 ,

oo=Ou{zeC: \z-i\ = 1 } ,

001 = oo U {z e 12 : Re z > 0},
002 = 00 U l2,

T = {z e C : z = cos(3(9) e^, 0 < 0 < 27r}.

The spaces l2, Is, l4, Is, IG.O.OI , 02, Os, 04,00,001,002 and T are
called the interval or the I, the 3-odor 3-staror the Y, the 4-odor the 4-^ar,
the 5-od or 5- star, the 6-od or 6-star^ the circle, the sigma, the alpha, the
circle with three whiskers, the circle with four whiskers, the eight, the ez^/i^
with one whiskers, the e%<^ with two whiskers and the trefoil respectively.

The spaces Is, 14, 15, Ig, Oi, 02, Os, 04, oo, ooi, 002 and T have
exactly one branching point, namely 0 = 0 € C. We also denote by 0 the
O e O .

The full periodicity kernel of l2, Is, l4, l5, IG, 0, Oi, 02 and oo are
known and presented in the following theorem.
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THEOREM 1.1. — The following statements hold:

(a) The set {3} is the full periodicity kernel ofl^.

(b) The set {2,3,4,5,7} is the full periodicity kernel of Is.

(c) The set {2,3,4,5,6,7,10,11} is the full periodicity kernel of the 14.

(d) The set {2,3,4,5,6,7,8,9,10,11,13,14,16,17,18,21,23} is the full
periodicity kernel of the Is.

(e) The full periodicity kernel of the Ig is the set

{2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,21,22,23,28,29}.

(f) The set {1,2,3} is the full periodicity kernel ofO.

(g) The set {2,3,4,5,7} is the full periodicity kernel of Oi.

(h) The set {2,3,4,5,6,7,10,11} is the full periodicity kernel of 0^.

(i) The set {2,3,4,5,6,7,8,10,11} is the full periodicity kernel of oo.
• Theorem 1.1 (a) is due to Sharkovskii [Sh] (see also [LY]),
• Theorem 1.1 (b) was shown by Mumbru [M] (see also [ALM1]),
• Theorem 1.1 (c) has been proved by Alseda and Moreno [AM] and

independently by Leseduarte and Llibre [LL2],
• Statements (d) and (e) of Theorem 1.1 are due to Alseda and

Moreno [AM],
• Theorem 1.1 (f) is due to Block [Bel] (see also [LR]),
• Theorem 1.1 (g) has been proved by Llibre, Paranos and Rodnguez

[LPR1] (see also [LL1]),
• Statements (h) and (i) of Theorem 1.1 are due to Leseduarte and

Llibre [LL2].

Our main goal in this paper is to characterize the full periodicity
kernel of Os, 04, ooi, 003 and T. Thus, our main results are the following:

THEOREM 1.2. — The full periodicity kernel of Os is the set

{2,3,4,5,6,7,8,9,10,11,13,14,16,17,18,21,23}.

THEOREM 1.3. — The full periodicity kernel of0^ is the set

{2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,21,22,23,28, 29}.

THEOREM 1.4. — The full periodicity kernel ofoci is the set

{2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,21,23}.
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THEOREM 1.5. — The full periodicity kernel of 002 is the set

{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,21,22,23,28,29}.

THEOREM 1.6. — The full periodicity kernel ofT is the set

{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,21,22,23,28,29}.

Theorems 1.2, 1.3, 1.4, 1.5 and 1.6 are proved in Sections 6, 7, 10,
11 and 12 respectively. Sections from 2 to 5 present preliminary definitions
and results that are necessary for proving these five main theorems. In
Section 13 we compare our results on the full periodicity kernel with related
results of Blokh. Finally, in Section 14 we comment that full periodicity
implies positive topological entropy for continuous self-maps on a graph.

The tools for studying the set of periods and the full periodicity kernel
change strongly when we consider maps with some discontinuity points, see
for instance [ALMT].

2. Intervals and basic intervals.

From now on we shall talk about the whiskers and the circles of E.
A circle of E is the closure of a connected component of E \ {0} which
is homeomorphic to 0. A whiskers of E is the closure of a connected
component of E \ {0} which is homeomorphic to l2.

A closed (respectively open^ half-open or half-closed) interval J of E
is a subset of E homeomorphic to the closed interval [0,1] (respectively
(0,1), [0,1)). Notice that an interval cannot be a single point.

Let J be a closed interval of E^ and let h : [0,1] —> J be a
homeomorphism. Then h(0) = a and h(l) = b are called the endpoints of J .
If a and b belong to the same whiskers of E, then J will be denoted by [a, b]
or [&, a]. We take an orientation, that we call counterclokwise, in each circle
of E. If a and b belong to the same circle of £', then we write [a, b} to denote
the closed interval from a counterclockwise to b.

Note that it is possible that two different intervals of a circle of E
have the same endpoints. But two different points of a whiskers of E always
determine a unique closed interval.

Now we define a special class of subintervals of E. Let Q ==
{^1^2 5 • • • jQn} be a finite subset of E containing 0. For each pair ^, qj such



THE FULL PERIODICITY KERNEL OF THE TREFOIL 223

that qi -^ QJ we say that the interval [qi.Qj] (respectively [qj.qi]) is basic if
and only if (^,^-) n Q = 0 (respectively (g^,) D Q = 0). The set of all
these basic intervals is called the set of basic intervals associated to Q.

3. Loops and /-graphs.

Let / : E —^ E be an E map. If K and J are closed intervals of E,
then we say that K f- covers J or K —> J (or J <- K), if there is a closed
subinterval M of K such that f(M) = J. If JC does not /-cover J we
write K -^ J .

A pa^/i o/ Zen^/i m is any sequence Jo —> Ji —^ ' ' • —^ Jm-i —> Jmj
where J o , J i , " ^ J - m are closed subintervals of E (in general, basic
intervals). Furthermore, if JQ = Jm, then this path is called a loop
of length m. Such a loop will be called non-repetitive if there is no
integer z, 0 < i < m, such that i divides m and J^ = Jj for all j,
0 < j < m - z. We say that we add or we concatenate the loop
JQ —^ J\ —^ • " —> Jm-i —^ Jo to the loop KQ —> K-i — > - " — > Kn-i —^ KQ
if they have a common vertex Jo = KQ and we form the new loop
JQ —> J\ —^ ' " —> J-m-i —)> KQ —> K\ —^ " - —>• JQ. A loop which cannot be
formed by adding two loops will be called elementary.

Let Q be a finite subset of E containing 0. An f-graph of Q is a
graph with the basic intervals associated to Q as vertices, and such that
if K and J are basic intervals and K /-covers J, then there is an arrow
from K to J. Note that the /-graph of Q is unique up to labeling of the
basic intervals. Hence from now on we shall talk about the f-graph of Q (or
just the f-graph for short). The next three lemmas are well-known in one
dimensional dynamics, see for instance [ALM2]. We only prove the third
one because we will use its proof later.

LEMMA 3.1. — Let f be an E-map and let K , J , L be closed
subintervals ofE.IfLcJ and K f-covers J, then K f-covers L.

LEMMA 3.2. — Let f be an E map and let J be a closed subinterval
ofE such that J f-covers J . Then f has a fixed point in J.

LEMMA 3.3. — Let f be an E map and let Jo, J i , ' . . , Jn-i be closed
subintervals ofE such that Ji —^ J^+i for i = 0,1, . . . , n - 2 and Jn-i —^ Jo.
Then there exists a fixed point x of /n in JQ such that f^x) C Ji for
i = l ,2 , . . . ,n- 1.
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Proof. — We shall use backward induction. Let Kn-i C Jn-i be a
closed interval such that f{Kn-i) = Jo? and suppose we have constructed
Ki C Ji for some i > 0, i < n - 1 such that f{Ki) = K^ if i < n - 1
and f(Ki) = Jo if i = n - 1. Then, by Lemma 3.1, J,_i /-covers Ki and
therefore there exists an interval 7^_i c J^-i such that /(^-i) = ,̂.
Let ^ be as follows:

^ =f\K^° ' " ° f \ K , 0 f\K^

Then JCo C Jo and ^(^o) = Jo' Consequently ^(Ko) = Jo. By continuity
of /n and Lemma 3.2 /n has a fixed point x e KQ c Jo, such that
f(x) eKi C J z f o r % = l , 2 , . . . , n - l . D

Let J be an interval of E. Then Int(J) and C1(J) denote the interior
and the closure of J respectively.

PROPOSITION 3.4. — Let f be an E map having a k-orbit P.
Consider the set of basic intervals associated to P' = P U {0}. Let
Jo —^ Ji —> ' ' ' —^ Jm-i —> J-m = Jo be a non-repetitive loop of length m of
the f-graph of P ' such that at least one J, does not contain 0. Ifm^2k,
then m G Per(/).

Proof. — By Lemma 3.1 Jo /^'-covers Jo. Then by Lemma 3.2 there
exists x e Jo such that /^(x) = x. If x has period m we are done. So
suppose that x has period s, 0 < s < m. Thus s divides m.

It is not possible that x = 0 because 0 is a fixed point and some
f\x) e Ji with Ji n {0} = 0.

lixe Int(Jo), then Orbf{x) n P = 0. So each /'(a-) is exactly in one
basic interval, and consequently the loop is repetitive (because s < m and
s divides m). Hence, x must be a point of P. So Orbf(x) C P. Without loss
of generality we can assume that s = k.

Let KQ C Jo be the interval constructed in the proof of Lemma 3.3,
then f^x) e f^Ko) c J, for i = 0,1,... ,m. Since x = f^x) e f^Ko) C
Js it follows that Jo and Js have a common endpoint x.

Assume that Jo = Js. Both sets KQ and f^Ko) are contained in Jo
and contain x, an endpoint of Jo. Therefore L = KQ n f^Ko) is an
interval (in fact it is either KQ or f^Ko)). Clearly f\L) C f{Ko) C Ji,
f\L) C f^^Ko) C Js+z, and f\L) is an interval for 0 < i < s. Thus
Ji = Js+i for i = 0 ,1 , . . . , s — 1.
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Repeating this process we get Ji = Js-\-i for i = 0,1,. . . , m — s.
Hence the loop is repetitive because s divides m, a contradiction with the
assumptions. So JQ 7^ Jg.

If Jq = Jq^-s for some 0 < q < m — 5, then the above arguments
prove that Jq-^-z = Jq-\-s+i for i = 0,1 , . . . , s — 1. Repeating this process
we obtain that Ji = Jg-^-z for i = 0 , l , . . . ,m — s and so the loop is
repetitive, a contradiction with the assumptions. Therefore we can assume
that Jq -^ Jq-^-s for 0 < q < m — s.

Since a- is a periodic point of period s, if follows that JQ == J^s and
Jg = J3^. By the above arguments we get Jm = JQ = J2s = J^s = " '
and Js = J^s = J^s = ' ' ' - In particular m must be even. Furthermore
J^ = J2s+% for 0 < i < 2s — 1. Hence 2s = 2k divides m. Since m ̂  2k the
loop is repetitive, in contradiction with the hypotheses. D

Under the assumptions of Proposition 3.4 and i f m = 2A;, we can prove
that m G Per(/) if E is different from oo and T. Unfortunately we do not
know under the same assumptions if m € Per(/) when m = 2k and E is
either oo or T. But this is not important for the rest of the paper.

4. Q-linear maps.

Let G = li, for i = 2 ,3 , . . . , 6. It is easy to see that any tree G has a
metric fi such that i f x ^ y e G and z € [x^y]^ then ̂ (x^y) = fi{x,z)-\-^(z,y),
this metric is called the taxicab metric.

Let / be an E map and let Q = {^i, 925 • • • 5 9m} be an invariant subset
of E under / such that 0 € Q. We assume that there are points of Q in
each connected component of E \ {0}. Let EQ be the minimal connected
subgraph of E containing all the basic intervals associated to Q. Clearly EQ
is homeomorphic to E. We say that / is Q-linear if the following conditions
hold:

(1) EQ = E\ in particular the endpoints of E are points of Q;

(2) for any basic interval J associated to Q, f(J) is an interval formed
by the union of basic intervals of Q\

(3) f\j : J —> f(J) is a linear homeomorphism with respect to the
taxicab metric, i.e. f\j is a homeomorphism satisfying that for any
.r, y , z € J such that fji(x, y) = p,(x^ z) + ^(^, y) we have that

/.(/Or), f(y)) = /z(/(.r), f(z)) + /.(/(^), f(y)).
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We say an E map g is a Q -linearization of / if the following conditions
hold:

W 9\Q=f\Q\

(2) g is Q-linear;

(3) the ^-graph of Q is a subgraph of the /-graph of Q.

Suppose that / is an E map having a A;-orbit P such that P has
points in each connected component of E \ {0}. Set P ' = P U {0}. Clearly,
if E e {0,oo,T} then Epi = E. Assume now that E ^ {0,oo,T}. For
each whiskers W of E we consider the endpoint q e W of E and the point
p G W, p e P such that (p, q) H P = 0. Let E' be the new topological
space obtained by shrinking the interval [p, q] to the point p. Note that E '
is homeomorphic to E. We define the E map h: E ' —> E ' by h{x) = f(x)
if fW ^ E ' and h(x) = p otherwise. Of course P is a A;-orbit for h,
Per(/i) C Per(/) and the endpoint of W belongs to P. Therefore we can
assume that Epi = E. In particular, we can talk about the ^-linearization
of f in the above way.

In the rest of this section we assume that f is an E map having a
k-orbit P and consider the set of basic intervals associated to P/ = P U {0}.

LEMMA 4.1. — Let K and J be basic intervals and let g be a P ' -
linearization off. Ifx e Int(J), g(x) ̂  0 and g(x) e K, then J g-covers K.

Proof. — Let a, b be the endpoints of J. Since J is a basic
interval associated to P', its endpoints have image in P ' and so
{/(a),/(6)} nlnt(Jf) = 0. By P'-linearity, since g(x) € K, g(x) ^ 0
and x e Int(J), there exists an interval L C J such that g{L) = K. So J
g-coveis K. Q

Let J be a basic interval. If 0 € J, then J will be called a branching
interval; otherwise J will be called a non-branchig interval.

The following proposition is the converse result of Proposition 3.4 for
P'-linear maps.

PROPOSITION 4.2. — Let g be a P'-linearization of f. If g has an
m-point for m ^ {1,2,3,4,5,6, k}, then there exists a non-repetitive loop
of length m through the g-graph such that at least one basic interval of the
loop does not contain 0.

Proof. — Let a; be a periodic point of period m for g. Then
OTbg(x) n P' = 0, so for each z, 0 < i < m, there exists a unique
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basic interval Ji containing ^(rr). Since g is P'-linear, by Lemma 4.1,
Jo —^ Ji —> " • —> J-m-i —> Jm = Jo is a loop of the (/-graph. First we shall
show that this loop is non-repetitive.

Since g is P'-linear, we can define by backward induction on %,
a collection of subintervals Ki of Ji such that g : Ki —> K^ is
one-to-one and onto, where Km = Jm = Jo- Suppose now the loop is
repetitive, then there exists 5, 0 < s < m, such that s divides m and
Ji = Ji-^s for 0 <, i < m — s. We take s the smallest number in such a
way. We claim that Ki C K^s for 0 < i < m - s. To prove the claim
consider Km-s C Jm-s = Jm = Km and by backward induction, suppose
K^ C Ki^.s-\-i and Ki ^ K^s- So, there is a € Ki such that a ^ ^+s,
and g{a) e JQ+i C K^s+i- Since J^+s -^ JQ+s+i, there exists b e J^+s
(and so b -^ a) such that g(b) = g(a). This is a contradiction with the fact
that g is P'-linear and g\j^ is one-to-one. Hence the claim is proved.

Thus g8(Ko) = Ks D KQ and by Lemma 3.2, g8 has a fixed point
y € KQ. Since m is divisible by 5, ^m(2/) == ^ / . Note that x ^ y because x has
period m, and 2/ has period s <m. Hence the map ̂ m : KQ —> Km is linear
and has at least two fixed points. Therefore g'm\Ko must be the identity map
and so KQ = Km = Jm = Jo- Then we get KQ = Kg = K^s = - • - = Km
because KQ C Kg C K^s C • • • C Km = KQ. Now consider the linear map
g8 : KQ —> Kg = KQ which has a fixed point. Since gs\Ko ls one-to-one and
onto, we have two possibilities.

• Case 1: g8\Ko = id.

Then gs>(x) = x but x has period m > 5, a contradiction.

. Case 2: g8^^ ¥- id and g28^^ = id.

Let XQ e KQ = Jo be a Appoint for / such that Orby(a;o) C P. Then
g^^xo} = XQ. Moreover XQ is an endpoint of KQ and so k = Is. On the
other hand, since g'28(x>) = x and x has period m > s we have 2s = m.
So k = m, a contradiction with the hypotheses. In short we have proved
that the loop Jo —> Ji —)> • • • —> Jm-i —)> Jm = Jo 1s non-repetitive.

Suppose that all the basic intervals of the non-repetitive loop of
length m contain 0. Therefore Orbg(x) is contained in the branching
intervals. Since m > 6, there is a basic interval Jz containing at least two
points of Orbg{x). Let u,v € Orbg{x) D Ji such that (0,z») D Oibg{x) = 0,
and (u, v) D Ovbg(x) = 0. Since the loop is non-repetitive, there is Jj -^ Ji
such that Jj H Orbg(x) ̂  0. Let z € Jj H Orb^a;) such that (z, 0)r\P/ = 0.
Therefore there is r, 0 < r < m such that ^(n) = 2; and f^771"7'^) = u.
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On the other hand ^|[^o] is lineal and so ^|[^,o] = [^0]. Furthermore
v e (u,0) and so ^(v) e (2:,0) in contradiction with the fact that
(^, 0) H Orb^) =0. Q

COROLLARY 4.3. — Let g be a P'-linearization of f.Ifme Per(^)
and m ^ {2,3,4,5, 6, k, 2k}, then m € Per(/).

Proof. — Both E maps / and ^ have points of periods 1 and k. If
m t {1^ 2,3,4,5,6, k}, then by Proposition 4.2 there exists a non-repetitive
loop in the ^-graph of length m such that at least one of its basic intervals
does not contain 0. Therefore, since the ^-graph of P ' is a subgraph of the
/-graph of P ' and m ̂  2k, by Proposition 3.4, / has a periodic point of
period m. Q

Remark 4.4. — Suppose that / is P'-linear. Then each branching
interval /-covers exactly one branching interval, and perhaps some non-
branching intervals. Moreover each non-branching interval /-covers either
zero or two branching intervals.

5. Preliminary results in la, Is, 14, IsJe, 0, Oi, Oa, Oa and 04.

We need to introduce some orderings in the set of natural numbers,
adding or removing some few elements.

The Sharkovskii ordering >s on the set N5 = N U {2°°} is given by

3 >s 5 >s 7 >s • • • >s
2 . 3 >, 2 • 5 >, 2 • 7 >, • . . >,
22 . 3 >, 22 . 5 >, 22 . 7 >, • • . >,
271. 3 >, 271. 5 >, 271. 7 >, • . . >,
2°° > , • • • > , 2" > , . . . > , 24 >, 23 >, 22 >, 2 >, 1.

We shall use the symbol >s in the natural way. The symbol 2°° ensures
the existence of supremum of every subset with respect to the ordering >g.
For n e N5 we denote

S(n)= {ke^:n>s k}.
So

S(200)={2i:^=0,l^...}.

Now we state the Sharkovskii Theorem [Sh] (see also [St], [BGMY]
and [ALM2]).
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THEOREM 5.1 (Interval Theorem).

(a) If/ is an interval map, then Per(/) = S(n) for some n ̂  N5.

(b) If n is an element of N5 then there exists an interval map f such
thatPer(f) = S(n).

If we want to get a similar result for the space Y, we need two new
orderings. The green ordering >g on N \ {2} is given by

5 >g 8 >g 4 >g 11 >g 14 >g 7 >g 17 >g 20 >g 10 >g ' ' - >g

3 • 3 >g 3 • 5 >g 3 • 7 >g • ' • >g

3 • 2 • 3 >g 3 • 2 • 5 >g 3 • 2 • 7 >g ' • • >g

3 . 22 • 3 >g 3 • 22 • 5 >g 3 • 22 • 7 >g • • • >g

3-2^ > g 3 ' 2 2 > g 3 ' 2 > g 3 ' l > g l .

The red ordering >r on N \ {2,4} is given by

7 >r 10 >^ 5 >^ 13 >r 16 >y. 8 >r 19 >y 22 >^ 11 >r ' ' ' >r

3 • 3 >r 3 • 5 >r 3 • 7 >y • • • >r

3 • 2 • 3 >r 3 • 2 • 5 >^ 3 • 2 • 7 >^ • • • >r
3 • 22 • 3 >^ 3 • 22 • 5 >r 3 • 22 • 7 >^ • • • >r

3 • 23 >^ 3 • 22 >^ 3 • 2 >^ 3 • 1 >r 1.

For n G N \ {2} denote

G{n) = {k € N : n >g k},

for n € N \ {2,4} denote

R(n) = {k C N : n >r k}

and additionally

G(3 . 2°°) = R(3 • 2°°) = {1} U {3n : n e 5'(200)}.

We also denote

^g= ( N \ { 2 } ) U { 3 - 2 ° ° } and N^ = (N\ {2,4}) U {3 • 200}.

The following theorem is due to Alseda, Llibre and Misiurewicz
[ALM1] for Is maps.
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THEOREM 5.2 (Is Theorem).

(a) If f is an Is map, then Per(/) = S(ns) U G(ng} U J?(ny.) for some
ris € N5, rig € Ng and T^ € N^.

(b) Jfns C N5, ng 6 N^ and n^ € Ny, then there exists an Is map / such
that Per(/) = S(ris) U G(rig) U J?(^).

Let lyi be the n-od space define as the set {z € C : z71 G [0,1]}. In
order to obtain a generalization of the Sharkovskii Theorem for In we need
to define partial ordering <n for n > 1. The ordering >i is the ordering >s.
If n > 1 then the ordering <n is defined as follows. Let m, k be positive
integers.

• Case 1: k = 1. Then m <n k if and only if m = 1.

• Case 2: k is divisible by n. Then m <n k if and only if either m = 1
or m is divisible by n and m/n >s k / n .

• Case 3: k > 1, k not divisible by n. Then m <n k if and only if
either m = 1, m = k^ or m = ik + jn for some integers i > 0, j > 1.

From the definition we have that <2 is the Sharkovskii ordering.
A set Z is an initial segment of <n if whenever k is an element of Z and
m <n k, then m also belongs to Z; %.e. Z is closed under <n predecessors.
The following result of Baldwin [Ba] is a generalization of the Sharkovskii
Theorem and the Is Theorem for arbitrary continuous self-maps of In.

THEOREM 5.3 (n-od Theorem).

(a) Let f be a continuous self-map of In. Then Per(/) is a nonempty
union of initial segments of{<p:l<p<n}.

(b) IfZ is a nonempty finite union of initial segments of{<p: 1 < p < n},
then there is a continuous self-map of In f such that f(0) = 0 and
Per(/) = Z.

The n-od Theorem has been extended by Baldwin and Llibre in [BL]
to continuous maps on a tree having all their branching points fixed.

We define the Block ordering >o on N as the converse of the
natural ordering on N \ {1} and we add the 1 as the smallest element;
i.e. 2 >o 3 >o 4 >o • • - >o 1. For n € N, we denote

B(n) = {k C N : n >o k}.
Sharkovskii Theorem has been generalized by Block to the circle maps
having fixed points in [Bc2].
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THEOREM 5.4 (Circle Theorem).

(a) Iff is a circle map having fixed points, then Per(/) = S(ris) U B(rib)
for some ris € Ng and rib C N.

(b) If ris € Ns and n^ € N, then there exists a circle map f having fixed
points such that Per(/) = S(ris) U B(rib).

In [LPR2], [LPR3] the Sharkovskii Theorem has been extended to
connected graphs G with zero Euler characteristic having all branching
points fixed. Given a graph (7, let e(G) and b(G) the number of its
endpoints and branching points respectively.

THEOREM 5.5 (Graph Theorem). — Let G be a connected graph such
that b(G) + 0 and ^(G) = 0.

(a) Let f : G —> G be a continuous map with all branching points
fixed. Then Per(/) is a nonempty finite union of initial segments of
{<p:0<p<e(G)+2}.

(b) IfZ is a nonempty finite union of initial segments of

{ < p : 0 < p < e ( G ) + 2 } ,
then there is a continuous map f : G —^ G with all the branching points
fixed such that Per(/) = Z.

We note that if G is a connected graph such that \{G) = 0
and b{G) = 0, then G is homeomorphic to 0. The set of periods for
continuous self-maps on 0 wich have fixed points is characterized in the
Circle Theorem.

6. The full periodicity kernel ofOa.

The objective of this section is to prove Theorem 1.2.

Since 15 is homeomorphic to {z € Os : Im2; > —1}, we can consider
Ig = [z € Os : 1m z > —1}. Let / an 15 map. We shall extend /
to an Os map / as follows. We define f(z) = f(z) if z C 15 and /
restricted to Cl(03 \ 15) is any homeomorphism between Cl(03 \ 15)
and the unique closed interval in 15 having /(I — i) and /(—I — i) as
endpoints. Of course Per(/) = Per(/). From Theorem 1.1 (d) it follows
that {2,3,4,5,6,7,8,9,10,11,13,14,16,17,18,21,23} is a subset of the full
periodicity kernel of 03. Then, to prove Theorem 1.2 it is sufficient to show
the following proposition.
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PROPOSITION 6.1. — Let f be an Os map. Then the following
statements hold:

(a) Jf7e Per(/), then

N \ {2,3,4,5,6,8,9,10,11,13,14,16,17,18,21,23,28} C Per(/).

(b) Jfl3 6 Per(/), then 28 € Per(/).

Proof. — Note that x(0s) = 0, 6(03) = 1 and 6(03) = 3. From the
Graph Theorem, the set of periods of / is a nonempty finite union of initial
segments of {<p: 0 < p < 5}. Now we shall compute the periods forced by
the periods 7 and 13 in the orderings of Os.

From the definition of the orderings <p, we have that

7 >o n for each n <E N \ {2,3,4,5,6};

7 >s n for each n € N \ {3,5};

7 >3 n for each n € N \ {2,4,5,8,11,14};

7 ^4 n for each n € N \ {2,3,5,6,9,10,13,14,17,21};

7 >5 n for each n C N \ {2,3,4,6,8,9,11,13,14,16,18,21,23,28}.

Therefore, if 7 € Per(/) then

N \ {2,3,4,5,6,8,9,10,11,13,14,16,17,18,21,23,28} C Per(/)

and statement (a) holds.

On the other hand, 13 >p 28 for 0 <, p < 5. Consequently if
13 € Per(/), then 28 € Per(/) and statement (b) holds. D

7. The full periodicity kernel of 04.

The objective of this section is to prove Theorem 1.3.

Since Ie is homeomorphic to {z e 04 : 1m z > —1}, we can consider
Ig = [z 6 04 : 1m z > —1}. Let / an Ig map. We shall extend /
to an 04 map / as follows. We define f(z) = f(z} if z € Ie and /
restricted to Cl(04 \ Ie) is any homeomorphism between Cl(04 \ Ie)
and the unique closed interval of Ie having /(I — i) and /(—I — %) as
endpoints. Of course Per(/) = Per(/). From Theorem 1.1 (e) it follows that
{2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,21,22,23,28,29} is a subset
of the full periodicity kernel of 04. Then, Theorem 1.3 is a corollary of the
following proposition.
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PROPOSITION 7.1. — Let f be an 0^ map. Then the following
statements hold:

(a) If 7 G Per(/), then

{2,3,4,5,6,8,9,10,11,13,14,15,16,17,18,21,22,23,28,29,35} C Per(/).

(b) If 11 € Per(/), then 35 € Per(/).

Proof. — Since ^(04) = 0, ^(04) = 1 and e(0) = 4, by the
Graph Theorem it follows that Per(/) is a nonempty union of initial
segments of {<^p: 0 < p < 6}. We have that 7 >,e n for each
n e N \ {2,3,4,5,8,9,10,11,14,15,16,17,21,22,23,28,29,35}. Therefore,
from the proof of Proposition 6.1 we obtain that if 7 € Per(/),
then N \ {2,3,4,5,6,8,9,10,11,13,14,15,16,17,18,21,22,23,28,29,35} C
Per(/) and statement (a) follows.

On the other hand, 11 >p 35 for 0 ^ p <, 6. Consequently if
11 C Per(/), then 35 C Per(/) and statement {b) holds. D

8. The unfolding ofoci, 002 and T.

If we identify the endpoints of the segment [0,1] to the point 0, then
we obtain a space homeomorphic to 0.

We represent the cartesian product 0 x 0 (the torus) as the square
[0,1] x [0,1] identifying the points (:r,0) and (rr, 1) for all x € [0,1], and
the points (0, y) and (1, y) for all y C [0,1]. Thus the graph of an 0 map /
is the subset {(a-, f(x)) : x C 0} of 0 x 0, and it can be represented as
in Figure 8.1.

m -----

M

0 p r q 1

Figure 8.1. The graph of a 0 map.
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Roughly speaking, we think the graph of an 0 map like the graph
of an interval map g from [0,1] into itself with the above identifications.
This allows us to talk about local or absolute maximum or minimum for
an 0 map in the same way as for interval maps. Thus, for instance, in the
points p and q the 0 map represented in Figure 8.1 has a local minimum
and maximum with values m and M respectively.

Let / be a P'-linear 0 map such that /(O) = 0 and each basic interval
associated to P ' does not /-cover itself. Therefore the graph of / does not
touch the diagonal except at 0. Let V = [a, b] a closed subinterval of 0
such that /(a) = f(b) = 0, /(c) -^ 0 for all c € (a, b). Then we say that
V is an upper (respectively down) subinterval according with they contain
more local minima (respectively maxima) than local maxima (respectively
minima) of /. Since / is P'-linear these upper and down subintervals are
well-defined. Thus for instance the subinterval [0, r] is an upper subinterval
of the map / of Figure 8.1.

In the rest of this section we shall consider E C {001,003, T} and f
will be a P/-linear map such that each basic interval associated to P/ does
not f-cover itself and k will be the period of P. We identify 0 with a circle
ofE and 0 € 0 with 0 <E E.

Let V = [a, b] be a closed subinterval of E contained in a circle or in
a whiskers of E such that /(a) = f(b) = 0, /(c) -^ 0 for all c € (a, b) and
f(V) ^ 0. Then in a similar way as for 0 maps, we can say as above that
V is an upper or down subinterval.

Let V C E be contained in a whiskers or in a circle of E. We say that
V f-covers 0 (or V —>• 0, or 0 <— V) if one of the following statements
holds:

(1) There exists [a,b] C V with /(a) = f(b) = 0, /(c) ^ 0 for
all c C (a, b) and /([a, b}) = 0.

(2) The set V is a circle of E such that f(V) = 0 and f{x) / 0 for
all x ^ 0.

Moreover, if (1) occurs with V == [a, b] or (2) occurs, then we say
that V is a crossing subset of 0. If V does not /-cover 0, then we write
y^o.

Remark 8.1. — In a similar way as in Lemma 3.1, if K and L are
closed subintervals of E such that L C 0, K —> 0 and 0 ^ Int(L), then
K ->L.
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In this section we also assume that E has no crossing subsets of 0.
Then following ideas of [LPR3] and [LL1] we define the unfolding of 001 as
the graph oo^ = Gi U G^ U €3 where

Gi = {(z,t) e C x M : ^ = O a n d \z - i\ = 1 or z e l2, Re ^ > 0},
G2= {(2^) € C x M : ^ = 0 , | ^+%|=1} ,
Gs= {(^) € C x R : ^ = |Im^|, | ^+z |= l} .

Re ̂  / Re z /

Figure 8.2. The unfoldings ofoci and 002.

Define the unfolding of 002 as the graph oo^> == Gi U G^ U G^ where

Gi = {(2^) € C x R : t = O a n d \z - i\ = 1 or z C 12},

G2 = {(z,t) € C x M : ^ = 0 , | z+z |= l} ,

Gs= {(z,t) eCxR:t= \lmz\, \z-}-i\=l}.

Define the unfolding of the trefoil as the graph T* = Gi U G2 U €3
where

Gi ={(z,t)eCxR:t=0, z = cos(3(9) e^, JTT < 6> < ^7r},

G 2 = { ( ^ ^ ) e C x M : ^ = : 0 , ^ = cos(3(9) e10, - i 7 r < 6 > ^ i7r},

G3={(z,t)eCxR:t=Rez, z = cos(3(9)e^, - | 7 r < 6 > < J7r}.

Clearly in the three cases G2 and Gs are homeomorphic to 0, moreover
Gi U G2 is homeomorphic to E, so we identify 0 with G2 and Gi U G2
with E (see Figures 8.2 and 8.3). Consider the projection TT : E* —^ E
defined by 7r(z,t) = (^,0). We denote by p* the unique point of Gs such
that 7r(p*) = p.
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Since / is P'-linear, / has finitely many local extrema; and
consequently finitely many upper and down subintervals. Moreover from
the fact that there are no crossing subsets of 0, it follows that there exists
a finite «partition)) of E into upper subintervals, down subintervals and
subintervals with image in C\(E \ 0). Now for the given E map / we define
/* : E -^ E* as follows. I f p e E then /*(?) is either /(?)* if f(p) € 0 and
p belongs to an upper subinterval, or f(p) otherwise. Clearly /* is well-
defined. We remark that / = TTO/* : E -^ E. Define F = /* OTT : E* -> E " .
In the rest of this section we shall study the relationship between the
periods of / and F.

^ Imz

Figure 8.3. The unfolding of the trefoil.

LEMMA 8.2. — Assume that there are no crossing subsets of 0. If
q C E* is a periodic point ofF of period n, then p = Tr(^) is a fixed point
off71.

Proof. — Since

q = ̂ {q) = (/* o ̂ T{q) = /* o (TT o /T^ o 7r(g) = r^-1^)),

we get that p = 7r(q) = ./^(p). D

LEMMA 8.3. — Assume that there are no crossing subsets ofO. Then
the following statements hold:

(a) Ifp = Tr(q) is a periodic point off of period n, then p = ̂ (.F71^)).

(b) Si p € G\ is a periodic point off of period n, then p is a fixed point
ofF71.

Proof. — Statement (a) follows from the equalities

p = Tr(q) = rw} = (TT o rrw) = ̂  ^ (r ° ̂ rw = ̂  ° ̂ (q).
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If p is a periodic point of / of period n, we have that

p = rw = rw) = (TT o n^p)) = ̂  o (/* o ̂ (p) = (TT o p^p).
Since p € Gi, we get that F71^) = p, and statement (b) is proved. D

PROPOSITION 8.4. — Suppose that there are no crossing subsets ofO.
Then the following statements hold:

(a) Ifq is an n-point for F^ then p = 7r(q) is an n-point for f.

(b) Ifp is an n-point for f and p C GI, then p is an n-point for F.

Proof. — We prove (a). Let q be an n-point for F. By Lemma 8.2,
P = ̂ W ls a fixed point of /n. Therefore, there is a divisor s of n such that
p is an s-point for /. If s = n, then we are done. So, assume that s < n.
By Lemma 8.3 (a), p = ̂ (F^q)). Since s < n, F^q) = p ' with p ' -^ g, and
of course p/ belongs to the -F-periodic orbit of q. Then

q == F"(g) = (r ° 7r)"(g) == (r o 7T)"-1 o r w)
= CT OTT)"-1 0/*(p) = (/* 07T)"-1 O/^TT^^)))

^.roTr)'1^))^"^)^,

which is a contradiction. Hence s == n and (a) is proved.

Now we show (b). Let p be an n-point for / and p € G\. By
Lemma 8.3 (b), p = ^(p). Again, there is a divisor s of n such that p
is an s-point for F. If 5 = n, then we are done. So, assume that s < n.
Then F^p) = p. By Lemma 8.2, since p e Gi we get that p = f^p), a
contradiction. Then the lemma follows. D

9. More results in oo, 001, 002 and T.

Now we add some results for P'-linear maps which we will use for the
computation of the full periodicity kernel of 001, 003 and T. The following
proposition follows from Section 13 of [LL2].

PROPOSITION 9.1. — Let f be an oo map. The following statements
hold:

(a) J f7c Per(/), then

Per(/) D {2,3,4, 5,6,8,9,10,11,12,13,14,17,21}.
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(b) I file Per(/), then 35 6 Per(/).

(c) Jfl3 C Per(/), then 28 6 Per(/).

If U is a finite subset of E^ we shall denote by Card(?7) the car-
dinal of £7.

PROPOSITION 9.2. — Let E e {l3,l4,l5,l6,02,03,04,ooi,oo2,T}.
Let f be an E map having a k-orbit P. Suppose that f is P'-linear. Assume
that each basic interval is f-covered by some basic interval different from
itself and that there is a basic interval JQ such that JQ —> JQ. Then
{n e N : n ̂  k + 3} \ {2k} C Per(/).

Proof. — We denote by S the set of all basic intervals associated
to P ' . Notice that Card(S') == k if E is any n-star, Card(5') = k + 1 if
Ee {02,03,04},Card(5') ==k-\-2[fE e {001,002}, and Card(5') = k+3
if E = T. Since each basic interval is /-covered by some basic interval we
get that f{E) = E.

Set Ki = /^Jo) to1' ^ >. 0- Note that each Ki is a connected set and
Card(J^i Ft P) > 2. We consider two cases.

• Case 1: E € {Is, 14, l5, IG, 02, Os, 04}.

From the fact that P is a periodic orbit and f(E) = £1, it follows
that there exists an integer r such that KQ ^ K\ ^ - • • ^ Kr = E, and
Card(-R^ HP) > i + 1 for i < r. Since P has period A; we have that
r < Card(J^_i HP) < A:. Since each basic interval is /-covered by some
basic interval different from itself, for each J^ G S', Ji C Ki \ Ki-\ there
exists Ji-\ 6 S, Ji-i C -ft^-i \ ̂ -2 such that J^_i —^ Ji. By hypothesis
there exists M € 5, M 7^ Jo such that M —> JQ. Hence there is a loop of
length £<^r-{-l<:k-^-l containing JQ. By construction, this loop is formed
by pairwise different basic intervals and so is non-repetitive. The above
loop of length £ together with the loop Jo —)> JQ ^lve us a non-repetitive
loop of length n for each n > k 4-1 containing Jo.

We claim that at least one of the intervals of the above loop of length
n does not contain 0. If 0 ^ Jo, then we are done. So suppose that 0 C Jo.
Since Jo —> Jo, /(O) = 0 and / is P'-linear we get that the basic intervals
different from Jo of K\ do not contain 0 (see Remark 4.4). So the claim is
proved. Hence by Proposition 3.4 the result follows.

• Case 2: E <E {ooi,oo2,T}.

From the facts that P is a periodic orbit, Ki is a connected
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set and f(E) = E^ we have that there exists an integer r such that
KQ ^ K\ ^ • • • ^ Kr = E ' ^ and one of the following statements holds:

(1) E/ = E'^

(2) E € {001,002}, E ' is homeomorphic to one of the spaces Is, 14, Is, Ie,
and £'\Int(£") is formed by two basic intervals Ji, J^ contained in different
circles of E such that Ji ̂  J^

(3) E = T, E ' is homeomorphic to one of the spaces 03,03,04, and
E \ Int(^') is formed by two basic intervals Ji,J2 contained in different
circles of E such that Ji <=^ J^;

(4) E = T, E ' is homeomorphic to one of the spaces 13,14,15,16, and
£'\Int(£") is formed by three basic intervals Ji, J^, J^ contained in different
circles of E such that Ji —> J^ —^ J^ —>• J\.

First we suppose that statement (1) holds. We remark that if r < A:,
then the result follows as in Case 1. So, since Card(S') e {k 4- 2, k + 3},
we can assume that r € {k + 1, k + 2}. In the same way as in Case 1 we
obtain a loop of length £ < r - ^ - l < , k - } - 3 containing Jo and consequently
{ n e N : n ^ A ; + 3 } \ {2k} C Per(/).

Finally we assume that statement (2), (3) or (4) holds. Note that
P C E ' . Consider the E' map g defined as g = f \E ' - Clearly g is well-
defined because / is P'-linear. Of course g is either an 1̂  map for i = 3, . . . . 6,
or an Oj map for j = 2,3,4. Moreover Per(g) C Per(/). Then the result
follows as in Case 1. D

The next lemmas will be used in Sections 10, 11 and 12.

LEMMA 9.3. — Set E e {001,002}. Let f be an E map having a
k-orbit P. Suppose that f is P'-linear. Then each basic interval J contained
in a whiskers ofE is f-covered by some basic interval different from itself.

Proof. — Let p -^ 0 be the endpoint of the whiskers of E containing J .
Since / is P'-linear, we have that p € P. Moreover, from the facts that 0
is a fixed point, / is P'-linear and f(E) is connected, it follows that each
basic interval of E contained in the whiskers of E is /-covered by some basic
interval.

Suppose that J —> J, otherwise we are done. Since [p, 0] is a whiskers
of E, we can consider a total ordering < on [p, 0] such that 0 is the largest
element and p the smallest one. Set J = \pj,pk\, with p < pj < pk < 0.
Now, since / is P'-linear we can consider two cases.
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• Case 1: p < f(pj) < pj < pk and f{pk) i \p,pk)'

If there are no basic intervals K -^ J such that K —> J, then
/(P H \p\pj\) C P n \p,pj\ with P n \p,pj\ ^ 0. This is a contradiction
because P is a periodic orbit not contained into [p, 0].

• Case 2: p < f(pk) < pj < pk and f{pj) f. \p,pk)-

Then pk < 0, and clearly

/(M) D [f(pk^fW] 3 [/fe0,0] D [^0] D J.

Therefore, there is a basic interval J\ C [pfc,0] which /-covers J
and Ji ^ J . D

LEMMA 9.4. — Set E C {001,002}. Let f be an E map having a
k-orbit P. Suppose that f is P'-linear. If JQ is a closed subinterval of E
with endpoints elements of P ' and contained in a whiskers of E^ then
there is a loop of length k in the f-graph containing JQ formed by closed
subintervals of E.

Proof. — Let Jo = [«^2/] with x ^ y € P ' and [x^y] contained in a
whiskers of E. For each z, 0 < i < k, we define Ji recursively as the closed
subinterval with endpoints f^{x) and f^(y) such that Jz-\ —>• Ji. Then
J^ = Jo because Jo is contained in a whiskers. Then we have the loop
Jo —> Ji —> • • • —^ Jfe = Jo of length k. Of course, in general the intervals Ji
are not basic and the loop can be repetitive or non-repetitive. D

LEMMA 9.5. — Set E E {ooi,oo2,T}. Let f be an E map having
a k-orbit P. Suppose that f is P'-linear. Let J and K be basic intervals
(eventually J = K) such that J ^-covers K for some m > 1. Then there
is a path of length m starting at J and ending at K.

Proof. — If m = 1 it is trivial. So suppose that m > 1. For 1 < i < m,
given Ji e S, Ji C /^(J), since / is P'-linear, we can select J^-i € «S' such
that Ji-t C ./^"'^(J) and J^-i —> Ji. Then, by induction assumption, the
path Jo = J —> Ji —> ' ' • —> Jm-i —^ Jm = K proves the lemma. D

LEMMA 9.6. — Set E 6 {ooi,oo2,T}. Let f be an E map having
a k-orbit P with k G {7,11,13}. Suppose that f is Pf-linear and that
each basic interval associated to P1 is f-covered by some different basic
interval. Let J and K be basic intervals. Then at least one of the following
statements holds'.
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(a) IfE=oo^, then

N \ {2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,21,23} C Per(/).

IfE= 002, then
N \ {2,3,4,5,6,7,8,9,10,11,12,13,14,

15,16,17,18,21,22,23,28,29} C Per(/).

IfE=T, then

N \ {2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,21,22,23,28,29} C Per(/).

(b) There is a path of length m starting at J and ending at K, where
1 < m < k + 1 ifE e {001, 002} and 1 < m < k + 2 ifE = T.

Proof. — Since each basic interval is /-covered by some basic interval,
we get that f{E) = E. Set Ki == f\J) for i ^ 0. Moreover since P is a
periodic orbit, there is an integer r > 1 such that

\ j K i = \ j K i = E ' ^ [ ^ K i ,
%=0 z=0 i=0

and one of the following statements holds:
(1) E' = £;;

(2) E G {001,002}, E ' is homeomorphic to one of the spaces Is, 14, Is, Ie,
and E \ E ' is formed by two basic intervals J\, J^ contained in different
circles of E such that J\ ~^- J^

(3) E = T, £" is homeomorphic to one of the spaces 02,03,04, and
E \ E ' is formed by two basic intervals J\, J^ contained in different circles
of E such that Ji ̂  J^

(4) E = T, E ' is homeomorphic to one of the spaces 13,14,15,16, and
E \ E' is formed by three basic intervals ^1,^2^3 contained in different
circles of E such that J\ —> J^ —^ J^ —^ J\.

We denote by S the set of all basic intervals associated to P'. Since
Card(6') = k + 2 if E € {001, 002} and Card(5) = k + 3 if E = T, we get
that r < k + l i f E e {001, 002} and r < k + 2 if E = T. Clearly P C E1.

First we suppose that statement (2), (3) or (4) holds. Then we consider
r r+1

the E ' map g = /|^. Since |j K, = \J K, = E ' , g is well-defined. Of
i=0 i=Q

course P is a fc-orbit for g . Then from the n-odd Theorem and the Graph
Theorem statement (a) of Lemma 9.6 holds and we are done.
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Finally suppose that E' = E. Therefore J /^covers K, for some
l < , m < k - { - l i f E e {001,002} and 1 < m < k + 2 if E = T. Thus by
Lemma 9.5 there is a path of length m starting at J and ending at K and
statement (b) of Lemma 9.6 follows. D

From now on we shall denote by C\ and C^ two different circles of E.

LEMMA 9.7. — Set E e {001, 002, T}. Let f be an E map having a
k-orbit P with k C {7,11,13}. Suppose that f is ^-linear and that each
basic interval associated to P ' is f-covered by some different basic interval.
If C\ ~^- C^ then at least one of the following statements holds:

(a) IfE= 001, then

N \ {2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,21,23} C Per(/).

If E = 002, then

N \ {2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,21,22,23,28,29} C Per(/).

IfE = T, then

N \ {2,3,4,5,6,7,8,9,10,11,12,13,14,
15,16,17,18,21,22,23,28,29} C Per(/).

(b) Per(/) D {n € N : n > 2k + 1} ifE € {001, 003}.

Per(/) D { n e N : n > 2 A ; + l odd} U { n G N : n > 2 / c + 4 even}
ifE = T.

Proof. — By hypotheses we have C\ ~^- 62. We claim that there
are two basic intervals L C C\ and M C C'z such that L <=^ M. Now we
prove the claim. If there is a 2-orbit {x^y} with x € C\ and y € £2, then
we consider the basic intervals L C C\ and M C 62 containing x and y
respectively. From the linearity of / we get that L <=^ M. Now we suppose
that there are no 2-orbits {x^y} with x e C\ and y C C^. Since k is not
even and C\ ̂  (72, without loss of generality we can assume that there is
a closed subinterval K C C\ such that K is a crossing subset of €2. Let
K^ C C'2 be a minimal closed subinterval /-covering K. Let K\ C C\ be
a minimal closed subinterval /-covering K^. In particular K\ ̂  K^. Since
there are no 2-orbits {x^y} with x € Ci and re G (72, from Lemma 3.3 it
follows that 0 € jF^i n 7^2 and the branching intervals L C K\, M C K^
verify L <=^ M. So the claim is proved.
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First we suppose that L or M /^-covers itself. Without loss of
generality we can assume that L /^-covers L. Then, by Lemma 9.5 there
exists a loop of length k containing L. Therefore the above loop of length k
together with the loop L ̂  M give us a loop 7 of length n for each n > k
odd and each n >_ 2k + 2 even. Note that 7 is non-repetitive because k
is not multiple of 2. We claim that we can construct 7 containing some
non-branching interval. Now we prove the claim. If 0 ^ L or 0 ^ M, then
we are done. So suppose that 0 G L n M. Then the only branching intervals
/-covered by L and M are L and M (see Remark 4.4). Hence 7 contains
some non-branching interval and the claim is proved. By Proposition 3.4
the result follows.

Now we can assume that L and M do not /fc-cover itself. Thus,
since P has period k, we get that L /^-covers J for each J e S with J C. C\
and M /^-covers J for each J e S with J C 62.

Without loss of generality we have three possibilities for the basic
intervals L and M: either 0 € L D M; or 0 € L and 0 (^ M; or 0 ^ L U M.
If 0 e L n M, then without loss of generality we can assume that there is
a basic interval Mi C C^ \ Int(M) such that L —^ Mi. Moreover, since / is
P'-linear, 0 ^ Mi. If 0 € L and 0 ^ M, then since /(O) = 0 and L —> M,
we have that there is a basic interval Mi C Ca \ Int(M) such that L —> Mi.
Finally, since k > 7, if 0 ^ L U M, then again we can assume that there is
a basic interval Mi C Ca \ Int(M) such that L —> Mi.

In short, we get that there is Mi € S such that Mi C C^ \ Int(M),
L —> Mi and 0 ^ M or 0 ^ Mi. Therefore M /^-covers Mi. From
Lemma 9.5 there is a path M — > ' ' ' — > Mi of length k. If Lemma 9.6
(a) holds, then Lemma 9.7 (a) follows, and we are done. Otherwise, from
Lemma 9.6 (b) we can assume that there is a path Mi —>• • • • —>• M of
length m < ^ k + l i f E e {001,002} and m < k + 2 if E = T. We can
suppose that m is the shortest length of all paths from Mi to M. This
path of length m together with the path M —>• L —^ Mi and the path
M — > - • • — > Mi of length k give us two loops of lengths m + 2 and k + m.
Note that both loops contain M and Mi.

First suppose that m is odd. Then the loop M —> L —> Mi — > ' ' ' —r M
of length m + 2 and the loop M ~^- L allow us to construct a non-repetitive
loop of length n for each n > k + 2 odd if E e {001, 002} and n > k + 4
odd if E == T. This loop contains M and Mi. On the other hand, the loops
M —> ' ' - —>• Mi —> • • • —> M of length k + m and the loop M ~^- L allow
us to construct a non-repetitive loop of length n for each n > 2k + 2 even
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if E € {001, 002} and n > 2k + 4 even if £1 = T. This loop contains M
and Mi. Since 0 ^ M or 0 ^ Mi, by Proposition 3.4 the result follows.

Finally suppose that m is even. The loop M —^ L —> M\ — > - " — > M
of length m + 2 and the loop M ^ L give us a non-repetitive loop of
length n for each n > k + 3 even containing M and Mi. Moreover, the
loop M —^ • • • —)• Mi —>• ' • • —> M of length A; + m < 2A; + 1 and the loop
M ̂  L give us a non-repetitive loop of length n for each n > 2k + 1 odd
containing M and Mi. Since 0 ^ M or 0 ^ Mi, from Proposition 3.4,
statement (b) of Lemma 9.7 holds and we are done. D

The following lemma will be used in the rest of this section and in
Section 12.

LEMMA 9.8. — Set E € {ooi, 003, T}. Let f be an E map having a
k-orbit P. Suppose that f is P'-linear. Let /? : J = KQ —^ K\ —> ' • ' —>
Kr —^ J and 7 : J = Mo —^ Mi — > ' • ' Ms —> J be two different loops in
the f-graph having a common basic interval J . Then the loop obtained by
concatenating f3 and 7 contains some non-branching interval.

Proof. — If some basic interval of /3 or 7 does not contain 0, then
we are done. So suppose that all basic intervals of (3 and 7 are branching
intervals. From Remark 4.4, J /-covers exactly one branching interval,
and perhaps some non-branching interval. Hence K\ = Mi. Since all basic
intervals are branching intervals, repeating this argument we get that (3
and 7 are the same loop, in contradiction with the hypotheses. D

The following lemma follows from ideas of [Ba] and [LPR2], [LPR3].

LEMMA 9.9. — Let E G {001,002}. Let f be an E map having a
k-orbit P with k e {7,11,13}. Suppose that f is ^-linear. Assume that
there are pi , . . . ,pt points ofP for some t e {3,4} such that

[o,pi] -. [o,p2] -^ • • • -^ [o,pt] ̂  [o,pi],
(0,p,)nP=0for% = l,...,t

(i.e. [0,pi] is a branching interval), and ifi 7^ j, then [O^pi] and [O^pj] are
contained in different components ofE\ {0}. Then

{n = ki + tj, i > 0, j > l} C Per(/).

Proof. — Without loss of generality we can assume that [0,pi] is
contained in a whiskers W of E. By Lemma 9.4 there is a loop of length k
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containing [0,pi]. This loop together with the loop [0,pi] —> [0,^2] —^
• • • —> [0,pi] of length t give us a loop of length n for each n = ki + tj^
i > 1, j > 1. Since A; is not divisible by t and from Lemma 9.8, we get that
the loop of length n is non-repetitive and at least one of its intervals does
not contain 0. Consequently {n = ki + tj^i > l,j > 1} C Per(/). Now we
need to prove that all multiple of t also belongs to Per(/).

From the hypotheses, (0,p^+i] C f{0,pj] for 0 < j < t and
(0,pi] C /(0,pi]. Thus P(0,j?i] C /^'(O.^i] for all j. On the other
hand, since k is not divisible by t, /^(O,?!] contains elements of different
components of E \ {0} and so there must be an integer i such that
0 € /^(O,?!]. We fix the least such i. Consider two cases.

• Case 1: i > t.
Let r be the largest positive integer such that i > rt. From the

facts that [O.pi] C W\ W is an interval and / is P'-linear, we have that
/^-^(O.pi] = (0,^] C W and /^(O.pi] = f^O.u] = (0,v] C W for some
u,v e P with u 6 (0,1;). Then there exists a E (0,u] such that /*(a) = ^.
Since 0 6 ./^(O^i] and r is the largest positive integer such that i > rt, by
the minimality o f % it follows that there exists b € (0, v\ such that ^(V) = 0.
Note that b ̂  (0, u] because 0 ^ /^((^pi] = /*((), n]. Since W is an interval,
we get /^O.a] D [0,a] U [a,6], /^a.^] D [0,a] U [a, 5] and /*(a) ^ a. Then
by well-known results for interval maps (see Proposition 1.2.9 of [ALM2])
we obtain that /t has points of all periods in [0, &], and consequently / has
periodic points of each multiple of t.

• Case 2: i <, t.
Since /*(0,j)i] D [0,pi], there is a € (0,j?i) such that /*(a) = pi and

^(if) -^ p\ for all y e (0, a). Moreover, from the linearity of / it follows that
ft\[o,a] ls linear. Since 0 € ./^(O^i] and i < t, there exists b € (0,pi) such
that f\b) = 0. Note that b ^ (0, a] because /t is linear in [0, a], /*(0) = 0
and /*(a) = pi. Hence ^[O.a] D [0,a] U [a, b] and /*[a,6] D [0,a] U [a,&].
Thus the proof follows as in Case 1. D

LEMMA 9.10. — Let E e {001,002}. Let f be an E map halving
a k-orbit P with k € {7,11,13} such that f is Pf-linear. Suppose that
there are t closed subintervals J^i, . . . , Kf with t 6 {2,3,4} such that Kj is
contained in the closure of a connected component Rj of E\ {0} for each
j = 1,.. . , t, and if Ki -^ Kj then Rz -^ Rj. Assume that R\ is a whiskers
ofE. IfK^ - ^ ' " - ^ K t - ^ K ^ then

Per(/) D {n = ki + tj : i > 1, j > 1}.
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Proof. — If there is a t-orbit {x,..., f^1^)} such that x €
l^i,..., /t-l(a;) e J^i, then let J\ C JCi, . . . , Jf C Kf be the basic intervals
containing x , . . . , /t-l(rK) respectively. From the linearity of / we have that
j^ —, ... —^ j^ —^ j^ if there are no t-orbits in K\ U • • • U Kt^ then by
Lemma 3.3 there exist t branching intervals J\ C K\^..., Jf C Kf such
that Ji —> ' ' ' —> Jf —> J\.

Since Ji is contained in a whiskers of £', fom Lemma 9.4 there
is a loop of length k containing Ji. This loop together with the loop
j^ —, . . . —, j^ —, j^ give us a loop 7 of length n for each n = ki + tj with
i > 1, j > 1. The loop 7 is non-repetitive because A: is not divisible by t
and by Lemma 9.8 at least one of its intervals does not contain 0. Hence by
Proposition 3.4 the result holds. D

10. The full periodicity kernel ofooi.

The goal of this section is to prove Theorem 1.4.

Since Is is homeomorphic to {z C 001 : —1 < Im z < 1}, we can
consider 1^ = {z e 001 : —1 < Im z < 1}. Set A = {z € 001 : Im z >: 1}
and B = {z € 001 : Im z < —1}. Let / be a 15 map. We shall extend /
to an oo i map / as follows. We define f(z) = f(z) if z G 15, /|A is any
homeomorphism between A and the unique closed interval in 15 having
/(I + i) and / (—1+z) as endpoints; and finally J\Q is any homeomorphism
between B and the unique closed interval in 15 having /(!—%) and f{—l—i)
as endpoints. Of course Per(/) = Per(/). From Theorem 1.1 (d), the set
{2,3,4,5,6, 7,8,9,10,11,13,14,16,17,18,21,23} is a subset of the full
periodicity kernel of 001. Then to prove Theorem 1.4 it is sufficient to show
the following two propositions.

PROPOSITION 10.1. — Let f be an 001 map such that

{2,3,4,5,6, 7,8,9,10,11,12,13,14,16,17,18,21,23} C Per(/).

Then Per(/) = N.

PROPOSITION 10.2. — There is an 001 map g such that

Per(^)=N\{12}.

Proposition 10.1 will be a corollary of the following proposition.
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PROPOSITION 10.3. — Let f be an 001 map. Then the following
statements hold:

(a) If 7 e Per(/), then

Per(/) D N \ {2,3,4,5,6,8,9,10,11,12,13,14,16,17,18,21,23,28,35}.

(b) If 11 C Per(/), then 35 C Per(/).

(c) If 13 € Per(/), then 28 C Per(/).

In the rest of this section we fix the 001 map f having a k-orbit P with
k e {7,11,13} and the set of the basic intervals S associated to P'.

This fixed 001 map will be called the standard 001 map.

LEMMA 10.4. — Let f be the standard 001 map. If the periodic
orbit P does not have points in each connected component of 001 \ {0}
then Proposition 10.3 holds.

Proof. — Let E ' be the union of the closures of the connected
components of 001 \ {0} having points of P. Of course £" C 001. Then
we define the map g : E ' —> E/ as follows. For z e E ' , g(z) == f(z) if
f(z) G E'\ and g(z) = 0 otherwise. Notice that g is either an la, 0, Oi
or oo map. Moreover Per(g) C Per(/). Hence from the Interval Theorem,
the Circle Theorem, the Graph Theorem and Proposition 9.1 the result
follows. Q

Remark 10.5. — From Lemma 10.4 we can assume that the periodic
orbit P has points into each connected component of 001 \{0}. Furthermore,
by Corollary 4.3 in what follows we can suppose that the standard map /
will be P'-linear.

LEMMA 10.6. — Let f be the standard 001 map. Suppose that there
is a basic interval J such that no basic interval ofS\{J} f-covers J . Then
Proposition 10.3 follows.

Proof. — By Lemma 9.3 each basic interval of the whiskers of 001
is /-covered by some different basic interval. Therefore J is contained in a
circle of 001. Consider the map g = /|ooi\Int(J)- Clearly g is well-defined
because / is P'-linear and no basic interval of 5\{J} /-covers J . Moreover g
is either a C>2 or Os map such that Per(g) = Per(/). Hence from the Graph
Theorem the lemma follows. D
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Remark 10.7. — From Lemma 10.6 we can assume that each basic
interval is /-covered by some different basic interval. On the other hand,
Proposition 9.2 shows that if there exists some basic interval which /-covers
itself, then Proposition 10.3 holds. So, from now on, we can suppose that
each basic interval does not /-cover itself.

LEMMA 10.8. — Let f be the standard 001 map. Identify 0 with a
circle ofooi. If there are no crossing subsets ofO, then Proposition 10.3
holds.

Proof. — With the notation of Section 8, by Proposition 8.4 (b) we
have that k 6 Per(F). Since P has elements on each component of 001 \ {0}
and there are no crossing subsets of 0, we get that jF(oo^) is homeomorphic
to C>2 or Os. So from the Graph Theorem we obtain that if 7 € Per(.F),
then Per(F) D N \ {2,3,4,5,6,8,9,10,11,13,14,16,17,18,21,23,28}; if
11 € Per(F), then 35 e Per(F); and if 13 € Per(F), then 28 € Per(F). Now
from Proposition 8.4(a) the result follows. D

Remark 10.9. — If there are no subsets of 001 /-covering C\ or 62,
from Lemma 10.8, Proposition 10.3 holds. So from now on we can assume
that there are crossing subsets of C\ and Cz.

Proof of Proposition 10.3. — Denote by W and pi the whiskers and the
endpoint of 001 respectively. From Remark 10.7 each basic interval does not
/-cover itself. Therefore fk~l(pl) ̂  W. Without loss of generality we can
asume that fk~l(pl) € C\. Moreover, from the fact that /(O) = 0, it follows
that there are two closed subintervals M\, M^ contained in C\ such that
0 i Int(Mi), 0 i Int(M2), Int(Mi) D Int(M2) = 0, and Mi -^ W ^- M^.

If W -> Ci, then since 0 i Int(Mi), from Remark 8.1 W ^ Mi,
and from Lemma 9.10 the result holds. So, in what follows we can suppose
that TV-^Gi.

By Remarks 10.7 and 10.9, and since W -^ C\ we have that C^ —> C\.
If C\ —r C^ from Lemma 9.7 the result follows. So from now on we can
suppose that C\ -^ C^.

By Remarks 10.7 and 10.9 we get that W —^ Ca, then there exist
closed subintervals K\^K^ C 62 such that W —> K\ —> M\ —>• W and
W -^ K^ -^ M2 -> W. If k € {11,13} by Lemma 9.10 the result holds. If
k = 7, from Lemma 9.10 we have that Per(/) D {n = 7z+3j : i > l,j > 1}.
So we need to prove that 15 € Per(/). Concatenating the loops
W -^ K^ -^ Mi -^ W and W -^ K^ -^ M^ -^ W we obtain a non-
repetitive loop of length 3i for i > 1. If 0 ^ W H K\ D K^ D Mi H M^ then the
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result holds. Otherwise, there are three branching intervals J\ CW^J^C C^
and Js C GI such that J\ —> J^ —^ J^ —^ J\. From Lemma 9.9 the result
holds. Q

Proof of Proposition 10.2. — Let Z be the union of the following
initial segments: {n <s 11}, {n <s 8}, {n <s 6} and [n <s 14}. This is
Z = N \ {7,9,12,13,17,18,22,23,28}. From the n-od Theorem there exists
an 15 map /i such that Per(/i) = Z. We shall extend /i to an 001 map g
as follows. As in the beginning of this section, consider 001 = 15 U A U B.
Let g(z) == /i (z) if z € Is. Then we need to define g\A\jB-

We choose seven points a,, i == 1,2, . . . , 7, in A U B as follows. We
consider A as the union of the following intervals which have pairwise
disjoint interiors: Ji = [ l+^oi] ,J2 = [ai,^],^ = [a^a^J^ = [05,07]
and J5 == [07, —1+z]. Set B as the union of the following intervals which have
pairwise disjoint interiors: JQ = [1 - i.a^.Jj = [02,04]^ = [^ae] and
Jg = [^6,-1 - ^]. Set P = {o, : z == 1,2, . . . , 7}. Define ^(o,) = o,+i
for i = 1 ,2, . . . , 6 and ^(07) = 01. Clearly P is a 7-orbit. Let g
be restricted to each J^ the unique linear map with respect to the
taxicab metric such that the only elementary loops in the ^AuB-g^ph
are Ji ^ Jg, Ji —> JQ —^ J^ —^ Jj —^ J^ —, Jg —> </4 —> Ji and
Ji ^ JG —> J2 —^ J? —> ^3 —> Js —^ J^ —^ JQ —^ JQ —> J i ' Since 15
is an invariant set under g , from Propositions 3.4 and 4.2 we get that
^f^lAua) = {n € N : n > 7 odd} U {n e N : n > 16 even}. Of course
Per(<7) = Per(/i) U Per^ua) = N \ {12}. D

11. The full periodicity kernel of 002.

The goal of this section is to prove Theorem 1.5.

Since IQ is homeomorphic to {z € 002 : — l < I m ^ ^ l } , w e can
consider IQ = {z € 002 : -1 < Im2; < 1}. Set A = {z C 002 : Im z > 1}
and B = {z C 002 : 1m z < -1}. Let / be an IQ map. We shall extend /
to an 002 map / as follows. We define f(z) = f{z) if z e IQ; /|A is any
homeomorphism between A and the unique closed interval in Ig having
f(\-\-i) and /(—1-H) as endpoints; and finally f\s is any homeomorphism
between B and the unique closed interval of Ig having / ( ! — % ) and
/(-I - i) as endpoints. Of course Per(/) = Per(/). Prom Theorem 1.1 (e),
{2,3,4,5,6, 7,8,9,10,11,13,14,15,16,17,18,21,22,23,28,29} is a subset
of the full periodicity kernel of 002. On the other hand, 001 C 002. Let
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/ be an 001 map. We shall extend / to an 002 map as follows. Set
f(z) = f(z) if z € 001 and f(z) = 0 otherwise. Of course Per(/) = Per(/).
By Theorem 1.4, 12 belongs to the full periodicity of 002. Then, to prove
Theorem 1.5 it is sufficient to show the following proposition.

PROPOSITION 11.1. — Let f be an 002 map. Then the following
statements hold:

(a) If 7 e Per(/), then

N \ {2,3,4,5,6,8,9,10,11,12,13,14,
15,16,17,18,21,22,23,28,29,35} C Per(/).

(b) If 11 € Per(/), then 35 <E Per(/).

In the rest of this section we fix the 002 map f having a k-orbit P with
k G {7,11} and the set of the basic intervals S associated to P'.

This fixed 002 map will be called the standard 002 map.

LEMMA 11.2. — Let / be the standard 002 map. If the periodic
orbit P does not have points in each connected component of 002 \ {0},
then Proposition 11.1 holds.

Proof. — Let E/ be the union of the closures of the connected
components of 002 \ {0} having points of P. Of course E' C 002. Then we
define the map g : E ' -^ E ' as follows. For z € E ' , g{z) = f(z) if f(z) € E'\
and g(z) = 0 otherwise. Notice that g is either a l2,0, Oi, 0)2, oo or 001
map. Moreover Per(g) C Per(/). Hence from the Interval Theorem, the
Graph Theorem, Proposition 9.1 and Proposition 10.3 the result follows. D

Remark 11.3. — From Lemma 11.2 we can assume that the periodic
orbit P has points in each connected component of 002 \ {0}. Furthermore,
by Corollary 4.3 in what follows we can suppose that the standard map /
will be P'-linear.

LEMMA 11.4. — Let f be the standard 002 map. Suppose that there
is a basic interval J such that there are no basic intervals of S \ {J}
f-covering J . Then Proposition 11.1 holds.

Proof. — By Lemma 9.3 we get that J is contained in a circle of 002.
Consider the map g = /|oo2\Int(J)- Clearly g is well-defined because / is
P'-linear. Moreover g is either an Os or 04 map such that Per(p) C Per(/).
Hence from the Graph Theorem the lemma follows. D
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Remark 11.5. — From Lemma 11.4 we can assume that each basic
interval is /-covered by some different basic interval. On the other hand,
Proposition 9.2 shows that if there exists some basic interval /-covering
itself, then Proposition 11.1 holds. So, from now on we can assume that
each basic interval does not /-cover itself.

LEMMA 11.6. — Let f be the standard 002 map. Identify 0 with a
circle of 003. If there are no crossing subsets of 0 then Proposition 11.1
holds.

Proof. — With the notation of Section 8, by Proposition 8.4 (b) we
have that k € Pev(F). Since P has elements in each component of 003 \ {0}
and there are no crossing subsets of 0, we get that F(oo^) is homeomorphic
to Os or 04. So from the Graph Theorem we obtain that if 7 € Per(.F),
then N \ {2,3,4,5,6,8,9,10,11, 13,14,15,16,17,18,21,22,23,28,29,35} C
Per(F), and if 11 € Per(i^), then 35 € Per(F). Now by Proposition 8.4 (a)
the result follows. D

Remark 11.7. — If there are no subsets of 003 /-covering C\ or Ca,
from Lemma 11.6, Proposition 11.1 holds. So from now on we can assume
that there are crossing subsets of C\ and 62.

Proof of Proposition 11.1. — Denote by Wi.Wz the whiskers of
002 and by pi 6 Wi,p2 ^ ^2 its endpoints. From Remark 11.5 each
basic interval does not /-cover itself. Therefore /^''^(pi) ^ W\ and
j-k-i^p^ ^ W^. We consider two cases.

• Casel: /^(pi) eW^.

Consequently W^ —^ W\. If W\ —> W^ since the whiskers are
subintervals of E^ from Lemma 9.10 the result follows. Hence, from
now on we will assume that W\ -^ W'z. In particular fk~l{p2) ^ W\.
Without loss of generality we can suppose that fk~l(p2) ^ C\. Moreover
since /(O) = 0, it follows that there are two closed subintervals Mi,M2
contained in Ci such that Int(Mi) nlnt(M2) = 0,0 ^ Int(Mi), 0 ^ Int(M2)
and Mi —> W'z <— M^.

If W2 -> Gi, then from Remark 8.1 W^ ̂  Mi, and by Lemma 9.10
the result holds. So from now on we will assume that W^ -^ C\.

If W\ —>• (7i, then from Remark 8.1 W\ —> Mi. Thus we consider the
loop W\ —> Mi —>• W'z —> W\ and from Lemma 9.10 the result follows. So
from now on we can assume that W\ -^ C\.
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Since each basic interval does not /-cover itself, C\ -^ (7i. Then from
Remark 11.7 we have that C^ -^ (7i. Hence there is a closed subinterval
K C C2 such that K —^ Mi. If W^ —> 62, then we consider the loop
W^z —> K —^ Mi —> W'2 and by Lemma 9.10 the result holds. Thus we can
assume that W^ -^ 62.

If C\ —> 62, from Lemma 9.7 we are done. So we can assume that
Gi ̂  C2.

By Remarks 11.5 and 11.7 we get that W\ —^ C^. Therefore there
are closed subintervals K^ C Wi, K^ C W^ and L^L^ C 62 such that
JCi -^ Li -^ Mi -> K^ -^ K^ and K^ -^ L^ -^ M^ -^ K^ -^ K^ If k = 11,
then statement (b) of Proposition 11.1 follows from Lemma 9.10. If k = 7,
by Lemma 9.10 we obtain that Per(/) D {n = 7i + 4j : i > l,j > 1}. So we
need to prove that {20,24} C Per(/). With the loops K^ -^ Li -^ Mi -^
K'2 —> K\ and J^i —)-L^—>- M^ —>• K^ —> K\ we obtain a non-repetitive loop
of length 4% for i > l . l f 0 ^ JCin^ri^inLsriMinA^ then the result holds.
Otherwise, there are four branching intervals J\ C W\^ J^ C 62, Js C (7i
and J4 C W2 such that J\—^ J^—^ J^—> J^—^ J\. Therefore statement (a)
of Proposition 11.1 follows from Lemma 9.9 and we are done.

• Case 2: /^(Pi) 1 W^

Without loss of generality we can assume that /^"^(pi) e C\.
Moreover, since /(O) = 0, there exist two closed subintervals Mi, Ms C C\
such that Int(Mi) n Int(M2) == 0,0 ^ Int(Mi), 0 ^ Int(M2) and
Mi ̂  TVi ̂  M2.

If Wi —f (7i, then from Remark 8.1 we have W\ ~^- M\ and the
result follows from Lemma 9.10. Hence from now on we can suppose
that TVi -^ Ci.

First assume that Cs —> C\. Then there is a closed subinterval K C C^
such that K —> Mi. If (7i —> C^ the result follows from Lemma 9.7. So we
can suppose that Ci -^ €2. If Wi -^ €2, then there is a closed subinterval
L C TVi such that L -^ J^ -^ Mi —^ L. So from Lemma 9.10 the result
follows. Hence we can assume that W\ -^ C^. From Remarks 11.5 and 11.7
we obtain that W^ —> C^.

If C\ —> W^ or C^ —> W^, by above arguments the proposition
follows. So we can assume that C\ -^ W^ and Cs -^ W\. In particular
fk~l{p2) 1 Ci U C2. Moreover, since /fc-l(p2) t W^ we get that
./^"^(j^) ^ Wi- Consequently the rest of the proof follows as in Case 1.
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Finally assume that C^ -^ <7i. From Remarks 11.5 and 11.7
we have that W^ -^ Ci. If Ci -^ W^ or W^ -^ W^ by above
arguments the proposition holds. So, in particular we can assume that
fk~l{p2) t Ci U W^. Therefore f^^) C C^. Moreover since /(O) = 0,
there are closed subintervals 1/1,^2 C 62 such that Li —> W^ ^— ^2,
Int(Li) Flinty) = 0,0 ^ Int(Z/i) and 0 ^ Int^). If W^ -^ 62 or
Ci —^ C'2 by above arguments the result follows. Hence from Remarks 11.5
and 11.7 we can suppose that W\ —> C^. Now the proposition follows as
before. Q

12. The full periodicity kernel of the trefoil.

The goal of this section is to prove Theorem 1.6.

Let pi and ps be the two endpoints of 002. Let A be a graph
homeomorphic to I with endpoints pi and p2 such that 002 U A is
homeomorphic to T. Thus in this section we shall consider T = 002 U A. Let
/ be an 002 map, we shall extend / to a T map / as follows. We define f(z) =
f(z) if z € 002 and f\^ is any homeomorphism between A and a closed
subinterval in 002 having /(pi) and /(p2) as endpoints. Of course Per(/) =
Per(/). From Theorem 1.5 {2,3,4,5,6, 7,8,9,10,11,12,13,14,15,16,17,18,
21,22,23,28,29} is a subset of the full periodicity kernel of T. Then, to
prove Theorem 1.6 it is sufficient to show the following proposition.

PROPOSITION 12.1. — Let f be a T map. Then the following
statements hold:

(a) Jf7€Per(/),then

N \ {2,3,4,5,6,8,9,10,11,12,13,14,
15,16,17,18,21,22,23,28,29,35} C Per(/).

(b) If 11 e Per(/), then 35 e Per(/).

In the rest of this section we fix the T map f having a k-orbit P with
k € {7,11} and the set of the basic intervals S associated to P'.

This fixed T map will be called the standard T map.

LEMMA 12.2. — Let f be the standard T map. If the periodic
orbit P does not have points in each connected component ofT\ {0}, then
Proposition 12.1 holds.
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Proof. — Let E ' be the union of the closures of the connected
components of T \ {0} having points of P. Of course E ' C T. We define
the map g : E' -^ E' as follows. For z e £", g{z) = f(z) if f(z) € E'\ and
g(z) = 0 otherwise. Notice that g is either an 0 or an oo map. Moreover
Per(^) C Per(/). Hence from the Circle Theorem and Proposition 9.1 the
result follows. D

Remark 12.3. — From Lemma 12.2 we can assume that the periodic
orbit P has points into each connected component of T \ {0}. Furthermore,
by Corollary 4.3 in what follows we can suppose that the standard T map
/ will be P'-linear.

LEMMA 12.4. — Let f be the standard T map. If there is a
basic interval J such that no basic intervals of S \ {J} f-cover J , then
Proposition 12.1 holds.

Proof. — Consider the map g == /|T\Int(J)- Clearly g is well-defined
because / is P'-linear. Moreover g is either an oc>i or an 002 map such
that Per (g) C Per(/). Hence from Propositions 10.3 and 11.1 the lemma
follows. D

Remark 12.5. — From Lemma 12.4 we can assume that each basic
interval is /-covered by some different basic interval. On the other hand,
Proposition 9.2 shows that if there exists some basic interval /-covering
itself, then Proposition 12.1 holds. So, from now on we can assume that
each basic interval does not /-cover itself.

LEMMA 12.6. — Let f be the standard T map. Identify 0 with a circle
ofT. If there are no crossing subsets ofO, then Proposition 12.1 holds.

Proof. — With the notation of Section 8, by Proposition 8.4 (b)
we have that k € Per(-F). Since P has elements in each component
of T \ {0} and there are no crossing subsets of 0, we get that
F(T*) is homeomorphic to 001 or 002- So from Propositions 10.3
and 11.1 we obtain that if 7 € Per(F), then N \ {2,3,4,5,6,8,9,10,11,12,
13,14,15,16,17,18,21,22,23,28,29,35} C Per(F), and if 11 e Per(F),
then 35 6 Per(F). Now by Proposition 8.4 (a) the result follows. D

From now on we shall denote by (7i, C^ and €3 the three circles ofT.

Remark 12.7. — If there are no crossing subsets of (7i, C^ or C3, from
Lemma 12.6, Proposition 12.1 holds. So from now on we can assume that
there are crossing subsets of Ci, €2 and C^.
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LEMMA 12.8. — Let f be the standard T map with k = 11. Let
J\^cl1 Js and J be basic intervals such that Ji C Q for i = 1,2,3, J c C^
and J ^ J^. Suppose that there are three loops J\ —> J^ —>• J^ —^ Ji,
Ji -» J —> rn- —^ Ji and Ji —)• J2 —> • • ' —> ' ' ' —^ J —^ rn' —^ Ji of lengths 3,
m + 1 and 12 + m respectively for some 1 < m < 13. Then 35 € Per(/).

Proof. — In this proof we will use the fact that a loop obtained
by concatenating two different loops contains at least one non-branching
interval (see Lemma 9.8).

For m == 1,2, . . . , 13, we consider the loops Ji —> J^ —^ J^ —>• Ji and
either

Ji ̂  J; or
Ji —> J^ ~~^ ' - ' —^ ' - ' —^ J —^ • ' ' — > ' ' ' —^ J^'<, or
Ji —f J —> • • • —> - • • —> Ji; or
^i -^ ^2 —^ • • • ̂  " • —> J —> ' ' ' —> • • • —> J\\ or
7 7 n 7 5 7^i ^> ^2 ̂  • • • —)> • • • —^ J —^ " • -^ • - • —f- Ji; or
Ji -^ J —> . . . — » . . . — > J^; or
Ji ̂  J —^ • • • —f • ' ' —> J\; or
7 7 n 7 8 7Ji —> J^ —^ ' ' ' —^ ' ' ' —^ J —> '' • —^ • ' ' —> Ji'-> or
J\ —> J —> • • • —>• ' •' —f Ji; or
7 7 10 7Ji —^ J ̂  • • • — > • • • -^ Ji; or
7 7 11 7 n 7Ji —^ J2 —^ • • • —> ' ' • —> J —> ' • ' —f- ' ' ' —>• Ji'-> or
7 7 12 7Ji —>• J —>• • • • —>• ' ' ' —-> Ji; or
Ji -^ J -^ .13 ̂  ... -^ Ji

respectively. Since we can put 35 as 7 • 3 + 7 • 2, or 7 • 3 + 14, or 3 + 8 • 4, or
3+16-2, or 6-3+17, or 7 •3+2 . 7, or 3+8-4, or 5-3 + 20, or 5 •3+2-10,
or 8 • 3 + 11, or 4 • 3 + 23, or 3 • 3 + 13 • 2 or 7 • 3 + 14, the result follows. D

Proof of Proposition 12.1. — If d ^ Cj for some ij € {1,2,3},
i ^ j, then from Lemma 9.7 the result follows. So from now on we can
assume that we do not have Q <=^ Cj for i,j e {1,2,3}, i ̂  j.

Therefore, without loss of generality, from Remarks 12.5 and 12.7 we
can assume that Ci -^ C^ —> C^ —> (7i. We claim that there are three basic
intervals Ji C Q, i = 1,2,3 such that Ji —> J-z —^ Js —> Ji. Now we prove
the claim. If there exists a 3-orbit {a;, ̂ , z} with a; e Ci, ^/ € Ca and z e €3,
then we consider the basic intervals Ji C Ci for i = 1,2,3 containing x ^ y
and 2; respectively. From the linearity of / we get that J\ —>• J^ —f J^ —^ Ji.
Now we suppose that there are no 3-orbits {x,y,z} with x € C\,y € 62
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and z € 63. Since k is not multiple of 3 and C\ —> 62 —> C^ —>• (7i, without
loss of generality we can assume that there is a closed subinterval K C C\
such that K is a crossing subset of C^. Let K^ C Cg be a minimal closed
subinterval /-covering K. Let K^ C 62 be a minimal closed subinterval
/-covering K^. Finally let K\ C C\ be a minimal closed subinterval /-
covering K^. In particular K\ —>• K^ —^ K^ —»• K\. Since there are no
3-orbits {x,y,z} with x e Ci, y G C^ and z € Cs, from Lemma 3.3 it
follows that 0 G ^i Fl K^ D J^3 and the branching intervals Ji C Ki for
z = 1,2,3 verify Ji —> J^ —> J^ —> J\. Thus the claim is proved.

Denote by 7 the loop J\ —> J^ —> Js —> J\.

First suppose that J^ /^-covers itself for some z € {1,2,3}. Thus from
Lemma 9.5 there is a loop of length k containing Ji. This loop together
with 7 give us a non-repetitive loop of length n = ki + 3j for i > l,j > 1.
Since k is no divisible by 3, the loop of length n is non-repetitive. Moreover,
from Remark 4.4 at least one of its intervals does not contain 0. Hence from
Proposition 3.4 the result follows.

Now we can assume that Ji does not /^-cover itself for i == 1,2,3.
Thus, since P has period A;, we get that Ji /^-covers K for each K C S\{Ji},
K C Ci,i == 1,2,3. Since k ^ 3, without loss of generality we can assume
that J ^— Ji —^ J2 —^ Js —^ Ji where J G S \ {J^} and J C C2.
Consequently Ja /^-covers J and from Lemma 9.5 there exists a path of
length k starting at Js and ending at J . On the other hand, from Lemma 9.6
we can suppose that there is a path of length m, 1 < m < A;+2 starting at J
and ending at J\. Therefore we get the loops 7, Ji —^ J —^ • • • — > • • • — > Ji,
and Ji —> J'2 —> ' ' • —> ' • ' —^ J —f ' • ' —^ ' ' • —^ J\ of lengths 3, m + 1 and
k + m + 1 respectively.

If fc = 11 the result follows from Lemma 12.8. So Proposition 12.1 (b)
holds.

From now on we take k = 7 and we will prove statement (a) of Pro-
position 12.1. Denote by J\f the set N \ {2,3,4,5,6,8,9,10,11,12,13,14,15,
16,17,18,21,22,23,28,29,35}. In the rest of this section we will take into
account the following facts. If L is a basic interval contained in a circle (7,
then L /^-covers L OT L /k-covers M for each M e S \ {L}, M C C
because L has endpoints elements of P ' and / has period k. Again from
Lemma 9.8, if we concatenate two different loops, the new loop contains
some non-branching interval.

Concatenating the three loops containing Ji of lengths 3, m + 1 and
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k + m + 1 = 8 + m we get in a similar way to the proof of Lemma 12.8 that
if m e {1,3,4,6,7}, then AT c Per(/); if m = 2, then AT \ {20} C Per(/); if
m = 5, thenA/'\{20,26} C Per(/); i f m = 8 , thenA/'\{20,26,32} c Per(/);
and if m = 9, then AT \ {24} c Per(/).

First we suppose that J f-covers ^2. Hence from Lemma 9.5
there is a path J — > • " — > ' " —^ J^, then we have the loops 7 and

7 7j^ —^ .. . —)> . . . —^ j _^ ... _^ ... _^ j^ of length 3 and 14 respectively.
Concatenating these loops, from Lemma 9.8 and Proposition 3.4 we
get that {20,26,32} C Per(/) and the result follows for m € {2,5,8}.
Now, if m = 9, we consider the loops J —> m- —> Ji —^ J and

7 7j —^ ... _ ^ . . . _ ^ j^ _ , . . . _ , . .. _^ j of lengths m + 1 = 10 and 14
respectively. In the same way as above we get that 24 e Per(/) and the
proof follows.

Finally we assume that J does not /^-cover Js. Thus J f-covers itself,
and from Lemma 9.5 there is a loop J —> ' • • —> - • • —^ J. Therefore we get
the loops 7 and ^2 —^ " • —^ • • • —> ^ —^ • • • —^ • • • —> J —^ •m- —> J\ —> J^ of
lengths 3 and 15 + m. This last loop of length 15 + m will be denoted by /3.
We note that since J\ /-covers Js and ^5 from Remark 4.4, 0 ^ J C\ J^.
In particular /3 contains some non-branching interval. As before, if m = 2,
then 20 € Per(/). If m = 5, then concatenating the loops 7 and f3 we get
26 € Per(/). Now we show that 20 € Per(/). Of course we can assume
that m = 5 is the minimal length of all paths from J to Ji (otherwise we
are done). From the subpath J —> m- —>- Ji of f3, and by the minimality
of m, it follows that (3 cannot be a repetition of a loop of length smaller
or equal than m = 5. So if f3 is repetitive, then it is twice a loop of
length 10. Therefore the subpath J -^ 7" -^ • • . -^ J -^ -5 . -^ ... -, J^
of/3 must be J -^ 7" -^ ' " -> J -^ -3 . -^ ... -^ J -^ .2. -, ... -, J^.
Then there is a path of length 2 from J to J\ in contradiction with the
minimality of m = 5. Hence we obtain that if m = 5, then 20 € Per(/). If
m = 9, then f3 has length 24. We can suppose that m = 9 is the minimal
length of all paths from J to Ji. From the path J —> m- —^ Ji and by
the minimality of m we have that f3 is not a repetition of a loop of length
smaller or equal than m = 9. Thus if (3 is repetitive, then it is twice a loop
of length 12. From the path J -^ 7" -> ' • • -. J -^ .?. -^ ... -^ J^ we
obtain J — > . . . — ^ . . . — ^ J - ^ . . . — ^ . . . — ^ j — ^ . . . — ^ . . . — ^ j ^ This is
a contradiction with the minimality of m. Consequently, if m = 9, then
24 € Per(/). I f m = 8 , then concatenating 7 and (3 we get {26,32} C Per(/).
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So in the rest of this proof we shall assume that m = 8 and we will
show that 20 e Per(/). We can suppose that m is the shortest length of all
paths starting at J and ending at Ji; otherwise we have proved that the
result follows.

Let J -^ Mi -^ M2 -^ Ms -^ Mi -^ Ms -^ Me -^ My -^ Ji be the
path </? from J to Ji of length m = 8. We shall study the basic intervals
Mi which form (p. Suppose that ^ contains J^. From the minimality of m
and since J^ -^ J^ -> J^ we get J^ i- M, for i e { 1 , . . . , 5}. If J^ = Me,
then we obtain the loop J — ^ . . . — ) . . . . — > J — ) . Mi —> M^ —> Ms —> Mi -^
^5 -^ J ' 2 —)> • • ' —> ' • ' —> J of length 20. By the minimality of m this loop
is non-repetitive and the result follows. If J^ = My then consider the loops
7 and Ji ̂  J^. We note that at least one of the intervals Ji, J^, J^ does not
contains 0, because Ji ^— J^ —^ J^ and a branching interval /-covers exactly
one branching interval (see Remark 4.4). So the result holds. Hence we can
suppose that (p does not contain J^. We remark that (p contains 9 different
basic intervals by the minimality of m. Since Card(6') = k + 3 = 10, (p must
contain J^. Again from the minimality of m and since Js -^ Ji, we get
Js = My. For ^ ' € { 1 , 2 , . . . , 6} consider the basic interval Mj. Since Mj e Q
for some i e {1,2,3}, we get the path J, -^ - 7 - —> • • • —. Mj. If My /"^-covers

7 7Jz, then we obtain the loop Ji —> ' • • —^ • • • —> Mj — > . . . — » . . . — > J ^ , This
loop of length 14 together with 7 give us that 20 € Per(/). So from now
on we can assume that Mj does not /^cover Ji and consequently we have
M, ̂  .7. -^ ... ̂  M^ for j = 1,2, . . . , 6.

Suppose that MQ C C-2. Then we consider the loops 7 , J 2 - ^ ' 7 -
—^ ... -^ Me -^ • • • —^ • • • —> J2 and MQ —^ " • —^ ' " —^ Me and
the result follows. Suppose that Me C 63. Then from the loops 7 and
Js —^ • • ' —> • • • —^ Mg -^ Js we get that 20 € Per(/). So we can assume
that MQ C Ci.

Suppose that Ms C C'i. Then we consider the loops 7, Ji —^ - 7 - —>
3 7

• • • —> MQ —^ . . . — > . . . — ) > j^ and Ms —^ • • • —^ . • • -^ Ms and the result
follows. If Ms C €2, then from the loops 7, Ja —^ - 7 ' —^ • • • -^ Ms -^ - 4 - —^
" • —^ J^ the result holds. So we can assume that Ms C C^.

If Mi c C\, then we consider the loops 7 and J\ —r ' ' • —>• - ' ' —-> M^ —>•
4

... —^ ... _^ j^ and the result follows. If Mi C 63, then by the loops 7,
7 3 7

jg — ) . . . . —^ .. . —). MI -^ • • • -^ • • • -—> J3 and Mi —> - ' ' —f ' ' • -^ Mi we
obtain 20 € Per(/). Hence we can suppose that M^ c 62.
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Suppose that Ms c €2. Then we consider the loops J^ —^ •7" —^
' ' • —>• Ms — > ' " —^ • - • —^ J^ and Ms —^ . . . — ) . . . . —^ Mg and we are done.
If Ms C Cs, then from the loops 7 and Js —^ • • • —^ • • • —> Ms —> - 4 - —>•
• • • —> Js the result follows. So we can assume that Ms C Ci.

Suppose that M^ C Ci. Then we consider the loops Ji —^ •7 . -x • • • —>
Ms -^ • • • -^ • • • —^ Ji and M2 -» • • • -^ • • • —> M^ and the result holds.
If Ma C (72, then from the loops 7 and Js —^ 7" —> • ' ' —> M^ —> • 7 ' —>
' • • —> J2 the result follows. Therefore we can assume that Ms C (7s.

If Mi C Ci, then from the loops 7 and Ji —» • • • —> ' ' • —>• Mi -^
... —, . . . -^ j^ ^g are done. If Mi c Cs, then we consider the loops
Js —> • • • -» • • • —> Mi -^ • • • —> ' ' • —^ Js and Mi -^ • • • ̂  • • • —> Mi and
the result holds. So we can suppose that Mi c 62.

Therefore the ten basic intervals of 5' satisfy that {Ji, Ms, Mg} C Ci,
{J.J2, Mi, MJ C €2 and {Js^.Ms} c Cs.

If J /-covers Ji, J2 or Js then we have the loops 7 and Ji <=± J; 7 and
^i -> ^ -^ Ji —^ Js -^ J\\ or J -^ • • • —> • . . —> J and J ̂  Js —^ Ji -^ J
according with J —^ Ji, J —^ J2 or J —^ Js respectively. Thus we obtain
that 20 G Per(/) and we are done. Clearly J does not /-cover My for
j e { 2 , . . . , 6} by the minimality of m. Hence we can assume that the only
basic interval /-covered by J is Mi.

If Mi /-covers some interval of {J, Ji, J2, Js}, then in a similar way as
before we get that 20 e Per(/). Again from the minimality of m, Mi does
not /-cover Mj for j > 2. So we can assume that the only basic interval
/-covered by Mi is Ms.

If M2 /-covers some interval of {J,Ji, J2, Js,Mi}, we obtain easily
that 20 € Per(/). Clearly Ms -^ Mj for j > 3. So we can assume that the
only basic interval /-covered by M2 is Ms.

If Ms /-covers some interval of {J,Ji, Js, Js,Mi,M2}, we get that
20 € Per(/) and we are done. By the minimality of m Ms -^ Mj for j > 4.
Thus we can suppose that the only basic interval /-covered by Ms is M^.

Since J,Mi,M2 and Ms /-cover a unique basic interval, namely
Mi,M2,Ms and Mi respectively, it follows that if J is a branching (res-
pectively non-branching) interval, then Mi, M2, Ms and Mi are branching
(respectively non-branching) intervals; here we are used Remark 4.4. This
is a contradiction with the fact that J, Mi and M^ are contained in the
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circle €2 and 62 has exactly four basic intervals. Thus statement (a) of
Proposition 12.1 holds and we are done. D

13. Upper bounds of the full periodicity kernel.

Blokh proved in [Bkl], [Bk2] the existence of a natural number
L(G) such that if a continuous self-map on a graph G verifies that
{1,2, . . . ,L(G)} C Per(/) then Per(/) == N. This result shows that the
full periodicity kernel of G is a finite set. Of course, {1,2 , . . . ,L(G)}
contains the full periodicity kernel of G.

We consider the trefoil and its proper subspaces and we shall compare
the Blokh bound L(E) with the best upper bound of the full periodicity
kernel, which follows from Theorems 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6. See
Table 13.1. We note that L{E) is fairly good for the n-star but it is too
much large for the other spaces.

14. About the topological entropy.

The topological entropy of a graph map / is a non-negative real
number h{f) associated to / which increases with the complexity of /. For
a definition and main properties see [ALM2].

Llibre and Misiurewicz [LM] obtain the next result for continuous
self-maps of graphs.

THEOREM 14.1. — Let f be a continuous self-map of a graph. Then
the following statements are equivalent:

(a) h(f) > 0.

(b) There is m € N such that {m ' n : n € N} C Per(/).

We have the following result for our spaces as a corollary of the above
theorem.

COROLLARY 14.2. — Let KE be the full periodicity kernel ofE. Let f
be an E map. IfKa C Per(/) then h(f) > 0.
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E

l2

l3

l4

Is
l6

0
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T

best upper bound

3
7
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3
7
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29

L{E)

8
24
32
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