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THE FULL PERIODICITY KERNEL OF THE TREFOIL

by C. LESEDUARTE and J. LLIBRE (*)

1. Introduction and main results.

Let E be a topological space. We shall study some properties of the
set of periods for a class of continuous maps from E into itself. We need
some notation.

The set of natural numbers, real numbers and complex numbers will
be denoted by N, R and C respectively. For a map / : E —^ E we use the
symbol /n to denote / o / o . . . o / ( n e N times), /° or «id » denotes the
identity map of E. Then, for a point x € E we define the orbit of x, denoted
by Orbf(x), as the set {^{x) : n = 0,1,2,...}. We say a- is a fixed point
of / if f(x) = x. We say re is a periodic point off of period A; C N (or simply
a k-point) if /^(rr) = x and f^x) -^ x for 1 < i < k. In this case we say
the orbit of a; is a periodic orbit of period k (or simply a k-orbit). Note that
if a; is a Appoint, then Orby(rr) has exactly k elements, each of which is a
Appoint. We denote by Per(/) the set of periods of all periodic points of /.

A connected finite regular graph (or just a graph for short) is a pair
consisting of a connected Hausdorff space E and a finite subspace V, whose
elements are called vertices, such that the following conditions hold:

(1) E \ V is the disjoint union of a finite number of open subsets
61,. . . , efc, called edges. Each ei is homeomorphic to an open interval of the
real line.

(2) The boundary, Cl(e^) \ e^, of the edge ei consists of two distinct
vertices, and the pair (Cl(e,),e,) is homeomorphic to the pair ([0,1],(0,1)).

If v and e are the number of vertices and edges respectively of £1, then
the Euler characteristic of E, is -^(E) = v - e. A vertex which belongs to

(*) The authors have been partially supported by a DGYCIT Grant n° PB 93-0860.
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Math. classification: 54H20.
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the boundary of at least three different edges is called a branching point
of E. A vertex which belongs to a unique edge is called an endpoint.

An E map is a continuous self-map of E having fixed all branching
points of E.

We say an E map / has full periodicity if Per(/) = N. The set K C N
is the full periodicity kernel of E if it satisfies the following two conditions:

(1) If / is an E map and K C Per(/), then Per(/) = N.

(2) If 5 C N is a set such that for every E map /, S C Per(/) implies
Per(/) = N, then K C S.

Note that, for a given E, if there is a full periodicity kernel, then it is
unique.

From now on the topological space E will denote one of the following
spaces:

^ ^ { z ^ C ' . z 1 e [0,1]}, z = 2 , 3 , . . . , 6 .
0= { z ^ C : \z+i\ =1},

01 =0u{zel2 :Re z^O},
02 = O U l 2 ,

Os == 0 U {z € 14 : Im z > 0},
04 = O U l 4 ,

oo=Ou{zeC: \z-i\ = 1 } ,

001 = oo U {z e 12 : Re z > 0},
002 = 00 U l2,

T = {z e C : z = cos(3(9) e^, 0 < 0 < 27r}.

The spaces l2, Is, l4, Is, IG.O.OI , 02, Os, 04,00,001,002 and T are
called the interval or the I, the 3-odor 3-staror the Y, the 4-odor the 4-^ar,
the 5-od or 5- star, the 6-od or 6-star^ the circle, the sigma, the alpha, the
circle with three whiskers, the circle with four whiskers, the eight, the ez^/i^
with one whiskers, the e%<^ with two whiskers and the trefoil respectively.

The spaces Is, 14, 15, Ig, Oi, 02, Os, 04, oo, ooi, 002 and T have
exactly one branching point, namely 0 = 0 € C. We also denote by 0 the
O e O .

The full periodicity kernel of l2, Is, l4, l5, IG, 0, Oi, 02 and oo are
known and presented in the following theorem.
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THEOREM 1.1. — The following statements hold:

(a) The set {3} is the full periodicity kernel ofl^.

(b) The set {2,3,4,5,7} is the full periodicity kernel of Is.

(c) The set {2,3,4,5,6,7,10,11} is the full periodicity kernel of the 14.

(d) The set {2,3,4,5,6,7,8,9,10,11,13,14,16,17,18,21,23} is the full
periodicity kernel of the Is.

(e) The full periodicity kernel of the Ig is the set

{2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,21,22,23,28,29}.

(f) The set {1,2,3} is the full periodicity kernel ofO.

(g) The set {2,3,4,5,7} is the full periodicity kernel of Oi.

(h) The set {2,3,4,5,6,7,10,11} is the full periodicity kernel of 0^.

(i) The set {2,3,4,5,6,7,8,10,11} is the full periodicity kernel of oo.
• Theorem 1.1 (a) is due to Sharkovskii [Sh] (see also [LY]),
• Theorem 1.1 (b) was shown by Mumbru [M] (see also [ALM1]),
• Theorem 1.1 (c) has been proved by Alseda and Moreno [AM] and

independently by Leseduarte and Llibre [LL2],
• Statements (d) and (e) of Theorem 1.1 are due to Alseda and

Moreno [AM],
• Theorem 1.1 (f) is due to Block [Bel] (see also [LR]),
• Theorem 1.1 (g) has been proved by Llibre, Paranos and Rodnguez

[LPR1] (see also [LL1]),
• Statements (h) and (i) of Theorem 1.1 are due to Leseduarte and

Llibre [LL2].

Our main goal in this paper is to characterize the full periodicity
kernel of Os, 04, ooi, 003 and T. Thus, our main results are the following:

THEOREM 1.2. — The full periodicity kernel of Os is the set

{2,3,4,5,6,7,8,9,10,11,13,14,16,17,18,21,23}.

THEOREM 1.3. — The full periodicity kernel of0^ is the set

{2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,21,22,23,28, 29}.

THEOREM 1.4. — The full periodicity kernel ofoci is the set

{2,3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,21,23}.
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THEOREM 1.5. — The full periodicity kernel of 002 is the set

{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,21,22,23,28,29}.

THEOREM 1.6. — The full periodicity kernel ofT is the set

{2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,21,22,23,28,29}.

Theorems 1.2, 1.3, 1.4, 1.5 and 1.6 are proved in Sections 6, 7, 10,
11 and 12 respectively. Sections from 2 to 5 present preliminary definitions
and results that are necessary for proving these five main theorems. In
Section 13 we compare our results on the full periodicity kernel with related
results of Blokh. Finally, in Section 14 we comment that full periodicity
implies positive topological entropy for continuous self-maps on a graph.

The tools for studying the set of periods and the full periodicity kernel
change strongly when we consider maps with some discontinuity points, see
for instance [ALMT].

2. Intervals and basic intervals.

From now on we shall talk about the whiskers and the circles of E.
A circle of E is the closure of a connected component of E \ {0} which
is homeomorphic to 0. A whiskers of E is the closure of a connected
component of E \ {0} which is homeomorphic to l2.

A closed (respectively open^ half-open or half-closed) interval J of E
is a subset of E homeomorphic to the closed interval [0,1] (respectively
(0,1), [0,1)). Notice that an interval cannot be a single point.

Let J be a closed interval of E^ and let h : [0,1] —> J be a
homeomorphism. Then h(0) = a and h(l) = b are called the endpoints of J .
If a and b belong to the same whiskers of E, then J will be denoted by [a, b]
or [&, a]. We take an orientation, that we call counterclokwise, in each circle
of E. If a and b belong to the same circle of £', then we write [a, b} to denote
the closed interval from a counterclockwise to b.

Note that it is possible that two different intervals of a circle of E
have the same endpoints. But two different points of a whiskers of E always
determine a unique closed interval.

Now we define a special class of subintervals of E. Let Q ==
{^1^2 5 • • • jQn} be a finite subset of E containing 0. For each pair ^, qj such
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that qi -^ QJ we say that the interval [qi.Qj] (respectively [qj.qi]) is basic if
and only if (^,^-) n Q = 0 (respectively (g^,) D Q = 0). The set of all
these basic intervals is called the set of basic intervals associated to Q.

3. Loops and /-graphs.

Let / : E —^ E be an E map. If K and J are closed intervals of E,
then we say that K f- covers J or K —> J (or J <- K), if there is a closed
subinterval M of K such that f(M) = J. If JC does not /-cover J we
write K -^ J .

A pa^/i o/ Zen^/i m is any sequence Jo —> Ji —^ ' ' • —^ Jm-i —> Jmj
where J o , J i , " ^ J - m are closed subintervals of E (in general, basic
intervals). Furthermore, if JQ = Jm, then this path is called a loop
of length m. Such a loop will be called non-repetitive if there is no
integer z, 0 < i < m, such that i divides m and J^ = Jj for all j,
0 < j < m - z. We say that we add or we concatenate the loop
JQ —^ J\ —^ • " —> Jm-i —^ Jo to the loop KQ —> K-i — > - " — > Kn-i —^ KQ
if they have a common vertex Jo = KQ and we form the new loop
JQ —> J\ —^ ' " —> J-m-i —)> KQ —> K\ —^ " - —>• JQ. A loop which cannot be
formed by adding two loops will be called elementary.

Let Q be a finite subset of E containing 0. An f-graph of Q is a
graph with the basic intervals associated to Q as vertices, and such that
if K and J are basic intervals and K /-covers J, then there is an arrow
from K to J. Note that the /-graph of Q is unique up to labeling of the
basic intervals. Hence from now on we shall talk about the f-graph of Q (or
just the f-graph for short). The next three lemmas are well-known in one
dimensional dynamics, see for instance [ALM2]. We only prove the third
one because we will use its proof later.

LEMMA 3.1. — Let f be an E-map and let K , J , L be closed
subintervals ofE.IfLcJ and K f-covers J, then K f-covers L.

LEMMA 3.2. — Let f be an E map and let J be a closed subinterval
ofE such that J f-covers J . Then f has a fixed point in J.

LEMMA 3.3. — Let f be an E map and let Jo, J i , ' . . , Jn-i be closed
subintervals ofE such that Ji —^ J^+i for i = 0,1, . . . , n - 2 and Jn-i —^ Jo.
Then there exists a fixed point x of /n in JQ such that f^x) C Ji for
i = l ,2 , . . . ,n- 1.
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Proof. — We shall use backward induction. Let Kn-i C Jn-i be a
closed interval such that f{Kn-i) = Jo? and suppose we have constructed
Ki C Ji for some i > 0, i < n - 1 such that f{Ki) = K^ if i < n - 1
and f(Ki) = Jo if i = n - 1. Then, by Lemma 3.1, J,_i /-covers Ki and
therefore there exists an interval 7^_i c J^-i such that /(^-i) = ,̂.
Let ^ be as follows:

^ =f\K^° ' " ° f \ K , 0 f\K^

Then JCo C Jo and ^(^o) = Jo' Consequently ^(Ko) = Jo. By continuity
of /n and Lemma 3.2 /n has a fixed point x e KQ c Jo, such that
f(x) eKi C J z f o r % = l , 2 , . . . , n - l . D

Let J be an interval of E. Then Int(J) and C1(J) denote the interior
and the closure of J respectively.

PROPOSITION 3.4. — Let f be an E map having a k-orbit P.
Consider the set of basic intervals associated to P' = P U {0}. Let
Jo —^ Ji —> ' ' ' —^ Jm-i —> J-m = Jo be a non-repetitive loop of length m of
the f-graph of P ' such that at least one J, does not contain 0. Ifm^2k,
then m G Per(/).

Proof. — By Lemma 3.1 Jo /^'-covers Jo. Then by Lemma 3.2 there
exists x e Jo such that /^(x) = x. If x has period m we are done. So
suppose that x has period s, 0 < s < m. Thus s divides m.

It is not possible that x = 0 because 0 is a fixed point and some
f\x) e Ji with Ji n {0} = 0.

lixe Int(Jo), then Orbf{x) n P = 0. So each /'(a-) is exactly in one
basic interval, and consequently the loop is repetitive (because s < m and
s divides m). Hence, x must be a point of P. So Orbf(x) C P. Without loss
of generality we can assume that s = k.

Let KQ C Jo be the interval constructed in the proof of Lemma 3.3,
then f^x) e f^Ko) c J, for i = 0,1,... ,m. Since x = f^x) e f^Ko) C
Js it follows that Jo and Js have a common endpoint x.

Assume that Jo = Js. Both sets KQ and f^Ko) are contained in Jo
and contain x, an endpoint of Jo. Therefore L = KQ n f^Ko) is an
interval (in fact it is either KQ or f^Ko)). Clearly f\L) C f{Ko) C Ji,
f\L) C f^^Ko) C Js+z, and f\L) is an interval for 0 < i < s. Thus
Ji = Js+i for i = 0 ,1 , . . . , s — 1.
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Repeating this process we get Ji = Js-\-i for i = 0,1,. . . , m — s.
Hence the loop is repetitive because s divides m, a contradiction with the
assumptions. So JQ 7^ Jg.

If Jq = Jq^-s for some 0 < q < m — 5, then the above arguments
prove that Jq-^-z = Jq-\-s+i for i = 0,1 , . . . , s — 1. Repeating this process
we obtain that Ji = Jg-^-z for i = 0 , l , . . . ,m — s and so the loop is
repetitive, a contradiction with the assumptions. Therefore we can assume
that Jq -^ Jq-^-s for 0 < q < m — s.

Since a- is a periodic point of period s, if follows that JQ == J^s and
Jg = J3^. By the above arguments we get Jm = JQ = J2s = J^s = " '
and Js = J^s = J^s = ' ' ' - In particular m must be even. Furthermore
J^ = J2s+% for 0 < i < 2s — 1. Hence 2s = 2k divides m. Since m ̂  2k the
loop is repetitive, in contradiction with the hypotheses. D

Under the assumptions of Proposition 3.4 and i f m = 2A;, we can prove
that m G Per(/) if E is different from oo and T. Unfortunately we do not
know under the same assumptions if m € Per(/) when m = 2k and E is
either oo or T. But this is not important for the rest of the paper.

4. Q-linear maps.

Let G = li, for i = 2 ,3 , . . . , 6. It is easy to see that any tree G has a
metric fi such that i f x ^ y e G and z € [x^y]^ then ̂ (x^y) = fi{x,z)-\-^(z,y),
this metric is called the taxicab metric.

Let / be an E map and let Q = {^i, 925 • • • 5 9m} be an invariant subset
of E under / such that 0 € Q. We assume that there are points of Q in
each connected component of E \ {0}. Let EQ be the minimal connected
subgraph of E containing all the basic intervals associated to Q. Clearly EQ
is homeomorphic to E. We say that / is Q-linear if the following conditions
hold:

(1) EQ = E\ in particular the endpoints of E are points of Q;

(2) for any basic interval J associated to Q, f(J) is an interval formed
by the union of basic intervals of Q\

(3) f\j : J —> f(J) is a linear homeomorphism with respect to the
taxicab metric, i.e. f\j is a homeomorphism satisfying that for any
.r, y , z € J such that fji(x, y) = p,(x^ z) + ^(^, y) we have that

/.(/Or), f(y)) = /z(/(.r), f(z)) + /.(/(^), f(y)).
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We say an E map g is a Q -linearization of / if the following conditions
hold:

W 9\Q=f\Q\

(2) g is Q-linear;

(3) the ^-graph of Q is a subgraph of the /-graph of Q.

Suppose that / is an E map having a A;-orbit P such that P has
points in each connected component of E \ {0}. Set P ' = P U {0}. Clearly,
if E e {0,oo,T} then Epi = E. Assume now that E ^ {0,oo,T}. For
each whiskers W of E we consider the endpoint q e W of E and the point
p G W, p e P such that (p, q) H P = 0. Let E' be the new topological
space obtained by shrinking the interval [p, q] to the point p. Note that E '
is homeomorphic to E. We define the E map h: E ' —> E ' by h{x) = f(x)
if fW ^ E ' and h(x) = p otherwise. Of course P is a A;-orbit for h,
Per(/i) C Per(/) and the endpoint of W belongs to P. Therefore we can
assume that Epi = E. In particular, we can talk about the ^-linearization
of f in the above way.

In the rest of this section we assume that f is an E map having a
k-orbit P and consider the set of basic intervals associated to P/ = P U {0}.

LEMMA 4.1. — Let K and J be basic intervals and let g be a P ' -
linearization off. Ifx e Int(J), g(x) ̂  0 and g(x) e K, then J g-covers K.

Proof. — Let a, b be the endpoints of J. Since J is a basic
interval associated to P', its endpoints have image in P ' and so
{/(a),/(6)} nlnt(Jf) = 0. By P'-linearity, since g(x) € K, g(x) ^ 0
and x e Int(J), there exists an interval L C J such that g{L) = K. So J
g-coveis K. Q

Let J be a basic interval. If 0 € J, then J will be called a branching
interval; otherwise J will be called a non-branchig interval.

The following proposition is the converse result of Proposition 3.4 for
P'-linear maps.

PROPOSITION 4.2. — Let g be a P'-linearization of f. If g has an
m-point for m ^ {1,2,3,4,5,6, k}, then there exists a non-repetitive loop
of length m through the g-graph such that at least one basic interval of the
loop does not contain 0.

Proof. — Let a; be a periodic point of period m for g. Then
OTbg(x) n P' = 0, so for each z, 0 < i < m, there exists a unique
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basic interval Ji containing ^(rr). Since g is P'-linear, by Lemma 4.1,
Jo —^ Ji —> " • —> J-m-i —> Jm = Jo is a loop of the (/-graph. First we shall
show that this loop is non-repetitive.

Since g is P'-linear, we can define by backward induction on %,
a collection of subintervals Ki of Ji such that g : Ki —> K^ is
one-to-one and onto, where Km = Jm = Jo- Suppose now the loop is
repetitive, then there exists 5, 0 < s < m, such that s divides m and
Ji = Ji-^s for 0 <, i < m — s. We take s the smallest number in such a
way. We claim that Ki C K^s for 0 < i < m - s. To prove the claim
consider Km-s C Jm-s = Jm = Km and by backward induction, suppose
K^ C Ki^.s-\-i and Ki ^ K^s- So, there is a € Ki such that a ^ ^+s,
and g{a) e JQ+i C K^s+i- Since J^+s -^ JQ+s+i, there exists b e J^+s
(and so b -^ a) such that g(b) = g(a). This is a contradiction with the fact
that g is P'-linear and g\j^ is one-to-one. Hence the claim is proved.

Thus g8(Ko) = Ks D KQ and by Lemma 3.2, g8 has a fixed point
y € KQ. Since m is divisible by 5, ^m(2/) == ^ / . Note that x ^ y because x has
period m, and 2/ has period s <m. Hence the map ̂ m : KQ —> Km is linear
and has at least two fixed points. Therefore g'm\Ko must be the identity map
and so KQ = Km = Jm = Jo- Then we get KQ = Kg = K^s = - • - = Km
because KQ C Kg C K^s C • • • C Km = KQ. Now consider the linear map
g8 : KQ —> Kg = KQ which has a fixed point. Since gs\Ko ls one-to-one and
onto, we have two possibilities.

• Case 1: g8\Ko = id.

Then gs>(x) = x but x has period m > 5, a contradiction.

. Case 2: g8^^ ¥- id and g28^^ = id.

Let XQ e KQ = Jo be a Appoint for / such that Orby(a;o) C P. Then
g^^xo} = XQ. Moreover XQ is an endpoint of KQ and so k = Is. On the
other hand, since g'28(x>) = x and x has period m > s we have 2s = m.
So k = m, a contradiction with the hypotheses. In short we have proved
that the loop Jo —> Ji —)> • • • —> Jm-i —)> Jm = Jo 1s non-repetitive.

Suppose that all the basic intervals of the non-repetitive loop of
length m contain 0. Therefore Orbg(x) is contained in the branching
intervals. Since m > 6, there is a basic interval Jz containing at least two
points of Orbg{x). Let u,v € Orbg{x) D Ji such that (0,z») D Oibg{x) = 0,
and (u, v) D Ovbg(x) = 0. Since the loop is non-repetitive, there is Jj -^ Ji
such that Jj H Orbg(x) ̂  0. Let z € Jj H Orb^a;) such that (z, 0)r\P/ = 0.
Therefore there is r, 0 < r < m such that ^(n) = 2; and f^771"7'^) = u.
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On the other hand ^|[^o] is lineal and so ^|[^,o] = [^0]. Furthermore
v e (u,0) and so ^(v) e (2:,0) in contradiction with the fact that
(^, 0) H Orb^) =0. Q

COROLLARY 4.3. — Let g be a P'-linearization of f.Ifme Per(^)
and m ^ {2,3,4,5, 6, k, 2k}, then m € Per(/).

Proof. — Both E maps / and ^ have points of periods 1 and k. If
m t {1^ 2,3,4,5,6, k}, then by Proposition 4.2 there exists a non-repetitive
loop in the ^-graph of length m such that at least one of its basic intervals
does not contain 0. Therefore, since the ^-graph of P ' is a subgraph of the
/-graph of P ' and m ̂  2k, by Proposition 3.4, / has a periodic point of
period m. Q

Remark 4.4. — Suppose that / is P'-linear. Then each branching
interval /-covers exactly one branching interval, and perhaps some non-
branching intervals. Moreover each non-branching interval /-covers either
zero or two branching intervals.

5. Preliminary results in la, Is, 14, IsJe, 0, Oi, Oa, Oa and 04.

We need to introduce some orderings in the set of natural numbers,
adding or removing some few elements.

The Sharkovskii ordering >s on the set N5 = N U {2°°} is given by

3 >s 5 >s 7 >s • • • >s
2 . 3 >, 2 • 5 >, 2 • 7 >, • . . >,
22 . 3 >, 22 . 5 >, 22 . 7 >, • • . >,
271. 3 >, 271. 5 >, 271. 7 >, • . . >,
2°° > , • • • > , 2" > , . . . > , 24 >, 23 >, 22 >, 2 >, 1.

We shall use the symbol >s in the natural way. The symbol 2°° ensures
the existence of supremum of every subset with respect to the ordering >g.
For n e N5 we denote

S(n)= {ke^:n>s k}.
So

S(200)={2i:^=0,l^...}.

Now we state the Sharkovskii Theorem [Sh] (see also [St], [BGMY]
and [ALM2]).
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THEOREM 5.1 (Interval Theorem).

(a) If/ is an interval map, then Per(/) = S(n) for some n ̂  N5.

(b) If n is an element of N5 then there exists an interval map f such
thatPer(f) = S(n).

If we want to get a similar result for the space Y, we need two new
orderings. The green ordering >g on N \ {2} is given by

5 >g 8 >g 4 >g 11 >g 14 >g 7 >g 17 >g 20 >g 10 >g ' ' - >g

3 • 3 >g 3 • 5 >g 3 • 7 >g • ' • >g

3 • 2 • 3 >g 3 • 2 • 5 >g 3 • 2 • 7 >g ' • • >g

3 . 22 • 3 >g 3 • 22 • 5 >g 3 • 22 • 7 >g • • • >g

3-2^ > g 3 ' 2 2 > g 3 ' 2 > g 3 ' l > g l .

The red ordering >r on N \ {2,4} is given by

7 >r 10 >^ 5 >^ 13 >r 16 >y. 8 >r 19 >y 22 >^ 11 >r ' ' ' >r

3 • 3 >r 3 • 5 >r 3 • 7 >y • • • >r

3 • 2 • 3 >r 3 • 2 • 5 >^ 3 • 2 • 7 >^ • • • >r
3 • 22 • 3 >^ 3 • 22 • 5 >r 3 • 22 • 7 >^ • • • >r

3 • 23 >^ 3 • 22 >^ 3 • 2 >^ 3 • 1 >r 1.

For n G N \ {2} denote

G{n) = {k € N : n >g k},

for n € N \ {2,4} denote

R(n) = {k C N : n >r k}

and additionally

G(3 . 2°°) = R(3 • 2°°) = {1} U {3n : n e 5'(200)}.

We also denote

^g= ( N \ { 2 } ) U { 3 - 2 ° ° } and N^ = (N\ {2,4}) U {3 • 200}.

The following theorem is due to Alseda, Llibre and Misiurewicz
[ALM1] for Is maps.
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THEOREM 5.2 (Is Theorem).

(a) If f is an Is map, then Per(/) = S(ns) U G(ng} U J?(ny.) for some
ris € N5, rig € Ng and T^ € N^.

(b) Jfns C N5, ng 6 N^ and n^ € Ny, then there exists an Is map / such
that Per(/) = S(ris) U G(rig) U J?(^).

Let lyi be the n-od space define as the set {z € C : z71 G [0,1]}. In
order to obtain a generalization of the Sharkovskii Theorem for In we need
to define partial ordering <n for n > 1. The ordering >i is the ordering >s.
If n > 1 then the ordering <n is defined as follows. Let m, k be positive
integers.

• Case 1: k = 1. Then m <n k if and only if m = 1.

• Case 2: k is divisible by n. Then m <n k if and only if either m = 1
or m is divisible by n and m/n >s k / n .

• Case 3: k > 1, k not divisible by n. Then m <n k if and only if
either m = 1, m = k^ or m = ik + jn for some integers i > 0, j > 1.

From the definition we have that <2 is the Sharkovskii ordering.
A set Z is an initial segment of <n if whenever k is an element of Z and
m <n k, then m also belongs to Z; %.e. Z is closed under <n predecessors.
The following result of Baldwin [Ba] is a generalization of the Sharkovskii
Theorem and the Is Theorem for arbitrary continuous self-maps of In.

THEOREM 5.3 (n-od Theorem).

(a) Let f be a continuous self-map of In. Then Per(/) is a nonempty
union of initial segments of{<p:l<p<n}.

(b) IfZ is a nonempty finite union of initial segments of{<p: 1 < p < n},
then there is a continuous self-map of In f such that f(0) = 0 and
Per(/) = Z.

The n-od Theorem has been extended by Baldwin and Llibre in [BL]
to continuous maps on a tree having all their branching points fixed.

We define the Block ordering >o on N as the converse of the
natural ordering on N \ {1} and we add the 1 as the smallest element;
i.e. 2 >o 3 >o 4 >o • • - >o 1. For n € N, we denote

B(n) = {k C N : n >o k}.
Sharkovskii Theorem has been generalized by Block to the circle maps
having fixed points in [Bc2].
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THEOREM 5.4 (Circle Theorem).

(a) Iff is a circle map having fixed points, then Per(/) = S(ris) U B(rib)
for some ris € Ng and rib C N.

(b) If ris € Ns and n^ € N, then there exists a circle map f having fixed
points such that Per(/) = S(ris) U B(rib).

In [LPR2], [LPR3] the Sharkovskii Theorem has been extended to
connected graphs G with zero Euler characteristic having all branching
points fixed. Given a graph (7, let e(G) and b(G) the number of its
endpoints and branching points respectively.

THEOREM 5.5 (Graph Theorem). — Let G be a connected graph such
that b(G) + 0 and ^(G) = 0.

(a) Let f : G —> G be a continuous map with all branching points
fixed. Then Per(/) is a nonempty finite union of initial segments of
{<p:0<p<e(G)+2}.

(b) IfZ is a nonempty finite union of initial segments of

{ < p : 0 < p < e ( G ) + 2 } ,
then there is a continuous map f : G —^ G with all the branching points
fixed such that Per(/) = Z.

We note that if G is a connected graph such that \{G) = 0
and b{G) = 0, then G is homeomorphic to 0. The set of periods for
continuous self-maps on 0 wich have fixed points is characterized in the
Circle Theorem.

6. The full periodicity kernel ofOa.

The objective of this section is to prove Theorem 1.2.

Since 15 is homeomorphic to {z € Os : Im2; > —1}, we can consider
Ig = [z € Os : 1m z > —1}. Let / an 15 map. We shall extend /
to an Os map / as follows. We define f(z) = f(z) if z C 15 and /
restricted to Cl(03 \ 15) is any homeomorphism between Cl(03 \ 15)
and the unique closed interval in 15 having /(I — i) and /(—I — i) as
endpoints. Of course Per(/) = Per(/). From Theorem 1.1 (d) it follows
that {2,3,4,5,6,7,8,9,10,11,13,14,16,17,18,21,23} is a subset of the full
periodicity kernel of 03. Then, to prove Theorem 1.2 it is sufficient to show
the following proposition.




