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EXTENSION AND LACUNAS OF SOLUTIONS
OF LINEAR PARTIAL

DIFFERENTIAL EQUATIONS

by U. FRANKEN and R. MEISE

The question whether certain zero-solutions of linear partial differen-
tial operators can be extended to larger domains, preserving certain prop-
erties, has a long history, beginning with Riemann's theorem on removable
singularities of analytic functions. Various types of problems have been
discussed in the literature. As typical examples we only mention Kisel-
man [10], Bony and Schapira [2], Kaneko [10], Liess [12] and Palamodov
[21]. It seems that the extension of all C°° -solutions of a given operator
to a larger real domain has not found much attention so far. For con-
vex, open sets it was treated as a subcase in the article of Kiselman [10]
and for solutions of systems over convex sets it was investigated by Boiti
and Nacinovich [1]. However, the solution of L. Schwartz's problem on the
existence of continuous linear right inverses for linear partial differential
operators with constant coefficients, given by Meise, Taylor and Vogt [15]
indicates that this question is of interest in a different context. They show
that P(D) : P'(^2) —>' P'^) admits a continuous linear right inverse if and
only if for each relatively compact open subset uj of fl, there exists another
subset a/ D u of ^ with the same properties, such that for each / € ^'(a/)
satisfying P(D)f = 0 there exists g e P'(^) satisfying P{D)g = 0 and
f\u} = 9\u)' For convex sets fl, this property is equivalent to a condition of
Phragmen-Lindelof type for plurisubharmonic functions on the zero variety
V(P) = {z e (C71: P{-z) = 0}.

Key words: Whitney extension of zero-solutions - Phragmen-Lindelof conditions for
algebraic varieties - Fundamental solutions with lacunas - Continuous linear right in-
verses for constant coefficient partial differential operators.
Math. classification: 35E05 - 35B60 - 32F05 - 46F05.
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Motivated by these results we investigate in the present paper under
which conditions an analogue of Whitney^s extension theorem holds for
the zero-solutions of a given linear partial differential operator P(D) with
constant coefficients. To formulate our main result, let K be a compact,
convex set in 1R71 with non-empty interior, denote by HK its support
functional and let

£(K) := {f C C(K) I /I o e C°°(K) and (/| o )^) extends continuously to

K for each a € IN^},

S^^K) := {/ e G00^71) I f\K == 0},

both spaces being endowed with their natural Frechet space topology.
Further, let £p(K) (resp. Ep^SR^)) denote the space of all zero-solutions of
P(D) in £(K) (resp. C'^IR71)). Then the main results of the present paper
are stated in the following theorem.

THEOREM. — For K and P as above, the following conditions are
equivalent:

(1) the restriction map RK : ^(B") -^ Sp{K\ pK^f) := f\K is
surjective

(2) the map pK m (1) admits a continuous linear right inverse, i.e.
there exists an extension operator EK '- Sp(K) —^ SpCS^) satisfying
PK ° EK = id^p(K)

(3) P{D) : £(W,K) -^ £{W,K) is surjective

(4) there exists a continuous linear map RK '' ^(IR71, K) —^ ^(IR71, K),
such that P(D) o RK = id^iR",.^)

(5) the algebraic variety V(P) satisfies the following condition PL(K)
of Phragmen-Lindelof type: There exist A > sup |.z'|, k > 0 such that

x€K
each plurisubharmonic function u on V(P) which satisfies (a) and (/?) also
satisfies (7), where

(a) u(z) ̂  HK(Imz) + 0(log(2 + |^[)), z C V(P)

(/3) n(z)^A|Im^| , z 6 V{P)

(7) u{z) < HK(lmz) + fclog(2 + |^|), z € ^(P),

and where HK denotes the support function of K.
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Note that the theorem extends a result of de Christoforis [3] who
proved that (3) holding for all compact convex sets K with non-empty
interior is equivalent to P being hyperbolic with respect to all non-
characteristic directions. However, the latter condition is strictly stronger
than those given in the theorem.

0

Note further that the condition PL(Jf) implies the condition PL(Jf)
which was used by Meise, Taylor and Vogt [15], sect. 4, to characterize when

0 0

P(D) : C^CK) —> C°°(K) admits a continuous linear right inverse. For
homogeneous polynomials the converse implication holds, too, however, it
remains open whether it holds also for non-homogeneous polynomials.

The main steps in the proof of the theorem are the following: First
we use Fourier analysis, an idea of proof from Meise and Taylor [13] and a
result of Franken [4] improving a theorem of Meise, Taylor and Vogt [16],

0

to characterize when for convex compact sets K C Q C IR"^ K -^ 0,
the restriction map PQ,K : Sp{Q) —> ^p{K) is surjective. One of the
characterizing conditions is the Phragmen-Lindelof condition PL(K,Q)
(see 2.9) which also characterizes the surjectivity of PQ,K '• ^p{Q) —^
Vp(K), where Vp(L) = {^ C V\L) \ P{D)p. = 0}. From this we obtain
that (1), (3) and (5) are equivalent (see 2.11). Then we show that (1) is
a local property of QK and use this to get "fundamental solutions" (see
3.3) having certain lacunas. Together with a particular Whitney partition
of unity in IR/1 \ K these "fundamental solutions" allow the construction of
RK in (4). By a result of Tidten [24] on the existence of continuous linear
extension operators for the functions in £{K)^ (2) is an easy consequence
of (4).

In [5] the main results of the present paper are used to characterize
the homogeneous differential operators P(D) that admit a continuous linear
right inverse on C7°°(^), fl, any bounded, convex, open subset ofIR71 in terms
of the existence of fundamental solutions for P{D) which have support in
closed half spaces.

Acknowledgement: The first named author acknowledges the support
of his research at the University of Michigan in Ann Arbor by the "Deutsche
Forschungsgemeinschaft".
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1. Preliminaries.

In this section we introduce most of the notation that will be used
subsequently and we prove some auxiliary results on plurisubharmonic
functions and weighted spaces of analytic functions on algebraic varieties.

1.1. Spaces of C°°-functions and distributions. — For an open set
Q C M71 we denote by £(Cl) the space of all C°° -functions on f2, endowed
with the semi-norms

\\f\\L,i := sup sup l/^)], L CC ̂  I € IN^.
xeL\a\^i

For a closed set A C M71 we denote by £(A) the space of all (7°°-Whitney
jets / := (/^aeiN- € C(A)^ on A, i.e. / satisfies:

II/IK, „ ,up .up wr^ < ̂ ,
"̂  ^1^ la; ~ 2/1

where

(R^frw ̂  rw - ^ -f^^y-^
\0\^l-\a\ p '

and L CC A, / € INo. We endow ^*(A) with the semi-norms

11/11^= 11/11^ + I I / H L , Z , ^ccA, Z e I N o .

Moreover for a compact set A C IR" we define

P(A) := {/ € fOR") | Supp(/) c A},

endowed with the induced subspace topology. For an open set f2 C IR71 we
let

P(^) := {/ e f(IR71) | Supp(/) CC ^} == irid P(L),
LCCn

endowed with the inductive limit topology. If S is either open or compact
then S ' { S ) resp. V{S) denotes the dual of the space £{S) resp. V{S). For a
compact set L C S we define the space of C°° -functions resp. distributions
on S with lacunas in L by

£(5, L) := {/ e £(5) | f\L = 0}, ^(5, L) := {/. € ^(5) | ̂  = 0}.
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1.2. Remark. — Let A C IR71 be closed. By the extension theorem of
Whitney [W] each C'°°-function on A can be extended to a C^-function
on IR71 (which is real-analytic outside A), i.e. the restriction map RA is
surjective, where

RA : f(IR") ^f(A), RAW := (/^IA)^".
0

If A is convex and A -^ 0 then the definition of Whitney jets is much
easier:

£(A) ={f C £(A) | for each a € 1N^ there exists /Q' C G(A) : .Tj o = f^}.
A

Note that in this case the extension of C00-functions can be done by a
continuous linear operator. This is a consequence of a general result of
Tidten [T], Satz 4.6.

1.3. Partial differential operators. — Let (C[^i , . . . , Zn] denote the ring
of all complex polynomials in the variables z\^..., Zn. For a polynomial
P € (C[^i , . . . , Zn} of degree m

P(z) = ̂  a,^, z C (C71,
\a\^m

we define the partial differential operator

P(D) := ̂  a^-Ha",
|o;|^m

where Q06 denotes the a-th derivative in the distribution sense. P(D) is a
continuous linear endomorphism on each of the spaces £(S),Vf(S), where
S C IR71 is either open or compact. The corresponding spaces of zero-
solutions of P{D) are defined as

W) := {f e £(S) | P(D)f = o}, Pp(5) := {/. e v\S) | P(D)^ = o}.

A distribution E € ^'(IR71) is called a fundamental solution for P(D) if
it satisfies P(D)E = SQ, where 60 denotes the point evaluation at zero.
The principal part Pm of P is defined as Pm{z} := S a^. A vector

|o!|==m
AT e IR" is called characteristic for P if Pm{N) = 0. P or P(D) is said to
be hyperbolic with respect to N e IR71 \ {0}, if N is non-characteristic for
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P and if P(D) admits a fundamental solution E e P^IR71) which satisfies
Supp(^) c H-^(N), where we let

H±{N) := [x e IR71 | ± {x,N} ^ 0}

and where <•, •) denotes the Euclidean scalar product on ]R71.

In the present paper we are going to characterize the linear partial
differential operators P(D) and the convex compact sets L in IR71, L ^ 0,
for which all elements of £p(L) resp. Vp(L) can be extended to elements of
^(R71) resp. VpCBy). To do this we will use Fourier analysis. Therefore,
we show in this section that £p{L) and Vp(L) are isomorphic to certain
weighted spaces of holomorphic functions on the zero-variety of P. To prove
this we need the following two lemmas.

1.4. LEMMA. — Let K c IR71 be compact and convex with 0 e K.
Then there exists a number C > 0 so that for each x e 9K there exists
A e G'L(n;]R) satisfying:

WA^^I^CK

(2)A(( l , . . . , l ) )= : r

(3) C-1^! ^ \A\z)\ ̂  C\z\, for all z e (C71 and the Euclidean norm

Proof. — For each x € R71 \ {0} let {x/\x\, f^x),..., f^{x)} be an
orthonormal basis in IR". Then let e := -(!,...,!) and define for 0 < 6
the linear map A^ : V —> ̂  by

A^6(z) := (z, e)x + <?(z, h{e)}h(x) + ... + < ,̂ fn(e))fn(x), z € (C71,

n

where (^1^2) := E ^ij^j, ^1,^2 € (C71. Note that A^^) c IR71.
j=i

By our choices, Aa;^ satisfies (2) for each 6 > 0 and each x € 9K. Using
0

a compactness argument, 0 e ̂  and A^((l,.... 1)) = a: it is easy to see
that there exists 6^ > 0 such that A^ satisfies (1) for each 0 < 6 < <$i and
all x G 9K. To show (3) note that

< )̂ = <^ ̂ e + 6{z, h{x)}f^e) + ... + < ,̂ fn(x))fn(e), z C (C71.
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Since {e/|e|, f^(e\... /n(e)} is an orthonormal basis of ([<n, we have

/ \ n
| ^ ( y \ | 2 l | 2 j | 2 [ / JL \ |2 _ L ^ 2 V ^ | / f.(^\\\2 ^ (^n
\-i±x,6\z}\ ~ \e\ \x\ \\z'>\ I / I ' ° / . \\Z'>J3\X}1\ ? z e VL •

\ l^l / ,=2

Using the fact that also {xl\x\,f^(x),... ,/n(^)} is an orthonormal basis
of (C71, the following holds for 6 := ^i:

4

min (^ .m^ 'y1 ' i61) ̂  ̂  K6^'< max (^ slyl' ̂ 1)14

Hence A := Aa;^ satisfies (3) with a sufficiently large number C > 0 which
depends only on <?i and K,

1.5. DEFINITION. — For a compact, convex set K in IR71, its support
function HK is defined as

HK(y):=SMp{x,y), 2/CIR71.
xCK

In the following lemma we construct certain plurisubharmonic func-
tions. The first inequality in the lemma also follows from Langenbruch
[L], 1.2. To prove the second property we use a different method for the
construction.

0

1.6. LEMMA. — Let K C 1R7" be compact and convex with K -^ 0.
For each k ^ 1 there exist numbers I ^ A;, C > 0 and a continuous,
plurisubharmonic function w : ̂  —> M such that for each z C (C71:

(1) HK(Imz) - Hog(l + H) ^ w{z) ^ ^x(Im^) - Hog(l + \z\) + C

(2) sup{|w(0 - w(^)| | $ € ( E ^ l ^ - z\ ̂  1} ^ G.

0

Proof. — Without loss of generality we may assume 0 C K. Let k ^ 1
be given. For T ^ 0 we define

p ,̂,.̂ ^̂ ,̂ ,̂ .
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By the proof of Meise and Taylor [14], 2.3, there exists a number T ^ 0
such that the function u\ : (E —> IR

( -|Im^| -kPT(z) if Imz^ 0
uz(z):= 2

-\lmz\-kPT(z) if Im^O
z

is subharmonic on (C. Moreover, one can find l\ ^ 1 and (7i > 0 such that

\Imz\ - h log(l + \z\) - Gi ^ m(^) ^ | Im^| - Hog(l + \z\)

for all z G (C. Next let Q := [0,1]'1 and
n / 1 \

(^) ^= ̂  (^i(^) + . Im^- } + nCi.
j=i v /

v^::= 2^ nl(^)+ ^ I m^ -h nGl

Then for all ^ C (E71 :

(3) HQ(lmz) - nh log(l + \z\) ^ v(^) ^ ^(Im^) - Hog(l + \z\) + nCi.

Now fix a; € 5^C and let Ax € GL(n;IR) be the map in Lemma 1.4. It is
easy to see that the function

w{z) := sup v{A^(z)), z C 0^
xCQK

is continuous and plurisubharmonic on ([m. Let (72 > 0 be the constant in
1.4(3). By 1.4(1), 1.4(3) and (3) above we have

w(z) ̂  sup (^A.(Q)(Im20 - Hog(l + |A^(^)|)) + nGi
xe9K

^^(Im^)-A:log(l+ —|^|)+nC'i
(^2

^ HK^Z) -k\og(l + |^|) + A;log(C2) 4- nCi.

Hence w satisfies the second inequality in (1) with C := k\og(C^) + uC\.

To show the first inequality let z € (C71 be given. Choose a point x G 9K
with HK^^-Z) = (Im/z, x) and note that 1.4(1) implies

HK(lmz) - nC^h log(l + \z\) ̂  HK^Z} - nh log(l + C^\z\)
^(a;,Im^-^ilog(l+|A^(z)|)
^ ^(Q)(Im^) - nh log(l + IA^Z)])
^ ^(A^(^)) ^ w(^).
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Thus the first inequality in (1) holds with ( := nC^\\. To show property
(2) note that for each T ^ 1 there exists Cy > 0 so that for all z\, z^ € (C
with lm(zj) ^ 0, j = 1, 2 and |^i — 2^21 ^ 62 we have

|P^l)-Py(^)|^.

This implies for z\^ ^2 € (C71 with |^i — ^2] ^ C'2'-

Kzi) - ̂ 2)! ̂  n(C2 + 2A;Cr).

To show the inequality in (2) fix ^i, z^ € (D71 with \z\ — z^\ ^ 1. Choose
x^ x<2 C 9J<r such that for all x e 9K : v{A^{zj)) ^ v(A^(zj)) - 1, j =
1, 2. Without loss of generality we can assume w{z\) ^ w(z-z). Since
|A^i) - A^(^)| ^ C2\zi - Z2\ ̂  C2, for all x € 9K, we get:

w(^i) - w(z^) ^ ^(A^(^i)) + 1 - v{A^)) ^ n(C2 + 2A:Cr) + 1.

Hence (2) holds if C is sufficiently large.

1.7. DEFINITION. — Let L C IR71 be a compact, convex set with
0

L ^ 0, let V C (C71 be an analytic variety and let A(V) denote the space
of all analytic functions on V. For B ^ 1 define

<B^{/^A(y)|
11/11^ B ''= ^P |/(^)|exp(-^(Im^) ± Blog(l + \z\)) < oo},

z(EV

endowed with the induced Banach space topology. Moreover, define

A^(V) := ind A-^{V\ and A^V) := proj A^^(V).
-B-^oo B-^oo

1.8. PROPOSITION. — Let K C IR71 be compact, convex with K ^ 0,
let P = Pi • . . . • PI , where the Pj € (C [^i,..., 2^] are irreducible for 1 ̂  j ^ I
and pairwise not proportional and let V{P) := {z 6 (E^ | P{—z} = 0}.
Then the Fourier-Laplace transform F, defined by

F^) : z ̂  {^,exp(-i\x,z))), z € V(P),

is a linear topological isomorphism between the following spaces:

(1)^:£p(X),^A^(V(P))

(2)^:Pp(^^A^(y(P)).
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Proof. — (I): This holds by Meise, Taylor and Vogt [17], 3.4(3) for
^)=log(l+^).

(2): Using standard arguments from functional analysis and the
Paley-Wiener theorem for C°° -functions one gets the following topological
isomorphisms

Vp(K), ̂  V(K)/P(-D)V(K) ̂  A^VPA^a171),

where P(z) := P(-z), z e (E71. We claim that the map

p : A^VPA^Cn —— AJ,(y(P)), p{f + PA^)) := /|v(p)

is a topological isomorphism. Using this claim it is easy to check that the
resulting isomorphism is F.

To prove our claim, note that by the open mapping theorem it
suffices to show the bijectivity of p. To see that p is injective let / G
Aj^Q!71) satisfy /|y(?) = 0. By hypothesis, P is equal to a product of
irreducible polynomials, hence Hansen [Ha], 2.2, implies f / P e A^").
By the Malgrange-Ehrenpreis lemma (see Hansen [Ha], A.I) we have
f / P C Aj^O^). Hence p is injective.

To show that p is surjective let / € A^(V(P)) be given. Then for each
k e IN choose a plurisubharmonic function Wk '. (C71 —^ M and l(k) ^ A:,
C(k) > 0 as in Lemma 1.6. By the estimates for / and 1.6(1) there exist
numbers Gi(fc) ^ 1 such that for each k € IN :

|/(^Ci(A;)exp(w^)), ZCV(P).

By 1.6(2), the functions w^, A; € IN, satisfy the hypothesis of Hansen [Ha],
2.3 (Extension theorem). By the proof of Hansen [Ha], 2.3, there exist
numbers M > 0 and C'z(k) > 0, k € IN, so that for each A; € IN there exists
a function fk € A^^ satisfying fk\v{P) = f and

(3) \fk(z)\ ̂  C2(k)exp(wk(z) +Mlog(l + H)), z € (C".

By Hansen [Ha], 2.2, and A.I, there exist numbers C^{k) > 0, k G IN, and
functions g^ e A^^ such that /fc+i — fk == PQk and

\9k{z)\ ̂  W) exp(wk(z) + Mlog(l + \z\))
^ GsWe^exp^Imz) - (fc - M)log(l + H)), z € (C71.

Now observe that for k G IN there exists a function bk € A^CC71) such that:

\gk(z) - bk(z)\ ^ 2-fcexp(^(Im^) - (fc - M)log(l + |^|)), z G (C71.
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This implies that the following function is well-defined:

k-l oo

^=-I>+E(^-^)-
j=l j=k

Moreover hk G A^^ and there exist numbers €4 {k) > 0, k (E IN such
that:

(4) \hk{z)\ ̂  C^k)exp(HK(Imz) - {k - M)log(l + |^|)), z e (E".

By definition we have gk = hk — /^-n- This implies that the following
function is well-defined:

g := fk + Phk, where /c G IN.

From the inequalities (3) and (4) it follows that g G AJ^(V(P)). Obviously
P(^)=/.

2. The P(P)-extension property for compact, convex sets.

In this section we introduce the P(D)-extension property for compact
0

sets K C IR" with K 7^ 0. We show that it is equivalent to a certain
condition of Phragmen-Lindelof type holding on the zero-variety of P. Also,
it is equivalent to the surjectivity of P(D) on the space ^(IR71,^). Thus
our results extend those of de Christoforis [Ch].

2.1. DEFINITION. — Let K C Q C IR71 be closed, convex sets in ]Rn

with K ^ 0 and P € (C[^i , . . . , Zn}.

(a) We say that {K^Q) has the P(D)-extension property if for each
f C £p(K) there exists g € £p(Q) with g\K = f. If Q =^Kn we say that
K has the P(D)-extension property.

(b) If the conditions in (a) are satisfied for Vp instead of£p, and ifK
and Q are compact we say that (K^ Q) (resp. K ) has the P(D)-extension
property for V.

Thus, K has the P(D)-extension property, if the analogue of Whit-
ney's extension theorem holds for the zero-solutions of P(D). The following
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lemma shows that it makes no difference to extend zero-solutions or arbi-
trary solutions of P(D).

2.2. LEMMA. — Let K c Q C W be closed, convex sets with K ^ 0
and P e (E[^i , . . . , Zn}. The following assertions are equivalent:

(1) (K, Q) has the P(D)-extension property,

(2) for each u e £(K) and v e £(Q) satisfying P(D)u = V\K there is
w e £(Q) with P(D)w = v and W\K = u,

(3) P{D) : £(Q,K) —— £(Q,K) is surjective.

Proof. — (1) =^ (2): Suppose (K, Q) hos the P (^-extension property
and let u, v be given as in (2). Using Whitney's extension theorem and the
fact that P(D) : £(]Rn) —— £(]Rn) is surjective, one can find a function
h e £{Q) such that P(D)h = v. Then we get P(D)(u - h\K) = 0 in £{K).
By (1) there exists a function g e £(Q) with P(D)g = 0 and g\K = u-h\K'
Hence w := g + h has the required properties.

(2) => (3): Let v e £(Q,K) be given and define u = 0 on K. By
hypothesis there exists w € £(Q) with P(D)w = v and W\K = u = 0,
hence w e£(Q,K).

(3) =^ (I): Let / e £p(K). By Whitney's extension theorem there
exists F e <f(Q) with F|^ = /. Then P(D)F € <?(0, K). The property (3)
implies that we can solve the equation P(D)G = P(D)F with G e £(Q, K).
Then the function g := F - G is in fp(Q) and satisfies g\K = /.

2.3. Remark. — Lemma 2.2 holds too if we replace "P(P)-extension
property" by "P(D)-extension property for P'", ̂  by "P'" and if Q is
compact.

The following lemma shows that it suffices to consider irreducible
polynomials in order to decide when a pair (K, Q) of compact and convex
sets satisfies the P(Z))-extension property.

2.4. LEMMA. — Let K c Q C IR71 be compact, convex sets with
K ^ 0, Pi, ?2 € (C[^i,...,^] \ {0} and let P := P, . P^. Then (K^ Q)
has the P(D)-extension property (for V) if and only if (K, Q) has the
Pj{D)-extension property (for V^, where j = 1,2.

Proof. — We prove the lemma only for the class £.
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"= '̂ : Let g € £(K) with Pi(D)g = 0. There exists g e £(K) with
P2(D)g = g^ This implies P(D)^ = 0. By hypothesis there exists G € £(Q)
with P(jD)G = 0 and G\K = ^. Then G := P^G satisfies Pi(D)G = 0
and G|j< = g.

"^=" : Let g G f(J<T) with P(2^)p = 0. There exists a function
gi € £(Q) with Pi(jD)^i = 0 and ^i|j< = P2(D)g. Choose a function
92 e S(Q) with P2(2^2 = 9i. Then P^)^ - g^) = 0- KY hypothesis
there exists / e <?(Q) with f\K = g - 92\K and P2(D)f = 0. We set
G := / + ^2. Then we have P(J9)G = P^(D)(P2(D)f) - Pi(D)g^ = 0 and
G\K = f\K+ 92\K = 9.

To formulate a characterization of the P(D)-extension property in
terms of a condition on the zero-variety V(P) of P we need the following
definitions.

2.5. DEFINITION. — Let V be an analytic variety. A function u :
V —> 1R U {—00} is called plurisubharmonic ifu is plurisubharmonic in
the regular points Vreg ofV and locally bounded on V. In order that u is
upper semicontinuous on the singular points Vsmg of V we let

n(C) = limsup u(z), < e Vsing.
Yreg^———C

By PSH(V) we denote the set of all plurisubharmonic functions on V which
are upper semicontinuous.

2.6. LEMMA. — Let Q^K C IR77^ be compact and convex sets with
K C Q. Moreover let V C (C71 be an algebraic variety.

(a) We say that V satisfies the Phragmen-Lindelof condition PL(K^ Q)
if for each k ^ 1 there exist I ^ 1 and C > 0 such that for each u € PSH(V)
the conditions (1) and (2) imply (3), where:

(1) H(^^(Im^)+0(log(l+H)), z^V

(2) u(z) ^ HQ(lmz) + Hog(l + \z\\ z € V

(3) ^)<^(Imz)+nog(l+H)+G, z e V .

V satisfies APL(K^ Q) if the above implications hold for all plurisub-
harmonic functions u = log |/|, where / is a holomorphic function on V.

(b) We say that V satisfies PL^K.Q) if for each I ^ 0 there exist
k ^ 1 and C > 0 such that for each u € PSH(V) the conditions (1)' and
(2)' imply (3)', where:
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(1)' ^K^(Imz)-^log(l+[^|)+0(l), z e V , forallj^l

(2/ u(z) < ^Q(Im2:) - A;log(l + \z\), z € V

(3)' n^) ^ ^(Im^) - nog(l + |^|) + C, z e V.

V satisfies APL^K, Q) if the above implications hold for all plurisub-
harmonic functions u = log |/|, where / is holomorphic on V.

(c) We say that V satisfies PL(K, Q) if there exist l^ 0 and C > 0
so that for each u € PSH(V) the conditions (1) and (2) imply (3), where:

(1) u(z) ^ HK(lmz) + 0(log(l + |z|)), z e V

(2) u(z)^HQ(lmz), zeV

(3) u(z) ^ HK(lmz) + nog(l + |^|) + C, z e V.

Remarks. — A similar but different Phragmen-Lindelof condition was
used by Hormander [7] to characterize the surjectivity of linear partial
differential operators on A(»), the space of all real-analytic functions on a
convex open set ^ in IR/1. Hormander was the first one who noticed that
conditions of this type arise in connection with certain problems for partial
differential equations.

The conditions formulated in 2.6 are close to those used by Meise, Taylor
and Vogt [15] to characterize when P(D) admits a continuous linear right
inverse on <f(^) or P'^), ̂  as above. For references to other PL-conditions
we refer to the comprehensive article of Meise, Taylor and Vogt [18].

2.7. PROPOSITION. — Let K c Q C IR71 be compact and convex sets
with K ^ 0 and P e (C[zi , . . . , ̂ ]. The following assertions are equivalent:

(1) (K,Q) satisfies the P(D)-extension property

(2) V(P) satisfies APL(K,Q)

(3) Y(P) satisfies PL (K,Q).

Proof. — (1) ̂  (2): By Lemma 2.4 we may assume that P is a product
of irreducible polynomials which are pairwise not proportional. Then the
Fourier transforms ̂  : Sp^K)'^ —> A^(V(P)) and ^Q : £p(Q)[ -^
AQ(y(p)) in L8 are topological isomorphisms. By definition, the pair
(K, Q) has the P(J9)-extension property if and only if the restriction map:

R: fp(Q)^^(^ /^/|^
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is surjective. Obviously, the map L := FQ o J? o f^ is equal to the
inclusion map A^(V(P)) ̂  AQ(V(P)). Hence R is surjective if and only
if A~^(V(P)) is a topological subspace of AQ(V(P)). Since both spaces
A~^(V(P)) and AQ^V^P)) are (DFS)-spaces Baernstein's lemma (see e.g.
Meise-Vogt [20], 26.26) implies that this is equivalent to

. for each bounded set B C AQ(V(P)) the set B U A~^(V(P))
v } is bounded in A^(V{P)).

0

Since for each convex, compact set L C IR71 with L ^ 0 the sets

B^L:={feA-,(V(P))\ sup \f(z)\
zev{P)
exp(-ffL(Im^) -mlog(l+ \z\)) ^ l},m e IN,

form a fundamental sequence of bounded sets in A~j^{V{P)), (4) is equiva-
lent to

/ . for each k ^ 1 there exists I ^ 1 and (7 > 0 such that
( ) B^QnA^(V(P))cCBi,K>

Obviously, property (5) is equivalent to the Phragmen-Lindelof condition
APL(X,Q).

(2) ̂  (3): This follows from Franken [F2], Thm. 10.

Remark. — The equivalence of the conditions 2.7(1) and 2.7(2) also
follows from Thm. 3.2 of Boiti and Nacinovich [BN] who investigated when
solutions of systems can be extended.

2.8. PROPOSITION. — Let K C Q C IR^ be compact and convex sets
0

with K ^ 0 and P € (C[^i , . . . , Zn}' The following assertions are equivalent:

(1) (K^ Q) satisfies the P(D)-extension property for V

(2) V(P) satisfies APL^K^Q)

(3) Y(P) satisfies PL' (K,Q).

Proof. — (1) ^=> (2): As in the proof of 2.7 one can show that (1) is
equivalent to

for each zero-neighborhood U C A^(V{P)) there exists a zero-
( ) neighborhood V C AQ(V(P)) satisfying V H A^(V(P)) C U.


