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COMPLETE MINIMAL SURFACES
OF ARBITRARY GENUS IN A SLAB OF R3

by C.J. COSTA^*) and P.A.Q. SIMOES

1. Introduction.

In [2] L.P. Jorge and F. Xavier have proved the existence of complete
minimal surfaces between two parallel planes in R3 with the conformal
structure of a disk. Afterwards H. Rosenberg and E. Toubiana [5], and
F. Lopez [3], were able to extend the results of Jorge and Xavier by showing
respectively the existence of the same type of surfaces with the conformal
structure of an annulus and a projective plane minus a disk. Nevertheless
the technique used to prove these results (Runge's approximation theorem)
is not apparently sufficient to show the existence of such surfaces with
higher genus.

Using lacunary power series F.F. Brito [1] has constructed explicit
examples of minimal surfaces with the same properties of [2]. An important
feature of Brito's technique is that it can be used to construct examples of
higher genus. Indeed in this paper we construct for every k = 1,2,. . . and
1 <, N <: 4, examples of complete minimal surfaces of genus k and N ends
in a slab of R3. More precisely we will prove:

THEOREM 1.1. — For every k = 1,2,... and 1 <: N < 4, there
is a complete minimal immersion X^.N : !^k,N —> R3? with infinite total
curvature such that:

(*) Work partially supported by CNPq-Brazil and by FAPESP, contract 9213482-8.
Key words: Minimal surfaces - Weierstrass'representation - Lacunary series.
Math. classification: 53A10 - 53C42.
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a) M^i and Mk,2 o're respectively a compact Riemann surface of genus
k minus one disk and two disks,

b) Mfcj+2, j == 1,2, are respectively Mkj punctured at two points,

c) Xk,N (Mk,N) lies between two parallel planes ofR3 and Xk,s,Xk,4
have two embedded planar ends.

We would like to thank to M. Elisa Oliveira for valuable conversations
during the preparation of this work.

2. Preliminaries.

A powerful method to obtain examples of minimal surfaces in R3

is the so-called Weierstrass-Enneper representation. We will conjugate this
method with a lemma ofF.F. Brito [1] to prove Theorem 1.1. We summarize
this procedure in Theorem 2.1 and Lemma 2.1 below.

THEOREM 2.1. — Let M be a non-compact Riemann surface. Sup-
pose that g and rj are respectively a meromorphic function and a holomor-
phic differential on M such that

(C.I) p C M is a pole of order m of g if and only ifp is a zero of order 2m
ofrj,

(C.2) for every closed curve 7 in M,

Re / grj == 0, g2^ = T] and
J^f J-y J-y/^ J7 J-y

(C.3) for every divergent curve A in M,

/(14- \g |2) | 77|== +oo.
J\

Then, X : M -> R3,

X{z) = Re f ((1 - g2)^ i(l + g2)^ 2grf)
Jzo

is a complete minimal immersion.

Given a power series in C with radius of convergence 1,
00

h^^^a^',
j=i
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we say that it has Hadamard gaps if there is a > 1 such that J+l > a > 1,rij
for allj =1,2, . . .

00

LEMMA 2.1 (F. Brito [1]). — Suppose that h{z) = ^ ajz^ has
j=i

Hadamard gaps and satisfies
00

(a) ^ | dj \< oo,
j=i

/T-\ T I I • f ^J ^J'+l 1 /J(b) hm a. mm < ——, —— > = oo and
j^oo l^j-1 ^7 J
00

(c) E I ^ I2 ̂  = °° •
J=l

Then for every divergent curve 7 m D = {z G G; |^| < 1}

/i/z^n^i^oc.j-y

3. Proof of Theorem 1.1.

The proof of Theorem 1.1 is founded on Proposition 3.1 and
Lemma 3.1 which we will prove below. Nevertheless, first of all we will
define the conformal structure of the Riemann surfaces Mk,q of genus k
and q ends, A ; = = l , 2 , . . . , l < g < 4 and homological basis for these sur-
faces.

For each integer s >, 3 let Ms be the compact Riemann surfaces
Ms = {{z, w) C (C U {oo}); w2 == z8 - 1}.

Observe that for every s, z : Ms —^ C U {00} is a meromorphic
function of degree two and Ms is a compact Riemann surface of genus k if
s = 2k + 1 or s = 2k 4- 2, k = 1,2,.... For a fixed real number 6 > 3 let
Vs(6) = {{z,w) € Ms', \z\ ̂  6} and pi = (0,z),p2 = (0, -i) € Ms. Then
Vs(S) is a closed disk if s = 2k + 1 or a disconnected union of two closed
disks if s == 2k + 2. Now we define

(1) Mkj=Ms\Vs(6), j=l if s=2k+l and j = 2 if s == 2A; + 2

and

(2) Mfcj+2 = Mfcj \ {pi,p2}, J == 1,2.
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Now, we will construct a basis for the homology of Mk,q. We recall
(see (1) and (2)) that with k > 1 fixed either s = 2k + 1, if q = 1,3
or s = 2k + 2 if q = 2,4. If e = e10, where 0 = 27r, let Z^ be the
arc {^, 0 < ^ < 0} , j = 0,1,. . . , s - 1. Let 71 (t), 0 < ̂  27r, be a

{ 1 /9 ^ ^
(71 Jordan curve in Bs = pe^; g < P < 2 , — < u < - 6 ^ that contains

rt

Z/o in its interior and such that 71 (0) = -e^'2. We observe that 1 and&
e lie in the interior of 71 (t) and e3 is contained in the exterior of 71 (t)
for 2 ^ j <, s — 1. So, in a neighbourhood of 71 (^) there exists a well-
defined branch of (z8 - 1)^. Let 71 (t) = (^(t),w(t)) a closed lift of 71 {t)
to Mk,q C Ms. Let An be the conformal diffeomorphism of Mg, defined by
An(^, w) = (^^ w), n = 0,1, . . . , s - 1. Observe that the restriction of An
to Mk,q is still a conformal diffeomorphism of Mj^g. Then
(3) Kq = {7n = An o 71; n = 0,1,. . . , s - 1}
are closed curves of Mk,q and Ag contains a basis for the homology of Ms.
Now we complete Aq to have a basis for the homology of Mk,q. If q = 1,3,
where s = 2fc+1, let a(t) = (d(2t), w(^)) to be a lift of a(2t) to M^g where

a(^) = ——e1*, 0 ^ t <, 27r and denote by /3j(t) = [/3(^),w(t)) , j == 1,2

distinct lifts of l3(t) = -e^, 0 ^ ̂  27r, to M^. Then

(4) Ai = Ai U {a} and As = Ai U {a, /3i, ̂ }
contain respectively a basis for the homology of M^i and M^s.

If q = 2,4, let ̂ ) = (d(^), w(^)) be, j = 1,2, distinct lifts of a(t) to
Mfc,2 and let ^+2^) = ^(^.w^)^ be, '̂ = 1,2, two distinct lifts of (3(t)
to Mfc,4. Then
(5) A2 = A 2 U { ^ i , / ^ 2 } and A4 = A2 U {^1,^2,^3^4}
contain respectively a basis for the homology of M^2 and Mj^4.

In order to construct minimal immersions Xjc,q : Mk,q —^ R3, as
required in Theorem 1.1 we will define Weierstrass data (gk,q^k,q) on
Mk,q satisfying the hyphotesis of Theorem 2.1. To make it possible we will
require that the group of symmetries of Mk,q generated by the conformal
diffeomorphisms An, will be carried via (gk,q, rjk,q) on a group of symmetries
of Xk,q(Mk,q) C R3. With this purpose with k > 1 fixed let us define in
D = {z € (7; |^| < 1} the Hadamard's gaps series

(6) hq(z)=cqzs+lf^a,qzsn^ ( 7 = 1 , . . . , 4
8 8 J=l
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where

(7) n ,=2^!+l , a^=2-^^, j = 1,2,.. . , 1 < q ̂  4

and Cg,^g are real numbers, to be chosen later.

Finaly we define the Weierstrass data (gq.rjq) = (^,9,^,9) by the
expressions

(8) ^=^(1)' ^^-(I)2/^),
/ c \ 2

W Tip = wc^ and 77^+2 = ( - ) wdz, p = 1,2

where Ag are complex numbers to be prescribed later.

Observe that if (z,w) e Mk,q then |^| < 1. So for each q =
1,2,3,4 gq is a well-defined meromorphic function on Mk,q and r]q is a
holomorphic differential on M^g. Since, ^^g is an exact differential we
obtain

(10) [ g ^ q ^ o
J7

for every closed curve 7 C Mk,q.

On the other hand

(11) [h,(z)]2 =f>^m-, K g < 4
j=i

where

(12) djq e C and m^ = —2(mods).

Then, as A^w = w and A^d^ = e^dz, we find from (8), (9), (11) and
(12) that A^ (g^rjq) = e^g^^q = e^q if q = 1,2 and A^ (<^) =
^n^^, A^ = e-71^, if 9 == 3,4. So

/* g^q = / A; (̂ 77,) = 6-71 / g^q , g = 1 ,2
«/7n ^l «/7l

and
[ r]q= f ^(rJq)=en f ^, g = l , 2 .

^^n ^71 ^^l

So we conclude that

(13) / 9^= rjq^=> g^r]q= I r ] q , n= 1,2,. ..s.
^^n ^7n ^^l ^^l
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Suppose now that (gq,r]q) define minimal surfaces Xjc,q : M^.q —•> R3.
Then the results below together with Theorem 2.1 allow us to conclude
that

rP rp
2(x^ + ix2)(p) = rf- g2rf=6q^+^X2)(^n{p))+An

J po J po

and rp
x^(p) =Re grf=X3 (A^(p))

^Po

where An = -6q^n(x\ + ix^) (Ayi(po)) is a constant, 6q^n = e71 if q = 1,2,
<^,n = ̂ -n if 9 = 3,4 and Xk,q = (x^ + ix^.x^).

Then if L/n are the rigid motion of R3 give by

Ln (^1 + ̂ 2^3) = (^g,n(^l + ^2) 4- An, X^)

where we identify R3 = C x R we conclude that Ln generates the desired
group of symmetries of R3 for the surfaces X^g(M^g).

Notice that from (8) and (9), gqT]q is a exact differential on Mjc,q and

(14) xs(p) =Re gqTjq = Re \6\qhq ̂  .

As hq is bounded on M^.q we conclude that third coordinate of the
immersion is bounded.

The symmetries just exploited and a proposition and a lemma men-
tioned at the beginning of this section are exactly what we need to prove
Theorem 1.1.

So, let us state and prove the proposition and the lemma.

PROPOSITION 3.1. — For each integer s > 3 let Ms be the
compact Riemann surface Ms = {(^ ,w) € (C U oo)2;'^2 = z8 — 1},
6 = — and let ^(t\ 0 < t < 27T, be a C1 Jordan curve in Bs =

^ pe^, - < p < 2, -0/2 < u < -0 \ that contains LQ = {e^; 0 < u ̂  0} in

its interior. If^f(t) = (-7(^),w(t)) is a lift of ̂ (t) to Ms and r = 2s — 2 or
r = 2s, we have that

I^^Q.
J^, ^

Proof. — We observe that ^ r— and zr+l~swdz are holomorphicw
differentials in a neighbourhood of ^(t). Also as over ^(t) there exists a
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well-defined branch of ^ / z 8 — 1 then 7 is a closed curve. Furthermore, as

d (z^^w) = (r + 1 - s)zr-swdz + ̂ rck
v / 2 w

it is enough to prove that

(15) 1= ( z^wdz^O.
J^

Now we choose an open disk U C G, such that 7(1) lies in U, {e^; 0 ^
t < 6} C U and e^0 ^ [7, p = 2 ,3 , . . . , s - 1. In U let a; be the branch of
(z5 - I)1/2 such that 7% = (7%, a; (7^))). So, if we collapse 7^) to the
arc [e^ € C; 0 < t <, 0} we find from (15)

/.0 ^
J = 2 z / e^-^e^e^-l)2^.

Jo
Then, I ^ 0, if and only if,

f\i{r^-^)t Ln^y^O.

Q-f- irr

Now setting v = — — — we conclude that the last expression isz 2j
equivalent to

(16) Jo == / cos/3?;(cosi;)^ 7^ 0
^0

where("> ^^-i.
On the other hand if m ^ 0 is an integer and

(18) Jm = [ 2 cos[(/? - m^cosv^^dv,
Jo

then, by using integration by parts we obtain:
/.f

Jm= / cos^-m-l^Kcosz;)771"1'^^
Jo

7T

— / sin[(/3—m—l)^]sin-^;(cos^)m+2d^
Jo

=[ l-2^^-m- l)]Jm+l•
This result implies that for every integer m > 0,

m+l [ - 9 -|

(19) Jo = ^4-1 11 [1 - 2JTT(/?~J)j •
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We observe that the hypothesis of Proposition 3.1 and (17) imply that

(20) ^^j^l^-^0' ^'=0^-

Also, the same hypothesis show that |/?-2| < l i f r = 2s-2 and |/?-3| < 1 if
r = 2s. So, in each case we can find an integer m > 2 such that \f3-m\ < 1.
These results together with (18), (19) and (20) show that (16) is true. This
finishes the proof of Proposition 3.1.

LEMMA 3.1. — There exist real numbers Cq^tjq, complex numbers
Xq ^ 0, where j = 1,2,..., and a real number L ^ 3 such that for every
closed curve 7 = ^q in Mk,q and for every 6 > L

\ 9^= rjq, 9=1,2,3 ,4
J^ J7

where gq and r]q are defined in (8) and (9) and Mk q are given by (1) and
w'

Proof. — First of all we will prove that there exist Cq, tjq e R, \q € C
and L > 3 such that

(21) I 9^= f rjq, n = 0 , l , . . . , 5 - l
•̂ n J^Yn

for every 6 > L, where 7^ are the closed paths that appear in (4) if q = 1,3
or in (5) if q = 2,4. For this, it suffices to verify the second equality in (13).
First we specify 71 to be the lift of 71 with 71(0) = (7i(0),w(0)), where

k-i
—iw(0) is a positive real number. We define respectively on C\ \J ^2j+i U

j=0
k ^

[1, oo) and on C\ |j L^ branches ujp.p = 1,2 of (^+P - l)2 wich satisfy
j=o

w o 71 = ujp o 71. Then

r j p = ujpdz and / r]p+2 = 62 ^-2, p=l,2.
j^i J^ J^ J^ z

In order to evaluate the integrals on the right side, we collapse 71 to
the arc LQ = [e^ e C; 0 < t < 0}. Then

t r]p= I (e^ - l^ie^dt - f (e^ - \Y ieitdt

J^i Jo Je

(22) = (2z)t f e^t^/sinf^ ̂ 0, p = 1,2
Jo V v 2 /
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and

(23) / ^=^(2z)t ^e^+D^Jsmf^d^O, p=l,2.
J î JO ^ \2 /

On the other hand, we obtain from (6) and (7)
00

• [^)]2=^2s-2+2c^n,a,^•^^^ 1<^4
j=i

where /g(^), is a Hadamard's gap series in the disk D C C. As ^g,
j = 1,2,.. . are real numbers to be fixed later (see (7)) we can write

00

/^)=^>^
r=l

where brq are complex numbers depending on the variables tjq. So, we
obtain from (8) and (9)

(24) c^A^ ( g^rjq = Cqloq + 2 ̂  e^I.q + c^Jq
1/71 j=i

where
Jo, = ( ^^, ^m--r.)J,, = 2- .̂ / ^m-^,

J7i w J-71 ^

^i = ^2 = 25 - 2, rs = r4 = 2s, m^-i = m^-2 = (nj +1) s - 2,
rrijs = 771^4 = (n -̂ + 1) s and

^=/,/'©$• l^&4•
Prom Proposition 3.1 we conclude that Joq 7^ 0, 1 < q < 4. Then, we

can choose sequences of real numbers tjq^ j = 1,2,.. . such that

(25) Arg (e^^Ijq) = ArgJoq, if ^-g ¥- 0 and ^ = 0 if Ijq = 0
for every Cq > 0 and ^ > 3.

Suppose that tjq, are fixed such that (25) is satisfied. Since | JQ|=
|J,(^)| is a bounded real function of the real variable 6 we can find L >, 3
and Cq large sufficiently such that in (24)

(26) — [ g^rjq + 0, q = 1,2,3,4, for every 6 ̂  L.
^q ^1

Finally, from (22), (23) and (26) we conclude that for every 8 ^ L
there exists Xq = \q(6) C C such that the second equality of (13) is satisfied.
This concludes the proof of (21).
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In order to finish the proof of Lemma 3.1 we need to show that

W / l ^p=/%>, / 9lrf3= ( 773, ^=1,3, .7=1,2
Jo. J oi. Jf3j Jf3j

and

(28) / g^p= I %,, [ glrj4= [ rj^ p = 2 , 4 , .7=1,2
J ^ j J t l j ^0j+2 ^ftj+2

where a, /3j and fij are given in (4) and (5). First we observe that w appears
in (8) and (9) with an odd exponent and a covers twice the closed curve
a(t), 0 < t < 27T, each time with a distinct determination of (^2fc+l - l)172.
This implies that the first integrals in (27) are null.

On the other hand, let ^ be the branch of (z2^2 - l) ^ on [z €

(7; 1 < \z\ < 6} such that o;( ) = v > 0. Suppose that /^i f———) =
/ . /1+^\ \ /1+^\ / / 1 + < ^ \ \(a(-2-)5-^? ̂ (^-)= M^-)4Then

/ 77g = -(-l)-7' / ^dz = -(-iy2m Res c^d^, q = 2,4.
^ Ja ^=00

To calculate Res o;d^ we write z = n~1 and
2;== 00

00

(29) c^)^^271-1)^1), dz^-u-^ a,€R.
n=0

Since (2n - 1)(A: + 1) - 2 7^ -I for every n we obtain
Res ^(u)u~2du = 0.
u=0

This show that f^.rjq= 0. Also, from (8), (11) and (12) we have that
/. 00 „ ,

(30) g^=(-iy\^e^ z^, g=2,4
J ^ - j ,=1 J6i u}

where ejq e R, rj2 = -2(mod(2fc + 2)) and ^-4 = 0(mod(2A; + 2)). But

/ z7'^-^ = -2m Res ^rJ<^-z. Also, (2n - l)(k + 1) - r,a -2^ -1 ,
Ja ct; ;^=00 ^
g = 2,4 and for every n = 1,2... , j = 1,2,.... These results together with
(29) imply that

Res^^ =0, j = l , 2 . . .
-2=00 W

So, the integrals in (30) are null and the first equality in (28) are satisfied.
Also, an easy computation shows that

Res ."^Res "^=0, m=l ,2 , . .
,2=0 w z=0 Z2
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This complete the proof of (27) and (28) and finishes the proof of
Lemma 3.1.

Proof of Theorem 1.1. — Let Mk,q q = 1,2,3,4, be the Riemann
surfaces given in (2) and (1). We will prove that (gq^rjq) as defined in
Lemma 3.1 satisfies the hypothesis of Theorem 2.1. First, observe that
w and dz are respectively a holomorphic function and a holomorphic
differential on M^.q with simple zeros at the points qn = (^e^^O). We
remember that s == 2k + 1 if q = 1,3 and s = 2k + 2 if q = 2,4. Also as
hq{z) is a holomorphic function on D = {z C (7, \z\ < 1} we can choose

6 > L such that h' ( -e^} ̂  0,0 < t <, 27T, 1 ̂  q < 4, where L is given in\6 )
Lemma 3.1. With this choice of 6^gq and rjq have respectively simple poles
and double zeros at the points qn. So, {gq, rjp) satisfies (C.I) of Theorem 2.1.

On the other hand, gq.rfq is an exact differential on Mjc^q. These results
together with Lemma 3.1, implies that (^g, rjq) satisfy (C.2) of Theorem 2.1.

Finally, let l(t) = (!(t),w(t)) ,0 <: t < 1, be a divergent curve on

Mk^q. Suppose that q = 3,4 and lim l(t) = 0. In this situation since rjq has
double poles at (0, =L%) we conclude that l(t) has infinite length. So, we can
suppose that for each q that lim \I(t)\ = 6 and that there exists 0 < e* < 1

such that ——— < \l{t)\ < 6 for every £* < t < 1. Then, as hq satisfy
Lemma 2.1

/(i +1^1) N £ /1^,1 £ ̂ /l"; (?) 1^1' -

So, {gq.rjq) satisfies (C.3) of Theorem 2.1. This proves that {gq.rjq)
defines a complete minimal immersion Xq : Mk,q —> R3. Furthermore, as
in (14) the third coordinate of the immersion verifies

r{z,w) \
\X^z, w)\ = |Re/ g^\ =\Re-^h^) \ < ̂ .

This completes the proof of Theorem 1.1.
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